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What is a mean-field dynamics?

System of N identical particles, with pairwise interactions; N > 1
(e.g. N = Avogadro number ~ 6.02 - 10%3...)

Dynamics described

(a) either by the system of motion equations for each particle

(b) or by the motion equation for the “typical particle” driven by the
collective interaction with all the other particles

Approach (b) is usually referred to as the “mean-field approximation”
for the N-particle dynamics
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Advantages/Drawbacks

(a) perfect in theory, unfeasible in practice (phase space of dimension
6N, how to measure/observe initial data/trajectories?)

(b) only an approximation, but on a phase space of low (fixed) di-
mension 6

Problem

To justify approach (b) by a rigorous derivation from (a), possibly
with a convergence rate as the particle number N — oo
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Examples of mean-field equations in physics are

ethe Vlasov-Poisson or Vlasov-Maxwell system used in the modeling
of plasmas or ionized gases

ethe Hartree or Hartree-Fock equations used in quantum chemistry
ab initio computations

The Boltzmann equation of the kinetic theory of gases is not a mean-
field equation: each gas molecule interacts only with another gas
molecule at the same position at the same instant of time

The Boltzmann equation has been derived rigorously for short-range
molecular interactions (Lanford 1975)

The Vlasov-Poisson system is used for the Coulomb interaction, or
Newton's law of gravitation, which are long-range interactions
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Syllabus of this course

eMean-field limit of large particle systems in classical mechanics, with
convergence rate

eMean-field limit of large particle systems in quantum mechanics,
with convergence rate

eQuantum dynamics of large particle systems in the semiclassical
limit

Emphasis on the uniformity as 74 — 0 of the mean-field limit in
quantum mechanics — the question of singular interactions in this
context is still open and will be mostly left aside

Roughly speaking, the idea is to build an h-deformation of the metric

structure used in the derivation of the mean-field limit in classical
mechanics
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The diagram

Schrddinger Nz

4
h—0 h—0
{ {

. . N—
Liouville] "% [Vlasov|

Horizontal arrows correspond to the mean-field limit, whereas
vertical arrows correspond to the semiclassical limit
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QOutline of this course

Lecture 1
From Newton's equation of classical mechanics to the Vlasov equa-
tion: Dobrushin’s proof revisited

Lecture 2
From the N-particle Schrédinger equation to the Hartree equation:
BBGKY hierarchy vs. Pickl's approach

Lecture 3

From the N-particle Schrédinger equation to the Vlasov equation —
uniformity in A of the mean-field limit in quantum mechanics
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DOBRUSHIN'S DERIVATION OF THE VLASOV EQUATION‘

R.L. Dobrushin: Funct. Anal. Appl. 13, 115-123 (1979)
See also:

H. Neunzert, J. Wick: Springer LNM 395
W. Braun, K. Hepp: Commun. Math. Phys. 1977
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The N-body problem in classical mechanics

System of N identical point particles of mass m, spatial domain R
Pairwise interaction given by a potential V(x; —x), with x;, x € R
Newton's second law for the motion of particle no.k:

N
mi =&, §=> —VV(x5—x)
k=1

ki
Assumptions on V:
(H1) V(z) = V(-2) for all z € R?
(H2) V e CHRY) with VV € L>°(RY) N Lip(RY)
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Mean-field scaling

Rescaled time, position and momentum:

E=t/N, %(1) =x(1), &()=¢g()

Motion equations

2 N
dxi 2 d¢; A
mN FIRRIR N I él -V V(% — Xk)
kA
Finite mass assumption
Nm=1
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N-particle flow

Henceforth drop hats on all variables; our starting point is

1

xp=&, sz—ﬁ VV(xj — xk)

=
||M2
L

Notation

Xn = (X1, Xn) =n = (&1, ,¢n)

By Cauchy-Lipschitz (see assumption (H2)), the differential system
above generates a global flow on R?V

= (X (e, X, =R), =n(t, XYL =)

— solution of the differential system with initial data (X7, =)
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The Vlasov equation

Unknown f(t, dxd¢) = single-particle phase-space number density

(Or +6-V)f =V, Vs -Vef =0, x,£€RY

where V¢ = V¢(t, x) is the mean-field potential

F(t,x) = // V(x — y)f(t,dydn)
RIxRd
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Empirical measure

N-particle phase space empirical measure

Mz

:u(XN,_ ék(t

k:

Key observation The two following conditions are equivalent:

(a) t — (Xn,=n)(t) is a solution of Newton's differential system of
motion equations, and

(b) t.»—> H(Xu,=n)(¢) 1S 2 Wea_kly continuous in time, measure-valued
solution of the Vlasov equation
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Dobrushin’s theorem (1979)

Assume that V satisfies (H1-2). Let " be a probability density on
R29 such that

/ / (x| + [€])Fn(x, ) dbedé < oo

and let f be the solution of the Vlasov equation with initial data .
Let t — (X, =n)(t) be the solution of Newton's differential system
with initial data (X3/,=}j). Then

diStMK,l(,U(XN,EN)(t)a f(t, )) < distMK,l(u(Xm =inys fm) max(1,2Lip(VV))t

Remark Mean-field limit < continuous dependence on the initial
data in the weak topology of probability measures
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Choice of the initial phase-space points

Consider a sequence of initial phase-space points (x ’",5’”)J>1 s.t.

(xj", J’”) are i.i.d., with distribution f(dxd¢)

By the strong LLN

o in . in #iny |

Since distyk 1 metrizes the weak topology of Borel probability mea-
sures on R2“, the strong LLN implies that, in the limit as N — oo

=in); M) =0 asin (X7, €M)y

diStMKvl(“(XN,EN)( Xi7 J oS

N>=N
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|A CRASH COURSE ON MONGE-KANTOROVICH DISTANCES|

C. Villani : “Topics in Optimal Transportation”, AMS (2003)
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Couplings of probability measures

Let P(R") be the set of Borel probability measures on R"; for p > 0,
denote

PR = {me PR st [ xom(a <

Given p,v € P(R"), a coupling of p and v is an element 7 €
P(R" x R™) such that

// (600) + w()r(ddy) = | d(u(dx)+ [ w(y)(dy)
RAxR" Rn Rn

Set of couplings of p, v denoted M(u, v); obviously

p,v € Pp(R") = MN(p,v) C Pp(R" x R™)
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Monge-Kantorovich distances

Let p > 1; for each i, v € Pp(R"), the Monge-Kantorovich distance
between p and v is

1/p
Stsso) = gl ([ P059)
™ N4 ny RN

Monge-Kantorovich duality

distmio (1 v)P = sup / s()u(d) + [ ()r(dx)
d(x)+v(y)<|x—y|P n Rn
b€ Ch(RY)

In particular

distmk 1(p,v) = sup
Lip(¢)<1

¢(2)p(dz) — o ¢(z)v(dz)

Rn

Francois Golse Mean-Field Limits



Separation axiom distyk p(1t,v) =06 p=v
< choose m = pu(dx)o(x —y) € M(w, 1)
= if ¢ € C}(R") and 7 € M(p,v), then

o, d@uldz) = | o(z)v(dz)

1/p
< Lip(¢ <// |x — y|Pm( dxdy))
R"xR"

< Lip(¢) distmi p(1t, v)
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Glueing couplings

Lemma Let A\, p,v € Pp(R"), let 7 € T(A, ) and p € M(p,v);
there exists w € P(R3") such that

/ / /R (90, y) + 0y, 2))w(dxdydz) = / - d(x, y)m(dxdy)
+ [ vty otaye)

Disintegrate 7 and p along pu:

7r:/R Ty @ 0y p(dy), p:/R 3y @ pyp(dy)

Set
W= /R Ty ® 0y @ pypu(dy)
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Triangle inequality

Let w be a glueing of m € M(A, 1) and p € M(p, v); then, one has

distunk (11, ( [ =z dxdydz))l/p

(// (Ix — vl + |y — 2))Pw(dxdydz) )Up
(et -t
e )

Minimizing over m € T(A, 1) and p € M(u, v) implies that

diStMK’p()\, V) < diStMKyp(/\, u) + diStMKyp(/L, V)
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| APPLICATION OF MONGE-KANTOROVICH DISTANCES |
| CONVERGENCE RATE IN LLN|

N. Fournier, A. Guillin, Prob. Theory Rel. Fields 162, 707-738 (2015)
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The Fournier-Guillin estimate

Let P € P,(R") for some g > 1. For Zy := (z1,...,2zn) € R™, we
denote the empirical measure of the N-tuple Zy by

1 N
Kzy -= NZ‘SZJ
j=1

Then

) distmi 1 (112, P)PEN (dZ)
Rn

<C < 5 |zqP(dz))l (/v P+ N <1">)

provided that g # "¢
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Application to the mean-field limit

Consequence of Dobrushin’s theorem
Assume that V satisfies (H1-2). Let f'" be a probability density on
R29 such that, for some 1 < q # %

— q/n
M, // (x| + [€)9F(x, €)ddlé < o0

and let f be the solution of the Vlasov equation with initial data 7.
Let t — (Xn,=n)(t) be the solution of Newton's differential system
with initial data (X/7, =), Then

/deN dIStMK,l(/’L(XN N)(t X:n m H fll‘l d)(_ldgj)
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Limitations of Dobrushin’s approach

eSeems limited to Lipschitz continuous interaction forces (but can
be modified to treat singular forces: see Hauray-Jabin, Lazarovici)
eConvergence rate estimate limited by quantization error for the ini-
tial distribution function £

eExtension to the quantum N-body probem very unclear — is there
a natural notion of empirical measure in quantum mechanics? does it
satisfy the Hartree equation? is there a notion of “particle trajectory”
in quantum mechanics?

Francois Golse Mean-Field Limits



[DOBRUSHIN’S ARGUMENT REVISITED|

F. Golse, C. Mouhot, T. Paul:
Commun. Math. Phys. 343, 165-205 (2016)
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N-body Liouville equation

Hamiltonian formulation of Newton's equations

% = OHN/0g, & = —0Hn/Dx

N-body Hamiltonian

Hu(Xn,=n) == Z \51\2+f > Vi —x)
1<j<k<N

Liouville equation for the N-particle density Fy = Fy(t, dXnyd=p)
OtFn + {Hn, Fn}n =0

where
N
{0, Wy =) (Vgd VU — V, 0 Ve b)
j=1
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The Cauchy problem for the Liouville equation

The system of Hamilton's equations is the system defining the char-
acteristic curves of the Liouville equation
Weak solution of the Cauchy problem

OtFn + {Hn, Fnin =0, Fu| i € P(R?)

t=0

given by

Fn(t) = (Xn, Zn)(t ) #FE . Fy € C(R; w — P(R%NY))

Notation if T: X — Y is A— B measurable, and if x is a measure
on (X,.A), the image measure v = T#p on (Y, B) is defined by
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Indistinguishable particles

For o € Gy, denote o - Xy := (X5(1); - - - » Xo(n)), and set
TJ(XN,EN) = (U : XN,O' . EN)
Lemma Let Fj7 € P(R2V), and let Fy := (Xn, =n)(t,)#Fi7 be
the solution of the Cauchy problem for the Liouville equation with
initial data Fj7. Then, for each 0 € Gy and all t € R
T,#Fi = Fif = T,#Fn(t) = Fn(t)
Idea of the proof: observe that H o T, = Hp, so that, by uniqueness

of the solution of the Cauchy problem for Hamilton's equations

()(/\/7 EN)(t, ) o T(r = T(r o (XN; EN)(t, )
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n-particle marginal of Fy

Let Fy € P(R?V) satisfy T,#Fy = Fy for all 0 € Gy.
Definition For n=1,..., N — 1, the n-particle marginal of Fy is

Fn.n := PN#Fy € P(R?™)  where PV ( Xy, Zn) = (Xn, Z0)

If Fy has a density (w.r.t. the Lebesgue measure dXyd=p, then
Fn.n is the probability density given by

Frvn(Xns =) = / Fr(Xovs =n) s dénss - . dxdén

R2d(N—n)
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Hamiltonian formulation of Vlasov's equation

Mean-field Hamiltonian

He(e,) (%, €) i= 3IE17 + Vir(e,y (¥)

V(e ( // (x — y)f(t, dydn)
R2d

Vlasov's equation equivalent to

where

Of + {Hp(ey, fl1 =0, f|,_,=f"ecPR*)

Lemma For each £ € P1(R29), there exists a unique weak solution
f € C(Ry; w — P(R?9) of the Vlasov equation

Idea of the proof fixed point argument in the complete metric space
C([0, T], (P1(R?9), distmk 1)) (topology of t-uniform convergence)
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Propagation of moment bounds

Lemma If f"<P,(R29) for some p > 1, the solution of the Cauchy
problem for the Vlasov equation with initial data ™" satisfies

J [P 6k ) < et [ (x7 le)ee)

+2P 1K, |V V[P, el

Lp
with K, := max(1, p—1) and L, := K,(1+max(1,2P~1 Lip(VV)P))

Idea of the proof multiply both sides of the Vlasov equation by
|x|P + [£|P, and use Young's inequality

pabP™! < K,(aP + bP), a,b>0

to estimate
{He(e,ys [XIP +[€]P
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Mean-field limit

Theorem

Assume that V satisfies (H1+2). Let f be the solution of the Vlasov
equation with initial data f" € P,(R29) and Fpy be the solution of
the Liouville equation with initial data F,’;;’, satisfying T,#Fil = F,(;’
for all o € Sy. Then, forallt >0and n=1,..., N

I n I in in
;dIStMK,z(f(t)(g) ,F/\/;n(t))2 < Nd|5tMK 2((f )®N F )2 At

LBIVVEe e - 1
N A

where

A := (1 + max(1,8Lip(VV)?))
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Embedding Vlasov's dynamics in the N-body phase space

Let f be a solution of Vlasov's equation

(9tf + {Hf(t,-)7 f}]_ - (9tf +§ N fo - vxvf(t,-) . V£f - 0

Equation satisfied by f(t)®":

0N + {HN, .y, FEVIn =0
where

N N
H £(t, XN7 Z%|£j|2+zvf(t,-)(xj)

Jj=1 Jj=1
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Comparing HN and Hn

An elementary computation shows that
H . (Xns =) — Hu(Xns Zw)

If x1,...,xy are i.i.d. random variables distributed under

prieal) = [ Flex,e)de

the following limit holds a.s. in (x;)j>1 as N — oo

NZVz—XkH V(z — X)ps(e) (x)x
k=1

//de z — x)f(t, x,&)dxd§
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Dynamics of couplings

Let P € N((F")®N, Fin), and let t — P(t, dXyd=ydYndHy) be
the weak solution of

0:P(t) + {H}, (X, =) + H(Yn, H), P(t)}an = 0
P‘t:O - 'Dm

(a) P(t) € N(f(t)®N, Fy(t)) for each t € R
(b) for each o € Gy, set

To(Xn, =ns YN, Hy) = (0 - Xy, o - =y, 0 - Yiv, 0 - Hy)

then . _
%#Pln — P/n = %#P(t) — P(t) fOr a” t 2 O

Francois Golse Mean-Field Limits



The functional Dy(t)

For each P™ & M((f™)*N, F7), set
1 N
N / 5 21 =y + 1€ = m?)P(t, dXd=ndYidHy)
=1

Lemma Assume that 7T,#P™" = P for all o € Sp. Then

1
Du(t) > — distuw2(F(£)", Fun(t))?,  forn=1,....N

2. foreach k,n=1,...,N

Proof Set ¢k := |xx — ka2 + €k —

DN(I') /CkP / ZCJ >d|StMK 2(7c(t)®,a7 'L_N:n(t))2
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The dynamics of Dy (t)

Notation for Yy = (y1,...,yn), set

Multiplying each side of the equation for P by
LN
5 2 =y + 1 = mif?)
j=1
and integrating in all variables
1N
N / N D (& Vi +nj- Vo)l — v P(2)
j=1
LN
+/ Z VV*X Pr XJ ng—kVV*uyN(yj) . an) ’fj—nj|2p(t)
j=1

Francois Golse Mean-Field Limits



The dynamics of Dy (t)

Thus

Bu() = [ 3 D26 =m)- G5 = m)P(r)
2 N
[ 30 OV )=V Vi () (- )P
j=1

Using the elementary inequality 2ab < (a® + b?) implies that

. 1M
Bu(e) < w(e) + 3y Y- [ 16~ PP
j=1
N
#3229V ncarl) = OV s )PP
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The dynamics of Dy (t)

VV x pr(X) =V V x iy, (vj) = VV ko pr(x5) = VV % pix ()
+VV ik px, (%) =V V x py, (v5)

so that, by convexity of z — |z|?, one has
. 1 N
D(t) < Du(t) + z;/ 1§ — niPP(2) + In(t) + In(t)
J:
with
) N
In(t) ;:N;/\vv*x pr(t, ) =V V % pixy () 2 P(2)
J:
2 N
()= 23 [ 19V, 06) ~ TV 5 05) PP
j=1
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Stability: controling Jy

By convexity of z — |z|?, and since VV € Lip(RY), one has

IVV %y (x7) = VV * iy ()P
2

N
LSO (TVE - x) — TV - )

N
k=1
LN
<y TV ) - TV
Lip(V V)2
< POV S 05— 1) — (= )P
k=1
N
< 2Lip(VV)? (\Xj N Z Xk — )/k|2>
k=1

Francois Golse Mean-Field Limits



Stability: controling Jy

Since

N N
;Z/ <|XJ_YJ'|2+/i/Z|Xk —Yk|2> Pu(t)

k=1
2 N
=520 [ 15— wPPute
j=1
we conclude that

. N
In(t) < ESL"D(,\/WFZ/XJ — yi[*Pn(t)
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Consistency: controling Iy

Lemma Let p be a probability density on R?. Forall j =1,..., N,

one has
N 2 M
1 4|V V|3
/ VV xp(xj) — N ;V\/(Xj — Xk) ﬂl p(Xm)dxm < N
Proof Set

W(t,x1,z) == (VV ¢ pr(t,x1) — VV(x1 — 2))

observe that
/ W (t,x1,z)p(t,z)dz =0
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End of the proof of the Lemma

Therefore

N
/]VV*pr(t x1)— V'V *x px, ()] H (t,x1)dx;

N
=2 Z /thl,xJ W (t, x1, xk H (t,x/)dx

1<j<k<N

=0

N N
1
+m 2/ ’W(t,Xl,XJ')|2 H pf(t,X/)dX/
Jj=1 =1

SN(2|[W|Lo0)?
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Final estimate

1
Bu(t) <Du(0) + 3 [ 16~ nPP()
j=1
8L|p vv 8|V V|3
Z/I x; = yiIPn(t) + N
suvvu%o
SADN(t) + =

Gronwall =
1, .
EdIStMKg(f(t)@ Fr:n(t))? < Dn(t)

8|V V2. eM —1
< Dn(0)e™ .
< Dn(0)e™ + = A
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