高等微积分

第十次作业

交作业时间: 2018年12月2日, 星期一

- 1. Please expand the following functions on $[-\pi,\pi]$ into Fourier series
 - (a) $f(x) = \operatorname{sgn} x;$
 - (b) $f(x) = |\cos x|;$ (c) $f(x) = \begin{cases} ax, & x \in [-\pi, 0), \\ bx, & x \in [0, \pi). \end{cases}$
- 2. Suppose that the Fourier coefficients of 2π -periodic smooth function f on $[-\pi, \pi]$ are c_n , compute the Fourier coefficients \tilde{c}_n for the following functions
 - (a) g(x) = f(-x);(b) $F(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) f(x-t) dt.$
- 3. Suppose that ψ is continuous and monotonic on $[0, +\infty)$ and $\lim_{x\to +\infty} \psi(x) = 0$. Prove

$$\lim_{p \to +\infty} \int_0^{+\infty} \psi(x) \sin(px) dx = 0.$$

- 4. Compute the Fourier series and its coefficients for a function f(x) which is defined on $[a, a + 2\pi]$.
- 5. Please expand the following functions into Fourier series in the associated intervals.

(a)
$$f(x) = x, x \in [0, 1].$$

(b) $f(x) = \begin{cases} e^{3x}, & x \in [-1, 0) \\ 0, & x \in [0, 1). \end{cases}$

- 6. Suppose that f(x) is Riemann integrable or absolutely integrable on $[-\pi,\pi]$. Prove that
 - (a) if $f(x) = f(x + \pi)$ for any $x \in [-\pi, \pi]$, then $c_{2n-1} = 0$;

(b) if
$$f(x) = -f(x + \pi)$$
 for any $x \in [-\pi, \pi]$, then $c_{2n} = 0$;

- 7. Suppose that f(x) is Riemann integrable or absolutely integrable on $[0, \pi/2)$. How to extend f to be a function \tilde{f} on $[-\pi, \pi]$ such that the Fourier series of \tilde{f} has the following form
 - (a) $\tilde{f} \sim \sum_{n=1}^{\infty} a_n \cos(2n-1)x;$
 - (b) $\tilde{f} \sim \sum_{n=1}^{\infty} b_n \sin 2nx;$