1．Please expand the following functions on $[-\pi, \pi]$ into Fourier series
（a）$f(x)=\operatorname{sgn} x$ ；
（b）$f(x)=|\cos x|$ ；
（c）$f(x)= \begin{cases}a x, & x \in[-\pi, 0), \\ b x, & x \in[0, \pi) .\end{cases}$
2．Suppose that the Fourier coefficients of 2π－periodic smooth function f on $[-\pi, \pi]$ are c_{n} ，compute the Fourier coefficients \tilde{c}_{n} for the following functions
（a）$g(x)=f(-x)$ ；
（b）$F(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) f(x-t) d t$ ．
3．Suppose that ψ is continuous and monotonic on $[0,+\infty)$ and $\lim _{x \rightarrow+\infty} \psi(x)=0$ ．Prove

$$
\lim _{p \rightarrow+\infty} \int_{0}^{+\infty} \psi(x) \sin (p x) d x=0
$$

4．Compute the the Fourier series and its coefficients for a function $f(x)$ which is defined on $[a, a+2 \pi]$ ．

5．Please expand the following functions into Fourier series in the associated intervals．
（a）$f(x)=x, x \in[0,1]$ ．
（b）$f(x)= \begin{cases}e^{3 x}, & x \in[-1,0) \\ 0, & x \in[0,1) .\end{cases}$
6．Suppose that $f(x)$ is Riemann integrable or absolutely integrable on $[-\pi, \pi]$ ．Prove that
（a）if $f(x)=f(x+\pi)$ for any $x \in[-\pi, \pi]$ ，then $c_{2 n-1}=0$ ；
（b）if $f(x)=-f(x+\pi)$ for any $x \in[-\pi, \pi]$ ，then $c_{2 n}=0$ ；
7．Suppose that $f(x)$ is Riemann integrable or absolutely integrable on $[0, \pi / 2)$ ．How to extend f to be a function \tilde{f} on $[-\pi, \pi]$ such that the Fourier series of \tilde{f} has the following form
（a）$\tilde{f} \sim \sum_{n=1}^{\infty} a_{n} \cos (2 n-1) x$ ；
（b）$\tilde{f} \sim \sum_{n=1}^{\infty} b_{n} \sin 2 n x$ ；

