交作业时间：2018年12月9日，星期一

1．Suppose that $\psi(x)$ is continuous and monotone on $[0,+\infty), \lim _{x \rightarrow+\infty} \psi(x)=0$ ．Prove

$$
\lim _{\lambda \rightarrow+\infty} \int_{0}^{+\infty} \psi(x) \sin \lambda x d x=0
$$

2．Suppose that $\psi(x)$ is monotone on $[-\delta, \delta]$ ．Prove

$$
\lim _{\lambda \rightarrow+\infty} \int_{-\delta}^{\delta}\left\{\psi(x)-\frac{1}{2}(\psi(0+)+\psi(0-))\right\} \frac{\sin \lambda x}{x} d x=0
$$

3．Show that $\sum_{n=2}^{\infty} \frac{\sin n x}{\ln n}$ and $\sum_{n=2}^{\infty} \frac{\sin n x}{\ln \ln n}$ converge pointwisely，but they cannot be the Fourier series of any Riemann integrable or absolutely integrable functions．

4．Compute the Fourier series for the function

$$
f(x)= \begin{cases}0, & x \in[-1,0) \\ x^{2}, & x \in[0,1)\end{cases}
$$

Using this Fourier series to compute the following series
（a）$\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ ．
（b） $1-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\cdots$ ．
（c） $1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\cdots$ ．
5．Let

$$
f(x)=\left\{\begin{array}{l}
\pi-x, \quad 0<x \leq \pi \\
0, \quad x=0, \\
-\pi-x, \quad-\pi<x<0
\end{array}\right.
$$

（a）Compute the Fourier series of f ；
（b）Does the Fourier series of f converge to f on $[-\pi, \pi]$ ？Does it converge uniformly？
6．Suppose that f is Riemann integrable or absolutely integrable on $[-\pi, \pi]$ ．Prove that for any $\varepsilon>0$ ，there exists a trigonometric polynomial $P_{n}(x)=\sum_{k=0}^{n}\left(A_{k} \cos k x+B_{k} \sin k x\right)$ such that

$$
\int_{-\pi}^{\pi}\left|f(x)-P_{n}(x)\right| d x<\varepsilon .
$$

7．Let f be a 2π－periodic function which is Riemann integrable or absolutely integrable on $(0,2 \pi)$ ．If，in addition，f is monotone decreasing on $(0,2 \pi)$ ，then

$$
\int_{0}^{2 \pi} f(x) \sin n x d x \geq 0, n=1,2, \cdots
$$

