1．page 198： 12,13
2．page 199： 14
3．page 200： 17
4．Using the Fourier series for the function

$$
f(x)= \begin{cases}1, & x \in[-\pi, 0) \\ 0, & x \in(0, \pi)\end{cases}
$$

to prove that

$$
\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}}=\frac{\pi^{2}}{8}
$$

5．Prove that

$$
x^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}} \cos n x, \quad x \in(-\pi, \pi)
$$

and compute $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ ．
6．Suppose that $f(x)$ is twice continuous differentiable function defined on $(-\infty,+\infty$ ， which is also 2π－periodic．Denote

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad \text { and } \quad b_{n}^{\prime \prime}=\frac{1}{\pi} \int_{-\pi}^{\pi} f^{\prime \prime}(x) \sin n x d x
$$

Prove that if $\sum_{n=1}^{\infty} b_{n}^{\prime \prime}$ is absolutely convergent，then

$$
\sum_{n=1}^{\infty} \sqrt{\left|b_{n}\right|}<\frac{1}{2}\left(2+\sum_{n=1}^{\infty}\left|b_{n}^{\prime \prime}\right|\right) .
$$

7．Suppose that $f(x)$ is a 2π－periodic continuous function on $(-\infty,+\infty)$ ．Prove that if the Fourier coefficients of f are always zero，then $f(x) \equiv 0$ ．

8．Let $f ;[0, \pi] \rightarrow \mathbb{R}$ be continuous and piecewise differentiable．Suppose that f^{\prime} is Riemann integrable or absolutely square integrable．If either $f(0)=f(\pi)=0$ or $\int_{0}^{\pi} f(x) d x=0$ ，then

$$
\int_{0}^{\pi} f^{2}(x) d x \leq \int_{0}^{\pi}\left(f^{\prime}\right)^{2}(x) d x
$$

Furthermore，the equality holds if and only if $f(x)=a \cos x$ ．

