Chapter 1

Metric spaces

1.1 Metric and convergence

We will begin with some basic concepts.

Definition 1.1. (Metric space) Metric space is a set X, with a metric

$$d: X \times X \to \mathbb{R}_+ = [0, +\infty)$$

satisfying:

1.
$$d(x,y) \ge 0, d(x,y) = 0 \Leftrightarrow x = y,$$

$$2. \ d(x,y) = d(y,x),$$

3. $d(x,y) \le d(x,z) + d(z,y)$.

From now on, we will represent a metric space with (X, d). Here are some examples:

Example 1.2. $X = \mathbb{R}^n = (x_1, x_2, \cdots, x_n), d(x, y) = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \cdots + (x_n - y_n)^2}.$ Example 1.3. $l_p = (x_1, x_2, \cdots, x_n, \cdots), d(x, y) = (\sum_{i=1}^{\infty} (x_i - y_i)^p)^{\frac{1}{p}}, p \ge 1.$

Example 1.4. $X = C[a, b] = \{f(x) | f(x) \text{ is continuous in } [a, b]\}, d(f, g) = \max |f(x) - g(x)|, x \in [a, b].$

Example 1.5. $X = C[a, b] = \{f(x) | f(x) \text{ is continuous in } [a, b]\}, d(f, g) = \int_{[a, b]} |f(x) - g(x)| dx.$

Definition 1.6. If there exists a sequence $\{x_n\} \subset (X, d)$ and $x \in (X, d)$, we will say $x_n \to x$, iff $d(x_n, x) \to 0$.

Definition 1.7. Suppose that (X, d) is a metric space, A is an open subset of X, if $\forall x \in A$, $\exists \delta > 0, B_{\delta}(x) = \{y | d(x, y) < \delta\} \subset A$. A subset $B \subset X$ is a closed subset of X, if $B^c = \{x \in X | x \notin B\}$ is open.

Example 1.8. $X = \mathbb{R}$, then the interval (0, 1) is an open subset, the interval [0, 1] is a closed subset. The interval [0, 1) is neither an open subset nor a closed subset.

Proposition 1.9. We have following basic properties for open and closed sets:

- 1. Unions of open sets is open.
- 2. Finite intersection of open sets is open.
- 3. Intersection of closed sets is closed.
- 4. Finite union of closed sets is closed.

Proof. According to the De Morgan's law, we have

 $(\cap^{\alpha} A_{\alpha})^{c} = \bigcup_{\alpha} A_{\alpha}^{c}$ and $(\bigcup_{\alpha} A_{\alpha})^{c} = \cap^{\alpha} A_{\alpha}^{c}$.

Hence we only need to prove the first two properties.

Suppose that $A = \bigcup_{\alpha \in I} A_{\alpha}$, A_{α} is open. $\forall x \in A, \exists \alpha_0 \in I$, such that $x \in A_{\alpha_0}$. Since A_{α_0} is open, $\exists \delta > 0$ such that $B_{\delta}(x) \subset A_{\alpha_0}$. Then $B_{\delta}(x) \subset A$, i.e. $A = \bigcup_{\alpha \in I} A_{\alpha}$ is an open set.

Suppose that $B = \bigcap_{i=1}^{n} A_i$ where A_i $(i = 1, \dots, n)$ is an open set. $\forall x \in B$, so for every $i = 1, 2, \dots, n$, there exists δ_i , such that $B_{\delta_i}(x) \subset A_i$, then take $\delta = \min\{\delta_1, \delta_2, \dots, \delta_n\}$, we can derive that $B_{\delta}(x) \subset B$, i.e. $B = \bigcap_{i=1}^{n} A_i$ is an open subset. \Box

Definition 1.10. The interior \mathring{A} of a set A is the union of all open sets which are contained in A. The closure \overline{B} of a set B is the intersection of all closed sets which contain B.

Definition 1.11. If a set A satisfies $\overline{A} = X$, then A is said to be dense in X.

Definition 1.12. Metric space (X, d) is said to be separable, if there exists a countable dense subset $A \subset X$.

1.2 Completeness

Definition 1.13. (X, d) is a metric space, if $\lim_{n,m\to\infty} d(x_n, x_m) = 0$, we say that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence. The metric space (X, d) is called a complete metric space if every Cauchy sequence converges in X, i.e. $\exists x \in X$, s.t. $d(x_n, x) \to 0, n \to \infty$.

Example 1.14. \mathbb{R} is a complete metric space and [0,1] is also a complete metric space.

Proof. First, let $\{x_n\}$ be a Cauchy sequence in [0, 1]. Then $\{x_n\}$ is a Cauchy sequence in R. Hence $x_n \to x \in R$.

Second, [0, 1] is closed $\Rightarrow x \in [0, 1] \Rightarrow x_n$ converges in [0, 1].

Example 1.15. (0,1) is not a complete metric space.

Proof. Take $x_n = \frac{1}{n}$, $x_n \to 0 \notin (0,1)$, but x_n is a Cauchy sequence in (0,1), then we will say that (0,1) is not a complete metric space.

We have the following theorem, whose proof is one of our exercises.

Theorem 1.16. Given a subset Y of a complete metric space (X, d), the metric space (Y, d) is complete iff Y is a closed subset.

Definition 1.17. Let X be a metric space. A set $E \subset X$ is said to be nowhere dense if its closure \overline{E} has an empty interior. The sets of the *first category* in X are that are *countable* unions of nowhere dense sets. Any subset of X that is not of the first category is said to be of the *second category* in X.

Proposition 1.18. We have the following properties on the category.

- (a) If $A \subset B$ and B is of the first category in X, so is A.
- (b) Any countable union of sets of the first category is of the first category.
- (c) Any closed set $E \subset X$ whose interior is empty is of the first category in X.

Theorem 1.19. (Baire Category Theorem) If (X, d) is a complete metric space, then the intersection of every countable collection of dense open subsets of X is dense in X.

Corollary 1.20. A complete metric space is of the second category.

Proof of the corollary. Suppose not. Let $\{E_i\}$ be a countable collection of nowhere dense subset of X and $X = \bigcup_i E_i$. Denote $V_i = X \setminus \overline{E_i}$. $\forall x \in X$, if $x \notin V_i$, then $x \in \overline{E_i}$. Since E_i is nowhere dense, $\overline{E_i}$ is nowhere dense. Hence $\forall n \in \mathbb{N}, \exists x_n \in \overline{E_i}^c = V_i$ such that $x_n \in B_{1/n}(x)$. Hence $x \in \overline{V_i}$. Thus each V_i is dense. By Baire category Theorem, $\bigcap_{i=1}^{\infty} V_i \neq \emptyset$. Therefore,

Hence X cannot be the union of countable nowhere dense sets. Therefore, X is of the second category. \Box

Proof of Baire Category Theorem. Suppose that V_1, V_2, \ldots are dense open subsets of X. Let U_0 be an arbitrary nonempty open set in X, If $n \ge 1$ and an open set $U_{n-1} \ne \emptyset$ has been chosen, then there exists an open set $\overline{U}_n \subset V_n \cap U_{n-1}$ where we use the fact that V_n is dense and U_n may be taken to be a ball of radius less than $\frac{1}{n}$. Put

$$K = \bigcap_{n=1}^{\infty} \overline{U_n}$$

Note that the centers of the balls U_n form a Cauchy sequence which converges to some point of K, and so $K \neq \emptyset$. Our construction shows that $K \subset U_0$ and $K \subset V_n$ for each n. Hence U_0 intersect $\cap V_n$. **Definition 1.21.** $(X, d_X), (Y, d_Y)$ are two metric spaces. The mapping $T : X \to Y$ is called an *isometry* if

$$d_Y(Tx_1, Tx_2) = d_X(x_1, x_2)$$

If it is also onto, then it is called *isometric-isomorphism*, we represent this by $X \cong T(X)$.

As we mentioned in the above, not all the metric spaces are complete metric spaces (see the example 1.15), however, by the definition of *isometry*, we can define the completion of a metric space.

Definition 1.22. A metric space (\tilde{X}, \tilde{d}) is a completion of (X, d) if the following conditions are satisfied:

- (a) there is an *isometry* $\sigma: X \to \widetilde{X}$;
- (b) $\sigma(X)$ is dense in \widetilde{X} , i.e. $\overline{\sigma(X)} = \widetilde{X}$;
- (c) $(\widetilde{X}, \widetilde{d})$ is complete.

Now we introduce the main theorem of the completion of metric spaces.

Theorem 1.23. Every metric space has a completion.

Example 1.24. \mathbb{Q} represents the set of rational numbers, so \mathbb{R} is the completion of \mathbb{Q} .

Example 1.25. Let

 $C[0,1] = \{f(x)|f(x) \text{ is continuous in } [0,1]\}$ with metric $d_1(f,g) = \int_0^1 |f(x) - g(x)| dx$.

Then

$$L^{1}[0,1] = \{f(x) \Big| \int_{[0,1]} |f(x)| dx < \infty \}$$

is the completion of the metric space $(\mathcal{C}[0, 1], d_1)$.

1.3 Compactness

Compactness is one of the most important concepts in analysis. We will define compact sets in a metric space by means of sequence.

Definition 1.26. $K \subset X$ is sequentially compact if every sequence of K has a convergent subsequence whose limit is also in K.

Example 1.27. $X = \mathbf{R}$, K = [0, 1] is a sequentially compact subset, but K = (0, 1) is not a sequentially compact subset.

By the well known *Bolzano-Weistrass* theorem which we have already learnt in the mathematical analysis, the following theorem holds **Theorem 1.28.** $K \subset \mathbb{R}^n$ is sequentially compact iff it is bounded and closed.

In the following, we will find an equivalent criterion for the sequentially compactness of a metric space that is easier to verify. First, we introduce the definition of ε -net of a subset Ω .

Definition 1.29. Let $\Omega \subset X$, we say that $F \subset X$ is an ε -net of Ω if $\Omega \subset \bigcup_{x \in F} B_{\varepsilon}(x)$ (F is not required to be a subset of Ω).

Definition 1.30. A subset of a metric space is totally bounded if it has a finite ε -net for any $\varepsilon > 0$.

Theorem 1.31. A subset $K \subset X$ as a metric space is sequentially compact iff it is complete and totally bounded.

Proof. Step 1. K is sequentially compact \Rightarrow K is complete and totally bounded.

If $\{x_n\}$ is a Cauchy sequence in $K \Rightarrow \{x_n\}$ has convergent subsequence $x_{n_k} \rightarrow x \in K$ $\Rightarrow x_n \rightarrow x \in K \Rightarrow K$ is complete.

 $\forall \varepsilon > 0$, choose any $x_1 \in K$, if $K \subset B_{\varepsilon}(x_1)$, then we can end the proof. If it is not true, then $\exists x_2 \in K \setminus B_{\varepsilon}(x_1)$, we continue this step, if it can be ended in finite steps, i.e. $K \subset \bigcup_{i=1}^{n} B_{\varepsilon}(x_i)$.

If it can't be ended in finite steps, we can find a sequence $\{x_i\}_{i=1}^{+\infty}$ with $d(x_i, x_j) > \varepsilon$, $\forall i, j$, if j > i, then $x_j \notin \bigcup_{k=1}^{i} B_{\varepsilon}(x_k)$, since K is sequentially compact $\Rightarrow \exists x_{n_k} \to x$, this is a contradiction with $d(x_{n_k}, x_{n_l}) > \varepsilon$, $n_k \neq n_l$, then we can find finite many balls such that $K \subset \bigcup_{i=1}^{n} B_{\varepsilon}(x_i)$, i.e. K is totally bounded.

Step 2. K is totally bounded and complete $\Rightarrow K$ is sequentially compact.

Let $\{x_n\}$ be a sequence in K, for $\varepsilon_n = \frac{1}{2^n}$, \exists a finite ε_n -net, $\{x_1^n, \dots, x_{l_n}^n\}$, such that $K \subset \bigcup_{i=1}^{l_n} B_{\frac{1}{2^n}}(x_i^n)$, when n = 1, $K \subset \bigcup_{i=1}^{l_1} B_{\frac{1}{2}}(x_i^1)$, because there are only finite many balls that contain $\{x_n\}_{n=1}^{+\infty} \Rightarrow \exists x_{i_1}^1$, s.t. $B_{\frac{1}{2}}(x_{i_1}^1)$ contains infinite many $\{x_n\}$, we denote it by $\{x_{n_k^1}\}$, $k = 1, 2, \cdots$

When n = 2, $\varepsilon = \frac{1}{4}$, $K \subset \bigcup_{i=1}^{l_2} B_{\frac{1}{4}}(x_i^2)$; $\exists x_{i_2}^2 \in \{x_{n_k^1}\}$, s.t. $B_{\frac{1}{4}}(x_{i_2}^2)$ contains infinite many of $\{x_{n_k^1}\}$, we denote it by $\{x_{n_k^2}\}$, which is a subsequence of $\{x_{n_k^1}\}$.

Repeat the step again and again, we can see that for every $q \ge 1$, $d(x_{n_k^q}, x_{n_m^q}) < \frac{1}{2^q} + \frac{1}{2^q} = \frac{1}{2^{q-1}}$, pick one element from each $\{x_{n_k^q}\}$ diagonally, we will get a new subsequence $\{x_{n_q^q}\}$, then $\{x_{n_q^q}\}$ is a subsequence of $\{x_n\}$ with the property that $d(x_{n_q^q}, x_{n_p^p}) < \frac{1}{2^{q-1}}$, for any $p \ge q$, i.e. $\{x_{n_q^q}\}$ is a Cauchy sequence, by the condition that K is complete, then $\{x_{n_q^q}\} \to x \in K$, i.e. K is sequentially compact.

The proof of the following lemma is an exercise.

Lemma 1.32. A sequentially compact metric space is separable.

Then we will introduce the definition of *compactness* and claim the equivalence between *compactness* and *sequentially compactness*.

Definition 1.33. Let $\{A_{\alpha}\}$ be a collection of open sets, if $U \subset \bigcup_{\alpha} A_{\alpha}$, then A_{α} is called an open cover of U.

Definition 1.34. A subset $K \subset X$ is compact if every open cover has a finite sub-cover.

Theorem 1.35. A subset K of a metric space is compact iff it is sequentially compact.

Proof. We first show that K is sequentially compact as long as K is compact.

Step 1. Every sequence has a convergent subsequence. If $\{x_n\}$ does not exist a convergent subsequence, denote

$$A_n = \{x_1, x_2, \cdots, x_{n-1}, x_{n+1}, \cdots\}$$

Then A_n is closed. On the other hand,

$$\cup_{n=1}^{\infty} (X \setminus A_n) = X \setminus \bigcap_{n=1}^{\infty} A_n = X \setminus \emptyset = X \supset K.$$

Since K is compact, one has $\bigcup_{n=1}^{N} (X \setminus A_n) \supset K$. Therefore, we have $X \setminus \{x_n\}_{n=N+1}^{\infty} \supset K$. But $\{x_n\}_{n=N+1}^{\infty} \subset K$. There is a contradiction.

Step 2. K is closed. $\forall x_0 \in X \setminus K$, we have

$$K \subset \bigcup_{x \in K} B_{\frac{1}{2}d(x,x_0)}(x)$$

Since K is compact, there is a finite open cover for K. Assume that

$$K \subset \bigcup_{i=1}^{n} B_{\frac{1}{2}d(x_i, x_0)}(x_i)$$

Let $\delta = \frac{1}{4} \min_{1 \le i \le n} d(x_i, x_0)$. Then for any $x \in B_{\delta}(x_0)$, we have

$$d(x_k, x) \ge d(x_k, x_0) - d(x_0, x) \ge d(x_k, x_0) - \frac{1}{4}d(x_k, x_0) = \frac{3}{4}d(x_k, x_0)$$

This implies that $x \notin B_{\frac{1}{2}d(x_i,x_0)}(x_i)$ for all $i = 1, \dots, n$. Hence $B_{\delta}(x_0) \cap K = \emptyset$. Therefore, K is a closed set.

Step 3. Sequentially compact must be compact. Suppose not, there exists open cover $\{A_{\alpha}\}$ which does not have a finite cover. Since K is sequentially compact, $\forall n \in \mathbb{N}, \exists \text{ an } \frac{1}{2n}$ -net

$$\tilde{\mathcal{N}}_n = \{y_1^{(n)}, y_2^{(n)}, \cdots, y_{k(n)}^{(n)}\}$$

Therefore, we have

$$K \subset \cup_{i=1}^{k(n)} B_{\frac{1}{2n}}(y_i^n)$$

Hence, for $i = 1, \dots, k(n)$, one can choose $x_i^n \in B_{\frac{1}{2n}}(y_i^n) \cap K$ such that

$$K\subset \cup_{i=1}^{k(n)}B_{\frac{1}{n}}(x_i^n)$$

1.4. CONTINUOUS FUNCTIONS

Denote

$$\mathcal{N}_n = \{x_1^{(n)}, x_2^{(n)}, \cdots, x_{k(n)}^n\}$$

Therefore, $\forall n \in \mathbb{N}, \exists x_n \in \mathcal{N}_n$ such that $B_{1/n}(x_n)$ cannot be covered by finite sets in A_{α} . Since *K* is sequentially compact, there exists a subsequence $\{x_{n_k}\}$ such that

$$x_{n_k} \to x_0 \in A_{\alpha_0}$$

Since A_{α_0} is open, there exists a $\delta > 0$ such that $B_{\delta}(x_0) \subset A_{\alpha_0}$. If n_k is sufficiently large, we have $d(x_{n_k}, x_0) < \delta/2$. Therefore,

$$\forall x \in B_{\frac{1}{n_k}}(x_{n_k}) \subset B_{\delta}(x_0)$$

This yields a contradiction.

Definition 1.36. A subset K of a metric space is *pre-compact* if its closure \overline{K} is compact.

1.4 Continuous functions

Definition 1.37. (Continuous functions) Given two metric spaces (X, d_X) and (Y, d_Y) , we say that $f: X \to Y$ is continuous, if $\forall x \in X \lim_{n \to \infty} f(x_n) = f(x)$, whenever $x_n \to x$.

Proposition 1.38. $f : X \to Y$ is continuous at x_0 if and only if $\forall \epsilon > 0$, $\exists \delta > 0$, one has $d_Y(f(x), f(x_0)) < \epsilon$ provided that $d_X(x, x_0) < \delta$.

Proof. The sufficient part is trivial.

Now let's prove the necessary part. Suppose not, then $\exists \epsilon_0, \forall n, \exists x_n \text{ such that } d_X(x_n, x_0) < 1/n, d_Y(f(x_n), f(x_0)) \geq \epsilon_0.$

In fact, we have the following characterization for the continuous functions.

Proposition 1.39. f is continuous function from (X, d_X) to (Y, d_Y) iff $f^{-1}(U)$ is an open set for any open set $U \subset X$.

We can also define so called lower and upper semicontinuous functions from a metric space (X, d) to \mathbb{R} .

Definition 1.40. A function $f: X \to \mathbb{R}$ is called lower (upper) semicontinuous if

$$\liminf_{n \to \infty} f(x_n) \ge f(x) \text{ and } \limsup_{n \to \infty} f(x_n) \le f(x),$$

respectively, whenever $x_n \to x$ as $n \to \infty$.

We will denote the class of all continuous functions from X to Y by $\mathcal{C}(X, Y)$, i.e.

$$\mathcal{C}(X,Y) = \{f: X \to Y | f \text{ is continuous}\}\$$

Example 1.41. We define discrete metric space (X, d_D) as:

$$d_D(x,y) = \begin{cases} 0, & x = y \\ 1, & x \neq y \end{cases}$$

Then, we can say that $C((X, d_D), Y) = all maps from X to Y$.

We can also have the notation as uniform continuity.

Definition 1.42. Given $f \in \mathcal{C}(X, Y)$, we say that f is uniformly continuous, if $\forall \varepsilon > 0, \exists \delta > 0$, for any $x_1, x_2 \in X$ satisfying $d_X(x_1, x_2) < \delta$, one has

$$d_Y(f(x_1), f(x_2)) < \varepsilon$$

The proof of the following two theorems is similar to the ones of mathematical analysis. We leave them as exercises.

Theorem 1.43. $f \in C(K, \mathbb{R})$, K is compact, then f is uniformly continuous.

Theorem 1.44. $f \in C(K, \mathbb{R})$, K is compact, then f is bounded and attains its maximum and minimum.

We will discuss the compactness of a special metric space that is composed of the *continuous* functions.

 $\mathcal{C}_{\mathcal{B}}(X) = \{f : X \to \mathbb{R} | f \text{ is continuous and bounded} \}$ with metric $d(f,g) = \sup_{x \in X} |f(x) - g(x)|$

Then we have the following theorem.

Theorem 1.45. The metric space $(\mathcal{C}_{\mathcal{B}}(X), d)$ is complete.

When X is compact, we just write the above metric space $\mathcal{C}(X)$ for simplicity.

Definition 1.46. $\mathcal{F} \subset C(X, Y)$ is *equi-continuous* if for any $x \in X$, $\forall \varepsilon > 0$, $\exists \delta(\varepsilon, x)$ such that $\forall y \in X$ with $d_X(x, y) < \delta$, one has $d_Y(f(x), f(y)) \leq \varepsilon$ for any $f \in \mathcal{F}$. If δ does not depend on x, then we say that \mathcal{F} is uniformly equicontinuous.

Theorem 1.47. An equi-continuous family $\mathcal{F} \subset \mathcal{C}(K, Y)$ of functions from a compact metric space K to a complete metric space Y is uniformly-equi-continuous.

Proof. We prove the theorem by contradiction argument.

<u>Step 1.</u> Suppose the theorem is not true, $\exists \varepsilon_0 > 0$, for $\delta_n = \frac{1}{n} > 0$, $\exists x_n, y_n \in K$, $f_n \in \mathcal{F}$, such that

$$d(f_n(x_n), f_n(y_n)) \ge \varepsilon_0 \quad \text{with} \quad d(x_n, y_n) \le \frac{1}{n}$$

Since K is compact, $\{x_n\}$ has a convergent subsequence $x_{n_k} \to \overline{x} \in K$.

1.4. CONTINUOUS FUNCTIONS

<u>Step 2.</u> By the condition \mathcal{F} is equi-continuous at \overline{x} , for $\overline{\varepsilon} = \frac{\varepsilon_0}{10} > 0$, $\exists N$, such that if $d(x,\overline{x}) < \frac{1}{N}$, then $d(f(\overline{x}), f(x)) < \frac{\varepsilon_0}{10}$. For k sufficiently large, we have

$$\varepsilon_0 \leq d(f_{n_k}(x_{n_k}), f_{n_k}(y_{n_k}))$$

$$\leq d(f_{n_k}(x_{n_k}), f_{n_k}(\overline{x})) + d(f_{n_k}(y_{n_k}), f_{n_k}(\overline{x}))$$

$$\leq \frac{\varepsilon_0}{10} + \frac{\varepsilon_0}{10}$$

$$< \varepsilon_0.$$

This is a contradiction. Therefore, \mathcal{F} is uniformly-equi-continuous.

Here, we will state an important theorem which describes the compact criteria for $\mathcal{C}(K)$.

Theorem 1.48. (Arzela-Ascoli theorem) Let K be a compact metric space. A subset \mathcal{F} of $\mathcal{C}(K)$ is compact iff it is closed, bounded, and equi-continuous.

Proof. Step 1. compact set is closed, bounded, and equi-continuous. Note that a compact set is sequentially compact, hence it is complete and totally bounded. Since \mathcal{F} is compact, then \mathcal{F} is complete, i.e. \mathcal{F} is a closed subset of a complete metric space $\mathcal{C}(K)$ and it is totally bounded. What left is to show that \mathcal{F} is equi-continuous. In fact, because \mathcal{F} is totally bounded. $\forall \varepsilon > 0$, \exists a finite $\frac{\varepsilon}{100}$ -net, i.e. $\exists f_1, f_2, \cdots, f_N$, such that $\mathcal{F} \subset \bigcup_{i=1}^N B_{\frac{\varepsilon}{100}}(f_i)$, i.e. for any $f \in \mathcal{F}, \exists f_{i_0}, i_0 \in \{1, 2 \cdots, N\}$, s.t.

$$|f(x) - f_{i_0}(x)| < \frac{\varepsilon}{100}, \quad \forall x \in K.$$

On the other hand, $\forall x \in K, \exists \delta > 0$, if $d(x, y) < \delta$, one has

$$|f_i(x) - f_i(y)| < \frac{\varepsilon}{100} (i = 1, 2, \cdots, N).$$

Hence for any $f \in \mathcal{F}$, one has

$$|f(x) - f(y)| \leq |f(x) - f_i(x)| + |f_i(x) - f_i(y)| + |f(y) - f_i(y)|$$

$$\leq \frac{\varepsilon}{100} + \frac{\varepsilon}{100} + \frac{\varepsilon}{100}$$

$$< \varepsilon,$$

(1.1)

i.e. \mathcal{F} is equi-continuous.

Step 2. closed, bounded and equi-continuous set is compact. Suppose that \mathcal{F} is a bounded, equicontinuous subset of $\mathcal{C}(K)$. We will show that every sequence $\{f_n\}$ in \mathcal{F} has a convergent subsequence. There is a countable dense set $\{x_1, x_2, x_3 \dots\}$ in the compact domain K. We choose a subsequence $\{f_{1,n}\}$ of $\{f_n\}$ such that the sequence of values $\{f_{1,n}(x_1)\}$ converges in \mathbb{R} , Such a subsequence exists because $\{f_n(x_1)\}$ is bounded in \mathbb{R} , since \mathcal{F} is bounded in C(K). We choose a subsequence $\{f_{2,n}\}$ of $\{f_{1,n}\}$ such that $\{f_{2,n}(x_2)\}$ converges, which exists for the same reason. Repeating this procedure, we obtain sequences $\{f_{k,n}\}_{n=1}^{\infty}$ for $k = 1, 2, \ldots$ such that $\{f_{k,n}\}$ is a subsequence of $\{f_{k-1,n}\}$, and $\{f_{k,n}(x_k)\}$ converges as $n \to \infty$. Finally, we define a

"diagonal" subsequence $\{g_k\}$ by $g_k = f_{k,k}$. By construction, the sequence $\{g_k\}$ is a subsequence of $\{f_n\}$ with the property that $\{g_k(x_i)\}$ converges in \mathbb{R} as $k \to \infty$ for all x_i in a dense subset of K.

So far, we have only used the boundedness of \mathcal{F} . The equicontinuity of \mathcal{F} is needed to ensure the uniform convergence of $\{g_k\}$. Let $\epsilon > 0$. Since \mathcal{F} is equicontinuous and K is compact, therefore, \mathcal{F} is uniformly equicontinuous. Consequently, $\forall \epsilon > 0$, there is a $\delta > 0$ such that $d(x, y) < \delta$ implies

$$|g_k(x) - g_k(y)| < \frac{\epsilon}{3}.$$

Since $\{x_i\}$ is dense in K, we have

$$K \subset \bigcup_{i=1}^{\infty} B_{\delta}(x_i).$$

Since K is compact, there is a finite subset of $\{x_i\}$, which we denote by $\{x_1, \ldots, x_n\}$, such that

$$K \subset \bigcup_{i=1}^{n} B_{\delta}(x_i).$$

The sequence $\{g_k(x_i)\}_{k=1}^{\infty}$ is convergent for each $i = 1, \dots, n$, and hence is a Cauchy sequence for each $i = 1, \dots, n$, so there is an N such that

$$|g_j(x_i) - g_k(x_i)| < \frac{\epsilon}{3}$$

for all $j, k \ge N$ and i = 1, ..., n. For any $x \in K$, there is an *i* such that $x \in B_{\delta}(x_i)$. Then, for $j, k \ge N$, we have

$$|g_j(x) - g_k(x)| \le |g_j(x) - g_j(x_i)| + |g_j(x_i) - g_k(x_i)| + |g_k(x_i) - g_k(x)| < \epsilon.$$

It follow that $\{g_k\}$ is a Cauchy sequence in C(K). Since \mathcal{F} is closed set in the complete space C(K), it converges to a limit in \mathcal{F} . Hence \mathcal{F} is compact.

Now we take an example to see the applications of Arzela-Ascoli theorem.

Example 1.49. Prove that

$$\mathcal{F} = \{ f | f(x) = \sum_{n=1}^{\infty} a_n \sin(n\pi x) \text{ with } \sum_{n=1}^{\infty} n |a_n| \le 1 \text{ for } x \in [0,1] \}$$

is a compact set in C[0, 1].

Proof. Step 1. It is easy to see that \mathcal{F} is bounded in C[0,1]. Let $\{f_k\} \subset \mathcal{F}$ converge to $f \in C[0,1]$. Suppose that f_k is represented as

$$f_k = \sum_{n=1}^{\infty} a_{k,n} \sin(n\pi x).$$

1.5. CONTRACTION MAPPING THEOREM

Then we have

$$a_{k,n} = \int_0^1 f_k(x) \sin(n\pi x) dx.$$

Since $\{f_k\}$ converges to f uniformly on [0, 1], one has

$$\lim_{k \to \infty} a_{k,n} = \int_0^1 f(x) \sin(n\pi x) dx := a_n$$

Therefore, for any $N \in \mathbb{N}$, we have

$$\sum_{n=1}^{N} n|a_n| = \lim_{k \to \infty} \sum_{n=1}^{N} n|a_{k,n}| \le 1$$

This implies that

$$\sum_{n=1}^{\infty} n|a_n| \le 1.$$

Hence $f \in \mathcal{F}$. This yields that \mathcal{F} is closed.

Step 2. By the mean value theorem, for any $x < y \in \mathbb{R}$ there is a $x < \xi < y$ with

$$\sin x - \sin y = (\cos \xi)(x - y).$$

Hence, for all $x, y \in \mathbb{R}$ we have

$$|\sin x - \sin y| \le |x - y|.$$

Thus, every $f \in \mathcal{F}$ satisfies

$$|f(x) - f(y)| \le \sum_{n=1}^{\infty} |a_n| |\sin(n\pi x) - \sin(n\pi y)| \le \sum_{n=1}^{\infty} \pi n |a_n| |x - y| \le \pi |x - y|.$$

Therefore, given $\epsilon > 0$, we can pick $\delta = \epsilon/\pi$, and then $|x - y| < \delta$ implies $|f(x) - f(y)| < \epsilon$ for all $f \in \mathcal{F}$. From the Arzleà-Ascoli theorem, \mathcal{F} is a compact subset of C([0, 1]).

In the above example, we can see that a special class of functions f, Lipschitz functions, which satisfy

$$d(f(x), f(y)) \le Ld(x, y)$$

must be uniformly equi-continuous. We will study a special class of Lipschitz mapping in the next section.

1.5 Contraction mapping theorem

Definition 1.50. (Contraction map) Let(X, d) be a metric space. A map $T : X \to X$ is a contraction map if there exists a fixed $\theta \in [0, 1)$, such that

$$d(Tx, Ty) \le \theta d(x, y), \quad \forall x, y \in X.$$
(1.2)

Now let us state a *fixed point theorem* of the contraction map which can be a useful tool to prove the existence of solutions of the equations.

Theorem 1.51. (Contraction map theorem) Let (X, d) be a complete metric space, $T : X \to X$ is a contraction map satisfying (1.2), then T has a **unique** fixed point $x \in X$ such that Tx = x.

Proof. Step 1. (Existence). Pick any $x_0 \in X$, and define

$$x_n = Tx_{n-1}$$
 for $n \ge 1$

It follows from (1.2) that one has

$$d(x_{n+1}, x_n) = d(T(x_n), T(x_{n-1})) \le \theta d(x_n, x_{n-1}) \le \theta^2 d(x_{n-1}, x_{n-2}) \dots \le \theta^n d(x_1, x_0).$$

Then for m = n + k > n

$$d(x_m, x_n) \leq d(x_{n+k}, x_{n+k-1}) + d(x_{n+k-1}, x_{n+k-2}) + \dots + d(x_{n+1}, x_n)$$

$$\leq \theta^n d(x_1, x_0) (\theta^{k-1} + \dots + 1)$$

$$\leq \frac{\theta^n}{1 - \theta} d(x_1, x_0).$$

(1.3)

Thus $\{x_n\}$ is a Cauchy sequence. Then we take limit on $x_{n+1} = T(x_n) \Rightarrow \overline{x} = T(\overline{x})$, where $\overline{x} = \lim_{n \to +\infty} x_n$.

Step 2. (Uniqueness). If $\exists z \text{ such that } T(z) = z$, then

$$d(\overline{x}, z) = d(T(\overline{x}), T(z)) \le \theta d(\overline{x}, z)$$

Therefore, we have $d(\overline{x}, z) = 0$. Hence $\overline{x} = z$.

Then let us see two examples of the applications of the above *fixed point theorem* of contraction map.

Example 1.52. Consider the initial value problem for the ordinary differential equation,

$$\begin{cases} u'(t) = f(t, u), \\ u(t_0) = u_0, \end{cases}$$
(1.4)

where f(t, u) is continuous on $[t_0 - h, t_0 + h] \times [u_0 - b, u_0 + b]$ (then $\exists M > 0$, s.t. $|f(t, u)| \leq M$), what's more, f(t, u) is *Lipchitz* continuous with respect to u, i.e. $\exists L > 0$, s.t. $|f(t, u_1) - f(t, u_2)| \leq L|u_1 - u_2|$. Then we can use the contraction mapping theorem to prove the existence and uniqueness of a solution for the problem (1.4) on $[t_0 - \epsilon, t_0 + \epsilon]$ for some $\epsilon > 0$.

Proof. Step 1. Define

$$X = \{ u \in \mathcal{C}[t_0 - \epsilon, t_0 + \epsilon] \Big| u(t_0) = u_0, |u(t) - u_0| \le b \text{ for } t \in [t_0 - \epsilon, t_0 + \epsilon] \},\$$

where $\epsilon \in (0, h]$ is to be determined. Define $T: X \to X$ as

$$(Tu)(t) = u_0 + \int_{t_0}^t f(\tau, u(\tau)) d\tau$$

$$|Tu(t) - u_0| = \left| \int_{t_0}^t f(\tau, u(\tau)) d\tau \right| \le M |t - t_0| \le M \epsilon.$$

Therefore, if $\epsilon \leq M/b$, then T maps X to itself.

Step 2. If ϵ is sufficiently small, then T is a contraction map. Indeed,

$$d(Tu, Tv) = \left| \int_{t_0}^t (f(\tau, u(\tau)) - f(\tau, v(\tau))) d\tau \right| \le \left| \int_{t_0}^t L|u(\tau) - v(\tau)| d\tau \right| \le L|t - t_0|d(u, v).$$

Hence if

$$\epsilon \le \min\left\{h, \frac{M}{b}, \frac{1}{2L}\right\}$$

then we have

$$d(Tu, Tv) \le \frac{1}{2}d(u, v).$$

So T is a contraction map.

Step 3. By Contraction map theorem, $\exists \overline{u}$, such that $T(\overline{u}) = \overline{u}$, i.e.,

$$\bar{u} = u_0 + \int_{t_0}^t f(\tau, \bar{u}(\tau)) d\tau.$$

This is exact the solution of the problem (1.4). Furthermore, the contraction map theorem also gives the *uniqueness* of the solution.

Example 1.53. Let K be a convex and compact subset of \mathbb{R}^n , $T : K \to K$ satisfies the condition $|T(s) - T(t)| \leq |s - t|$, show that T has at least one fixed point (Be careful: the map T here may not be a contraction map, so we can not use the *contraction map theorem* directly.)

Proof. Pick up any $\bar{x} \in K$. Define $T_n : K \to K$ as follows

$$T_n x = (1 - \frac{1}{n})Tx + \frac{1}{n}T\bar{x}$$

We claim that T_n is a contraction map. In fact

$$|T_n(x) - T_n(y)| \le (1 - \frac{1}{n})|Tx - Ty| \le (1 - \frac{1}{n})|x - y|.$$

This means that $\forall n, \exists x_n$, such that

$$(1 - \frac{1}{n})Tx_n + \frac{1}{n}T\bar{x} = T_n(x_n) = x_n.$$
(1.5)

Since K is compact, then $\exists \{x_{n_j}\}\$ and $x \in K$, s.t. $\{x_{n_j}\} \to x$, then take limit on both sides of (1.5), we can derive that Tx = x. So T has at least one fixed point. \Box