
Chapter 1

Metric spaces

1.1 Metric and convergence

We will begin with some basic concepts.

Definition 1.1. (Metric space) Metric space is a set X, with a metric

d : X ×X → R+ = [0,+∞)

satisfying:

1. d(x, y) ≥ 0, d(x, y) = 0⇔ x = y,

2. d(x, y) = d(y, x),

3. d(x, y) ≤ d(x, z) + d(z, y).

From now on, we will represent a metric space with (X, d). Here are some examples:

Example 1.2. X = Rn = (x1, x2, · · · , xn), d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

Example 1.3. lp = (x1, x2, · · · , xn, · · · ), d(x, y) = (
∑∞

i=1(xi − yi)p)
1
p , p ≥ 1.

Example 1.4. X = C[a, b] = {f(x)|f(x) is continuous in [a, b]}, d(f, g) = max |f(x)−g(x)|, x ∈
[a, b].

Example 1.5. X = C[a, b] = {f(x)|f(x) is continuous in [a, b]}, d(f, g) =
∫
[a,b] |f(x)−g(x)|dx.

Definition 1.6. If there exists a sequence {xn} ⊂ (X, d) and x ∈ (X, d), we will say xn → x,

iff d(xn, x)→ 0.

Definition 1.7. Suppose that (X, d) is a metric space, A is an open subset of X, if ∀x ∈ A,

∃δ > 0, Bδ(x) = {y|d(x, y) < δ} ⊂ A. A subset B ⊂ X is a closed subset of X, if Bc = {x ∈
X|x /∈ B} is open.
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Example 1.8. X = R, then the interval (0, 1) is an open subset, the interval [0, 1] is a closed

subset. The interval [0, 1) is neither an open subset nor a closed subset.

Proposition 1.9. We have following basic properties for open and closed sets:

1. Unions of open sets is open.

2. Finite intersection of open sets is open.

3. Intersection of closed sets is closed.

4. Finite union of closed sets is closed.

Proof. According to the De Morgan’s law, we have

(∩αAα)c = ∪αAcα and (∪αAα)c = ∩αAcα.

Hence we only need to prove the first two properties.

Suppose that A =
⋃
α∈I

Aα, Aα is open. ∀x ∈ A, ∃α0 ∈ I, such that x ∈ Aα0 . Since Aα0 is

open, ∃δ > 0 such that Bδ(x) ⊂ Aα0 . Then Bδ(x) ⊂ A, i.e. A =
⋃
α∈I

Aα is an open set.

Suppose that B =
n⋂
i=1

Ai where Ai (i = 1, · · · , n) is an open set. ∀x ∈ B, so for every

i = 1, 2, · · · , n, there exists δi, such that Bδi(x) ⊂ Ai, then take δ = min{δ1, δ2, · · · , δn}, we can

derive that Bδ(x) ⊂ B, i.e. B =
n⋂
i=1

Ai is an open subset.

Definition 1.10. The interior Å of a set A is the union of all open sets which are contained

in A. The closure B̄ of a set B is the intersection of all closed sets which contain B.

Definition 1.11. If a set A satisfies Ā = X, then A is said to be dense in X.

Definition 1.12. Metric space (X, d) is said to be separable, if there exists a countable dense

subset A ⊂ X.

1.2 Completeness

Definition 1.13. (X, d) is a metric space, if lim
n,m→∞

d(xn, xm) = 0, we say that {xn}∞n=1 is a

Cauchy sequence. The metric space (X, d) is called a complete metric space if every Cauchy

sequence converges in X, i.e. ∃x ∈ X, s.t. d(xn, x)→ 0, n→∞.

Example 1.14. R is a complete metric space and [0, 1] is also a complete metric space.

Proof. First, let {xn} be a Cauchy sequence in [0, 1]. Then {xn} is a Cauchy sequence in R.

Hence xn → x ∈ R.

Second, [0, 1] is closed ⇒ x ∈ [0, 1] ⇒ xn converges in [0, 1].
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Example 1.15. (0, 1) is not a complete metric space.

Proof. Take xn = 1
n , xn → 0 /∈ (0, 1), but xn is a Cauchy sequence in (0, 1), then we will say

that (0, 1) is not a complete metric space.

We have the following theorem, whose proof is one of our exercises.

Theorem 1.16. Given a subset Y of a complete metric space (X, d), the metric space (Y, d) is

complete iff Y is a closed subset.

Definition 1.17. Let X be a metric space. A set E ⊂ X is said to be nowhere dense if its

closure E has an empty interior. The sets of the first category in X are that are countable

unions of nowhere dense sets. Any subset of X that is not of the first category is said to be of

the second category in X.

Proposition 1.18. We have the following properties on the category.

(a) If A ⊂ B and B is of the first category in X, so is A.

(b) Any countable union of sets of the first category is of the first category.

(c) Any closed set E ⊂ X whose interior is empty is of the first category in X.

Theorem 1.19. (Baire Category Theorem) If (X, d) is a complete metric space, then the

intersection of every countable collection of dense open subsets of X is dense in X.

Corollary 1.20. A complete metric space is of the second category.

Proof of the corollary. Suppose not. Let {Ei} be a countable collection of nowhere dense subset

of X and X = ∪iEi. Denote Vi = X \ Ei. ∀x ∈ X, if x /∈ Vi, then x ∈ Ei. Since Ei is nowhere

dense, Ei is nowhere dense. Hence ∀n ∈ N, ∃xn ∈ Ei
c

= Vi such that xn ∈ B1/n(x). Hence

x ∈ Vi. Thus each Vi is dense. By Baire category Theorem, ∩∞i=1Vi 6= ∅. Therefore,

∪iEi = (∩iVi)c ⊂ X.

Hence X cannot be the union of countable nowhere dense sets. Therefore, X is of the second

category.

Proof of Baire Category Theorem. Suppose that V1, V2, . . . are dense open subsets of X. Let U0

be an arbitrary nonempty open set in X, If n ≥ 1 and an open set Un−1 6= ∅ has been chosen,

then there exists an open set Un ⊂ Vn ∩ Un−1 where we use the fact that Vn is dense and Un

may be taken to be a ball of radius less than 1
n . Put

K =

∞⋂
n=1

Un

Note that the centers of the balls Un form a Cauchy sequence which converges to some point

of K, and so K 6= ∅. Our construction shows that K ⊂ U0 and K ⊂ Vn for each n. Hence U0

intersect ∩Vn.
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Definition 1.21. (X, dX), (Y, dY ) are two metric spaces. The mapping T : X → Y is called

an isometry if

dY (Tx1, Tx2) = dX(x1, x2)

If it is also onto, then it is called isometric-isomorphism, we represent this by X ∼= T (X).

As we mentioned in the above, not all the metric spaces are complete metric spaces(see

the example 1.15), however, by the definition of isometry, we can define the completion of a

metric space.

Definition 1.22. A metric space (X̃, d̃) is a completion of (X, d) if the following conditions

are satisfied:

(a) there is an isometry σ : X → X̃;

(b) σ(X) is dense in X̃, i.e. σ(X) = X̃;

(c) (X̃, d̃) is complete.

Now we introduce the main theorem of the completion of metric spaces.

Theorem 1.23. Every metric space has a completion.

Example 1.24. Q represents the set of rational numbers, so R is the completion of Q.

Example 1.25. Let

C[0, 1] = {f(x)|f(x) is continuous in [0, 1]} with metric d1(f, g) =

∫ 1

0
|f(x)− g(x)|dx.

Then

L1[0, 1] = {f(x)
∣∣∣ ∫

[0,1]
|f(x)|dx <∞}

is the completion of the metric space (C[0, 1], d1).

1.3 Compactness

Compactness is one of the most important concepts in analysis. We will define compact sets in

a metric space by means of sequence.

Definition 1.26. K ⊂ X is sequentially compact if every sequence of K has a convergent

subsequence whose limit is also in K.

Example 1.27. X = R, K = [0, 1] is a sequentially compact subset, but K = (0, 1) is not a

sequentially compact subset.

By the well known Bolzano-Weistrass theorem which we have already learnt in the math-

ematical analysis, the following theorem holds
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Theorem 1.28. K ⊂ Rn is sequentially compact iff it is bounded and closed.

In the following, we will find an equivalent criterion for the sequentially compactness of a

metric space that is easier to verify. First, we introduce the definition of ε-net of a subset Ω.

Definition 1.29. Let Ω ⊂ X, we say that F ⊂ X is an ε-net of Ω if Ω ⊂
⋃
x∈F

Bε(x) (F is not

required to be a subset of Ω).

Definition 1.30. A subset of a metric space is totally bounded if it has a finite ε-net for any

ε > 0.

Theorem 1.31. A subset K ⊂ X as a metric space is sequentially compact iff it is complete

and totally bounded.

Proof. Step 1. K is sequentially compact ⇒ K is complete and totally bounded.

If {xn} is a Cauchy sequence in K ⇒ {xn} has convergent subsequence xnk
→ x ∈ K

⇒ xn → x ∈ K ⇒ K is complete.

∀ε > 0, choose any x1 ∈ K, if K ⊂ Bε(x1), then we can end the proof. If it is not true, then

∃x2 ∈ K\Bε(x1), we continue this step, if it can be ended in finite steps, i.e. K ⊂
n⋃
i=1

Bε(xi).

If it can’t be ended in finite steps, we can find a sequence {xi}+∞i=1 with d(xi, xj) > ε, ∀i, j, if

j > i, then xj /∈
i⋃

k=1

Bε(xk), since K is sequentially compact⇒ ∃xnk
→ x, this is a contradiction

with d(xnk
, xnl

) > ε, nk 6= nl, then we can find finite many balls such that K ⊂
n⋃
i=1

Bε(xi), i.e.

K is totally bounded.

Step 2. K is totally bounded and complete⇒ K is sequentially compact.

Let {xn} be a sequence in K, for εn = 1
2n , ∃ a finite εn-net, {xn1 , · · · , xnln}, such that

K ⊂
ln⋃
i=1

B 1
2n

(xni ), when n = 1, K ⊂
l1⋃
i=1

B 1
2
(x1i ), because there are only finite many balls that

contain {xn}+∞n=1 ⇒ ∃x1i1 , s.t. B 1
2
(x1i1) contains infinite many {xn}, we denote it by {xn1

k
},

k = 1, 2, · · ·

When n = 2, ε = 1
4 , K ⊂

l2⋃
i=1

B 1
4
(x2i ); ∃x2i2 ∈ {xn1

k
}, s.t. B 1

4
(x2i2) contains infinite many of

{xn1
k
}, we denote it by {xn2

k
}, which is a subsequence of {xn1

k
}.

Repeat the step again and again, we can see that for every q ≥ 1, d(xnq
k
, xnq

m
) < 1

2q + 1
2q =

1
2q−1 , pick one element from each {xnq

k
} diagonally, we will get a new subsequence {xnq

q
}, then

{xnq
q
} is a subsequence of {xn} with the property that d(xnq

q
, xnp

p
) < 1

2q−1 , for any p ≥ q, i.e.

{xnq
q
} is a Cauchy sequence, by the condition that K is complete, then {xnq

q
} → x ∈ K, i.e. K

is sequentially compact.

The proof of the following lemma is an exercise.

Lemma 1.32. A sequentially compact metric space is separable.
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Then we will introduce the definition of compactness and claim the equivalence between

compactness and sequentially compactness.

Definition 1.33. Let {Aα} be a collection of open sets, if U ⊂ ∪αAα, then Aα is called an

open cover of U .

Definition 1.34. A subset K ⊂ X is compact if every open cover has a finite sub-cover.

Theorem 1.35. A subset K of a metric space is compact iff it is sequentially compact.

Proof. We first show that K is sequentially compact as long as K is compact.

Step 1. Every sequence has a convergent subsequence. If {xn} does not exist a convergent

subsequence, denote

An = {x1, x2, · · · , xn−1, xn+1, · · · }

Then An is closed. On the other hand,

∪∞n=1(X \An) = X \ ∩∞n=1An = X \ ∅ = X ⊃ K.

Since K is compact, one has ∪Nn=1(X \An) ⊃ K. Therefore, we have X \ {xn}∞n=N+1 ⊃ K. But

{xn}∞n=N+1 ⊂ K. There is a contradiction.

Step 2. K is closed. ∀x0 ∈ X \K, we have

K ⊂ ∪x∈KB 1
2
d(x,x0)

(x)

Since K is compact, there is a finite open cover for K. Assume that

K ⊂ ∪ni=1B 1
2
d(xi,x0)

(xi)

Let δ = 1
4 min1≤i≤n d(xi, x0). Then for any x ∈ Bδ(x0), we have

d(xk, x) ≥ d(xk, x0)− d(x0, x) ≥ d(xk, x0)−
1

4
d(xk, x0) =

3

4
d(xk, x0)

This implies that x /∈ B 1
2
d(xi,x0)

(xi) for all i = 1, · · · , n. Hence Bδ(x0) ∩K = ∅. Therefore, K

is a closed set.

Step 3. Sequentially compact must be compact. Suppose not, there exists open cover {Aα}
which does not have a finite cover. Since K is sequentially compact, ∀n ∈ N, ∃ an 1

2n -net

Ñn = {y(n)1 , y
(n)
2 , · · · , y(n)k(n)}

Therefore, we have

K ⊂ ∪k(n)i=1 B 1
2n

(yni ).

Hence, for i = 1, · · · , k(n), one can choose xni ∈ B 1
2n

(yni ) ∩K such that

K ⊂ ∪k(n)i=1 B 1
n

(xni ).
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Denote

Nn = {x(n)1 , x
(n)
2 , · · · , xnk(n)}

Therefore, ∀n ∈ N, ∃xn ∈ Nn such that B1/n(xn) cannot be covered by finite sets in Aα. Since

K is sequentially compact, there exists a subsequence {xnk
} such that

xnk
→ x0 ∈ Aα0

Since Aα0 is open, there exists a δ > 0 such that Bδ(x0) ⊂ Aα0 . If nk is sufficiently large, we

have d(xnk
, x0) < δ/2. Therefore,

∀x ∈ B 1
nk

(xnk
) ⊂ Bδ(x0)

This yields a contradiction.

Definition 1.36. A subset K of a metric space is pre-compact if its closure K is compact.

1.4 Continuous functions

Definition 1.37. (Continuous functions) Given two metric spaces (X, dX) and (Y, dY ), we say

that f : X → Y is continuous, if ∀x ∈ X lim
n→∞

f(xn) = f(x), whenever xn → x.

Proposition 1.38. f : X → Y is continuous at x0 if and only if ∀ε > 0, ∃δ > 0, one has

dY (f(x), f(x0)) < ε provided that dX(x, x0) < δ.

Proof. The sufficient part is trivial.

Now let’s prove the necessary part. Suppose not, then ∃ε0, ∀n, ∃xn such that dX(xn, x0) <

1/n, dY (f(xn), f(x0)) ≥ ε0.

In fact, we have the following characterization for the continuous functions.

Proposition 1.39. f is continuous function from (X, dX) to (Y, dY ) iff f−1(U) is an open set

for any open set U ⊂ X.

We can also define so called lower and upper semicontinuous functions from a metric space

(X, d) to R.

Definition 1.40. A function f : X → R is called lower (upper) semicontinuous if

lim inf
n→∞

f(xn) ≥ f(x) and lim sup
n→∞

f(xn) ≤ f(x),

respectively, whenever xn → x as n→∞.

We will denote the class of all continuous functions from X to Y by C(X,Y ), i.e.

C(X,Y ) = {f : X → Y |f is continuous}
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Example 1.41. We define discrete metric space(X, dD) as:

dD(x, y) =

{
0, x = y

1, x 6= y

Then, we can say that C((X, dD), Y ) = all maps from X to Y.

We can also have the notation as uniform continuity.

Definition 1.42. Given f ∈ C(X,Y ), we say that f is uniformly continuous, if ∀ε > 0, ∃δ > 0,

for any x1, x2 ∈ X satisfying dX(x1, x2) < δ, one has

dY (f(x1), f(x2)) < ε.

The proof of the following two theorems is similar to the ones of mathematical analysis.

We leave them as exercises.

Theorem 1.43. f ∈ C(K,R), K is compact, then f is uniformly continuous.

Theorem 1.44. f ∈ C(K,R), K is compact, then f is bounded and attains its maximum and

minimum.

We will discuss the compactness of a special metric space that is composed of the continuous

functions.

CB(X) = {f : X → R|f is continuous and bounded} with metric d(f, g) = sup
x∈X
|f(x)− g(x)|

Then we have the following theorem.

Theorem 1.45. The metric space (CB(X), d) is complete.

When X is compact, we just write the above metric space C(X) for simplicity.

Definition 1.46. F ⊂ C(X,Y ) is equi-continuous if for any x ∈ X, ∀ε > 0, ∃δ(ε, x) such that

∀y ∈ X with dX(x, y) < δ, one has dY (f(x), f(y)) ≤ ε for any f ∈ F . If δ does not depend on

x, then we say that F is uniformly equicontinuous.

Theorem 1.47. An equi-continuous family F ⊂ C(K,Y ) of functions from a compact metric

space K to a complete metric space Y is uniformly-equi-continuous.

Proof. We prove the theorem by contradiction argument.

Step 1. Suppose the theorem is not true, ∃ε0 > 0, for δn = 1
n > 0, ∃xn, yn ∈ K, fn ∈ F ,

such that

d(fn(xn), fn(yn)) ≥ ε0 with d(xn, yn) ≤ 1

n
.

Since K is compact, {xn} has a convergent subsequence xnk
→ x ∈ K.
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Step 2. By the condition F is equi-continuous at x, for ε = ε0
10 > 0, ∃N , such that if

d(x, x) < 1
N , then d(f(x), f(x)) < ε0

10 . For k sufficiently large, we have

ε0 ≤d(fnk
(xnk

), fnk
(ynk

))

≤d(fnk
(xnk

), fnk
(x)) + d(fnk

(ynk
), fnk

(x))

≤ ε0
10

+
ε0
10

<ε0.

This is a contradiction. Therefore, F is uniformly-equi-continuous.

Here, we will state an important theorem which describes the compact criteria for C(K).

Theorem 1.48. (Arzela-Ascoli theorem) Let K be a compact metric space. A subset F of C(K)

is compact iff it is closed, bounded, and equi-continuous.

Proof. Step 1. compact set is closed, bounded, and equi-continuous. Note that a compact set

is sequentially compact, hence it is complete and totally bounded. Since F is compact, then F
is complete, i.e. F is a closed subset of a complete metric space C(K) and it is totally bounded.

What left is to show that F is equi-continuous. In fact, because F is totally bounded. ∀ε > 0,

∃ a finite ε
100 -net, i.e. ∃f1, f2, · · · , fN , such that F ⊂

N⋃
i=1

B ε
100

(fi), i.e. for any f ∈ F , ∃fi0 ,

i0 ∈ {1, 2 · · · , N}, s.t.

|f(x)− fi0(x)| < ε

100
, ∀x ∈ K.

On the other hand, ∀x ∈ K, ∃δ > 0, if d(x, y) < δ, one has

|fi(x)− fi(y)| < ε

100
(i = 1, 2, · · · , N).

Hence for any f ∈ F , one has

|f(x)− f(y)| ≤|f(x)− fi(x)|+ |fi(x)− fi(y)|+ |f(y)− fi(y)|

≤ ε

100
+

ε

100
+

ε

100

<ε,

(1.1)

i.e. F is equi-continuous.

Step 2. closed, bounded and equi-continuous set is compact. Suppose that F is a bounded,

equicontinuous subset of C(K). We will show that every sequence {fn} in F has a convergent

subsequence. There is a countable dense set {x1, x2, x3 . . .} in the compact domain K. We

choose a subsequence {f1,n} of {fn} such that the sequence of values {f1,n(x1)} converges in R,

Such a subsequence exists because {fn(x1)} is bounded in R, since F is bounded in C(K). We

choose a subsequence {f2,n} of {f1,n} such that {f2,n(x2)} converges, which exists for the same

reason. Repeating this procedure, we obtain sequences {fk,n}∞n=1 for k = 1, 2, . . . such that

{fk,n} is a subsequence of {fk−1,n}, and {fk,n(xk)} converges as n → ∞. Finally, we define a
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“diagonal” subsequence {gk} by gk = fk,k. By construction, the sequence {gk} is a subsequence

of {fn} with the property that {gk(xi)} converges in R as k → ∞ for all xi in a dense subset

of K.

So far, we have only used the boundedness of F . The equicontinuity of F is needed to

ensure the uniform convergence of {gk}. Let ε > 0. Since F is equicontinuous and K is

compact, therefore, F is uniformly equicontinuous. Consequently, ∀ε > 0, there is a δ > 0 such

that d(x, y) < δ implies

|gk(x)− gk(y)| < ε

3
.

Since {xi} is dense in K, we have

K ⊂
∞⋃
i=1

Bδ(xi).

Since K is compact, there is a finite subset of {xi}, which we denote by {x1, . . . , xn}, such that

K ⊂
n⋃
i=1

Bδ(xi).

The sequence {gk(xi)}∞k=1 is convergent for each i = 1, · · · , n, and hence is a Cauchy

sequence for each i = 1, · · · , n, so there is an N such that

|gj(xi)− gk(xi)| <
ε

3
.

for all j, k ≥ N and i = 1, . . . , n. For any x ∈ K, there is an i such that x ∈ Bδ(xi). Then, for

j, k ≥ N , we have

|gj(x)− gk(x)| ≤ |gj(x)− gj(xi)|+ |gj(xi)− gk(xi)|+ |gk(xi)− gk(x)| < ε.

It follow that {gk} is a Cauchy sequence in C(K). Since F is closed set in the complete space

C(K), it converges to a limit in F . Hence F is compact.

Now we take an example to see the applications of Arzela-Ascoli theorem.

Example 1.49. Prove that

F = {f |f(x) =
∞∑
n=1

an sin(nπx) with
∞∑
n=1

n|an| ≤ 1 for x ∈ [0, 1]}

is a compact set in C[0, 1].

Proof. Step 1. It is easy to see that F is bounded in C[0, 1]. Let {fk} ⊂ F converge to

f ∈ C[0, 1]. Suppose that fk is represented as

fk =

∞∑
n=1

ak,n sin(nπx).
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Then we have

ak,n =

∫ 1

0
fk(x) sin(nπx)dx.

Since {fk} converges to f uniformly on [0, 1], one has

lim
k→∞

ak,n =

∫ 1

0
f(x) sin(nπx)dx := an.

Therefore, for any N ∈ N, we have

N∑
n=1

n|an| = lim
k→∞

N∑
n=1

n|ak,n| ≤ 1.

This implies that
∞∑
n=1

n|an| ≤ 1.

Hence f ∈ F . This yields that F is closed.

Step 2. By the mean value theorem, for any x < y ∈ R there is a x < ξ < y with

sinx− sin y = (cos ξ)(x− y).

Hence, for all x, y ∈ R we have

| sinx− sin y| ≤ |x− y|.

Thus, every f ∈ F satisfies

|f(x)− f(y)| ≤
∞∑
n=1

|an|| sin(nπx)− sin(nπy)| ≤
∞∑
n=1

πn|an||x− y| ≤ π|x− y|.

Therefore, given ε > 0, we can pick δ = ε/π, and then |x− y| < δ implies |f(x)− f(y)| < ε for

all f ∈ F . From the Arzleà-Ascoli theorem, F is a compact subset of C([0, 1]).

In the above example, we can see that a special class of functions f , Lipschitz functions,

which satisfy

d(f(x), f(y)) ≤ Ld(x, y)

must be uniformly equi-continuous. We will study a special class of Lipschitz mapping in the

next section.

1.5 Contraction mapping theorem

Definition 1.50. (Contraction map) Let(X, d) be a metric space. A map T : X → X is a

contraction map if there exists a fixed θ ∈ [0, 1), such that

d(Tx, Ty) ≤ θd(x, y), ∀x, y ∈ X. (1.2)

Now let us state a fixed point theorem of the contraction map which can be a useful tool

to prove the existence of solutions of the equations.
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Theorem 1.51. (Contraction map theorem) Let (X, d) be a complete metric space, T : X → X

is a contraction map satisfying (1.2), then T has a unique fixed point x ∈ X such that Tx = x.

Proof. Step 1. (Existence). Pick any x0 ∈ X, and define

xn = Txn−1 for n ≥ 1.

It follows from (1.2) that one has

d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ θd(xn, xn−1) ≤ θ2d(xn−1, xn−2) · · · ≤ θnd(x1, x0).

Then for m = n+ k > n

d(xm, xn) ≤d(xn+k, xn+k−1) + d(xn+k−1, xn+k−2) + · · ·+ d(xn+1, xn)

≤θnd(x1, x0)(θ
k−1 + · · ·+ 1)

≤ θn

1− θ
d(x1, x0).

(1.3)

Thus {xn} is a Cauchy sequence. Then we take limit on xn+1 = T (xn) ⇒ x = T (x), where

x = lim
n→+∞

xn.

Step 2. (Uniqueness). If ∃z such that T (z) = z, then

d(x, z) = d(T (x), T (z)) ≤ θd(x, z).

Therefore, we have d(x, z) = 0. Hence x = z.

Then let us see two examples of the applications of the above fixed point theorem of con-

traction map.

Example 1.52. Consider the initial value problem for the ordinary differential equation,{
u′(t) = f(t, u),

u(t0) = u0,
(1.4)

where f(t, u) is continuous on [t0−h, t0 +h]× [u0 − b, u0 + b](then ∃M > 0, s.t. |f(t, u)| ≤M),

what’s more, f(t, u) is Lipchitz continuous with respect to u, i.e. ∃L > 0, s.t. |f(t, u1) −
f(t, u2)| ≤ L|u1 − u2|. Then we can use the contraction mapping theorem to prove the existence

and uniqueness of a solution for the problem (1.4) on [t0 − ε, t0 + ε] for some ε > 0.

Proof. Step 1. Define

X = {u ∈ C[t0 − ε, t0 + ε]
∣∣∣u(t0) = u0, |u(t)− u0| ≤ b for t ∈ [t0 − ε, t0 + ε]},

where ε ∈ (0, h] is to be determined. Define T : X → X as

(Tu)(t) = u0 +

∫ t

t0

f(τ, u(τ))dτ.
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We claim that T maps X into itself. It is easy to see that for any u ∈ X, we have Tu ∈
C[t0 − ε, t0 + ε] and (Tu)(t0) = u0. Furthermore, we have

|Tu(t)− u0| =
∣∣∣∣∫ t

t0

f(τ, u(τ))dτ

∣∣∣∣ ≤M |t− t0| ≤Mε.

Therefore, if ε ≤M/b, then T maps X to itself.

Step 2. If ε is sufficiently small, then T is a contraction map. Indeed,

d(Tu, Tv) =

∣∣∣∣∫ t

t0

(f(τ, u(τ))− f(τ, v(τ)))dτ

∣∣∣∣ ≤ ∣∣∣∣∫ t

t0

L|u(τ)− v(τ)|dτ
∣∣∣∣ ≤ L|t− t0|d(u, v).

Hence if

ε ≤ min

{
h,
M

b
,

1

2L

}
,

then we have

d(Tu, Tv) ≤ 1

2
d(u, v).

So T is a contraction map.

Step 3. By Contraction map theorem, ∃u, such that T (u) = u, i.e.,

ū = u0 +

∫ t

t0

f(τ, ū(τ))dτ.

This is exact the solution of the problem (1.4). Furthermore, the contraction map theorem also

gives the uniqueness of the solution.

Example 1.53. Let K be a convex and compact subset of Rn, T : K → K satisfies the

condition |T (s)− T (t)| ≤ |s− t|, show that T has at least one fixed point(Be careful: the map

T here may not be a contraction map, so we can not use the contraction map theorem directly.)

Proof. Pick up any x̄ ∈ K. Define Tn : K → K as follows

Tnx = (1− 1

n
)Tx+

1

n
T x̄.

We claim that Tn is a contraction map. In fact

|Tn(x)− Tn(y)| ≤ (1− 1

n
)|Tx− Ty| ≤ (1− 1

n
)|x− y|.

This means that ∀n, ∃xn, such that

(1− 1

n
)Txn +

1

n
T x̄ = Tn(xn) = xn. (1.5)

Since K is compact, then ∃{xnj} and x ∈ K, s.t. {xnj} → x, then take limit on both sides of

(1.5), we can derive that Tx = x. So T has at least one fixed point.


