Due: Monday, April 8, 2019

1. Let $K=\{(x, y) \mid-1<x<1,-1<y<1$, or $x=1,-1 \leq y \leq 0\} \subset \mathbb{R}^{2},\left(x_{1}, y_{1}\right)=\left(1, \frac{1}{2}\right)$, and $\left(x_{2}, y_{2}\right)=(1,1)$.
(a) Construct an explicit unique nonzero linear functional l satisfying $l\left(x_{1}, y_{1}\right)=1$ and

$$
l(x, y) \leq l\left(x_{1}, y_{1}\right) \quad \text { for all }(x, y) \in K
$$

(b) Show that there are infinitely many linear functionals l satisfying $l\left(x_{2}, y_{2}\right)=1$ and

$$
l(x, y) \leq l\left(x_{2}, y_{2}\right) \quad \text { for all }(x, y) \in K
$$

2. Prove that any two norms on a finite dimensional linear space X are equivalent.
3. Prove the Hölder inequality for $l^{p}(p \in(1, \infty))$. More precisely, for $x=\left(x_{1}, x_{2}, \cdots\right) \in l^{p}$ $(p \in(1, \infty))$ and $y=\left(y_{1}, y_{2}, \cdots\right) \in l^{\frac{p}{p-1}}$, prove that

$$
\begin{equation*}
\left|\sum_{i=1}^{\infty} x_{i} y_{i}\right| \leq\left(\sum_{i=1}^{\infty}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{i=1}^{\infty}\left|y_{i}\right|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \tag{1}
\end{equation*}
$$

Furthermore, the equality in (1) holds iff

$$
\arg x_{j} y_{j} \text { and } \frac{\left|x_{j}\right|^{p}}{\left|y_{j}\right|^{\frac{p}{p-1}}} \text { are independent of } j
$$

4. Given $f \in C((a, b))$, define its support as

$$
\operatorname{supp} f=\overline{\{x \mid x \in(a, b), f(x) \neq 0\}}
$$

i.e., the closure of the set where f is not zero. Let X be the space of all real-valued, continuous functions f with compact support and the norm is defined as

$$
\|f\|=\max _{x \in(a, b)}|f(x)|
$$

Prove that X is not a complete normed linear space.
5. If $(X,\|\cdot\|)$ is a uniformly convex normed linear space, then for any x, y satisfying $\|x\|=$ $\|y\|=1$, prove that

$$
l_{x, y}=\{\theta x+(1-\theta) y \mid \theta \in[0,1]\} \cap\{z \mid\|z\|=1, z \in X\}=\{x, y\}
$$

which means X is strictly convex.
6. Exercises 1,2 on page 22
7. Exercise 1 on page 37
8. Exercise 2 on page 38
9. Exercise 3 on page 39
10. Exercises $4,5,6$ on page 44

