Functional Analysis

Homework 6

Spring 2019

Due: Monday, May 20, 2018

1. Given a sequence $\{x_n\}_{n=1}^{\infty}$ in a Hilbert space H, show that the strong convergence $||x_n - x|| \to 0$ holds if and only if

 $||x_n|| \to ||x||$ and $x_n \rightharpoonup x$ (weak convergence).

2. Consider a bounded sequence of functions $f_n \in L^2([0,T])$. As $n \to \infty$, show that the weak convergence $f_n \rightharpoonup f$ holds if and only if

$$\lim_{n \to \infty} \int_0^b f_n(x) dx = \int_0^b f(x) dx \quad \text{for every } b \in [0, T].$$

- 3. Suppose that Ω is a Lebesgue measurable set and $p \in (1, \infty)$. If $f_n \to f$ in $L^p(\Omega)$ and $\|f_n\|_{L^p(\Omega)} \to \|f\|_{L^p(\Omega)}$, then prove that $f_n \to f$ strongly in $L^p(\Omega)$. How about the case in $L^1(\Omega)$?
- 4. Let *H* be an infinite-dimensional Hilbert space and let any vector $x \in H$ be given, with $||x|| \leq 1$. Construct a sequence of vectors x_n with $||x_n|| = 1$ for every $n \geq 1$, such that the weak convergence holds: $x_n \rightarrow x$.
- 5. Exercises 1, 2, 3 on page 101
- 6. Exercises 4, 5 on page 104
- 7. Exercise 6 on page 106