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IMAGE ANALYSIS AND CLUSTER IDENTIFICATION

Part of a raw image from experiments is shown in Fig. S1(a); bacteria appear as white

blobs. We extract centers of mass and orientations of more than 85% of all bacteria, then

track bacterial motion in time by a standard algorithm based on a minimum distance cri-

terion between bacteria in successive frames[1]. From the trajectories, we compute transla-

tional and rotational velocities.

Bacteria are grouped into clusters based on local position information. We use Delaunay

triangulation to identify neighboring bacteria (Fig. S1(b)) and compute areas of Voronoi

cells occupied by individual bacterium (Fig. S1(c)). We define two neighboring bacteria

as members of the same cluster if their Voronoi cell areas are smaller than Sd=4.9 µm2.

This operation can correctly assign majority of bacteria into clusters. However, bacteria at

the edge of a cluster often occupy Voronoi cells larger than Sd=4.9 µm2 therefore are not

correctly assigned. To correct this problem, in each video frame, we search around assigned

bacteria for bacteria at the edge. For an assigned bacterium at ~ri,I (the ith bacterium in

the Ith cluster), we assign any un-assigned bacterium whose distance from ~ri,I is less than

Rd= 2.5 µm to the Ith cluster. To track clusters in time, we consider two clusters that are

in adjacent video frames and share more than 60% common constituent bacteria to be the

same cluster.

We use radial distribution function (RDF) as a guide to select appropriate values for

Rd and Sd. As shown in Fig. S2(a), the first peak of radial distribution function extends

approximately to Rd= 2.5 µm. Sd = 4.9 µm2 is the area of a circle with a diameter of

Rd. Statistical properties of extracted clusters depend weakly on the particular values of Rd

and Sd around the chosen ones, as shown by cluster size distributions in Fig. S2(b), cluster

translational speed in (c), rotational period in (d), and examples of clusters extracted with

different parameters in (e-g) .

FLUID DYNAMIC CALCULATION

We use the Regularized Stokeslet method [2] to compute flow fluid generated by a model

bacterium oriented perpendicular to the interface (cf. Fig. 2(a)). We represent the cell body

with a sphere and the flagellar bundle with a single helical flagellum. Similar models have
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FIG. S1. Procedure to identify clusters. (a) Part of a raw experimental image(500×500 pixels2).

(b) Delaunay triangulation identifies neighboring bacteria. (c) Voronoi cells plotted on the original

image. (d) Identified bacteria clusters shown by color-code.

been used extensively in the literature [3–5]. Surface of the cell body (1 µm in diameter) is

covered by 2562 uniformly distributed Stokeslets and nearest points are separated by ∆b =

0.14 µm. The centreline of flagellum is given by:

~r (s) = −sk̂ +
(

1 − e−s
2/k2E

)
h
(

cos (2πs/λ) î+ sin (2πs/λ) ĵ
)
,

where the pitchλ = 2.2 µm, coil radius h = 0.2 µm, kE = 3/λ determines the length of

the tapering region, and s is the distance along the axis of the helix, ranging from 0 to
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FIG. S2. Selection and sensitivity tests for Rd and Sd used in cluster identification. (a) Radial

distribution function (RDF) measured at density φ= 0.044 µm−2. The first peak of RDF appears

at r=1.7µm. (b-d) Cluster size distributions, mean translation speed, and mean rotation period as

functions of cluster size computed with four different sets of parameters (Rd and Sd) at density φ=

0.044 µm−2. (e-g) Examples of clusters identified under different sets of parameters.
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FIG. S3. Models used to derive analytical expressions for radial (a) and tangential (b) velocity

components. Gap between models and the boundary is assumed to be infinitely small.

the axial length of 6.6 µm. The flagellum base is separated from the cell body by a gap

of 0.1 µm. We discretize the surface of the helical flagellum with cross sections along its

length and use 6 regularized Stokeslets on the perimeter of each circular cross section [6].

We separate adjacent cross sections by a distance equal to the filament radius a = 0.02

µm. Following Ref. [5], we use 0.14 µm and 0.02 µm as the Regularization parameters for

Stokeslets on the cell body and flagellum, respectively. Variations in grid spacing and the

Regularization parameter around the chosen values lead to a few percents changes in final

flow fields; observed flow features and scalings remain robust. No-slip boundary condition

is required on the surface of the bacterium. A free-slip boundary condition at the interface

(z = 0) is realized through an imaging method[7].

The cell body rotates with an angular velocity of Ωz = −60 rad/s and the flagellum

rotates in the opposite sense with an angular velocity set by the torque balance in the z

direction. Other translational and rotational degrees of freedom are frozen for the body and
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the flagellum. Gap between the body and the interface is set to be 50 nm which is close

a lengthscale estimated by balancing the propulsive force, fz, generated by the bacterium

in z direction with thermal excitation: ξ = kbT
|fz | . Under the conditions listed above, we find

fz = −0.11 pN and this leads to the lengthscale: ξ w 40 nm. Simulations are also carried

out with other gap values; flow features and scalings similar to those in Fig. 2 are observed.

We note that flow fields in Fig. 2 are obtained by averaging instantaneous fields over a

rotating period [4].

PARAMETRIZED EXPRESSIONS FOR RADIAL AND TANGENTIAL FLOW

COMPONENTS

We derive analytical expressions that can be used to parametrize radial and tangential

flow velocities in the inset of Fig. 2(b). Models used to derive analytical expressions are

shown in Fig. S3; mirroring particles are used to obtain free-slip boundary condition at the

boundary. For the radial component, we model the bacterium as a sphere with an effective

radius S1. As shown in Fig. S6 (a), the sphere applies a force f , perpendicular to the

interface, on the fluid. The velocity field generated by the sphere can be obtained by solving

the Stokes equations together with the following boundary conditions: (1) the velocity field

is vanishing at infinity, (2) the normal component of the velocity field vanishes at the sphere

surface, (3) the total stress integrated over the sphere surface corresponds to f . We consider

a point, A, which is r away from the center of the bacterium. Radial velocity at A can be

obtained by summing fluid flow generated by the sphere and its mirror image:

Vrad (r) =
fS1

8πη

[
− r

(r2 + 4S2
1)

3
2

+
3S2

1r

4(r2 + 4S2
1)

5
2

]
, (S1)

where η is the fluid viscosity. For the tangential flow generated by rotational motion, we

model the bacterium as two counter-rotating spheres with an effective radius S2 and each

sphere is treated as a Rotlet[8]. For point A, r away from the bacterium, we obtain the

tangential flow:

Vtan (r) =
S3
2Ω

2

[
r

(r2 + 9S2
2)

3
2

− r

(r2 + 25S2
2)

3
2

]
. (S2)

Treating f , S1, Ω, and S2 as fitting parameters, we can use Eq. S1 and Eq. S2 to fit velocity

fields from the Regularized Stokeslet calculations. As shown in the insert of Fig. 2(b), fitting
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quality is excellent and parameters obtained are: f = 0.6 pN, S1 = 1.67 µm, Ω = 134 rad/s,

and S2 = 0.7µm.
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