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Active matter comprises individual units that convert energy into
mechanical motion. In many examples, such as bacterial systems
and biofilament assays, constituent units are elongated and can
give rise to local nematic orientational order. Such “active nemat-
ics” systems have attracted much attention from both theorists
and experimentalists. However, despite intense research efforts,
data-driven quantitative modeling has not been achieved, a sit-
uation mainly due to the lack of systematic experimental data
and to the large number of parameters of current models. Here,
we introduce an active nematics system made of swarming fil-
amentous bacteria. We simultaneously measure orientation and
velocity fields and show that the complex spatiotemporal dynam-
ics of our system can be quantitatively reproduced by a type
of microscopic model for active suspensions whose important
parameters are all estimated from comprehensive experimental
data. This provides unprecedented access to key effective param-
eters and mechanisms governing active nematics. Our approach
is applicable to different types of dense suspensions and shows a
path toward more quantitative active matter research.
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Examples of active matter can be found at diverse length scales
(1–6), from animal groups (7–11) to cell colonies and tissues

(12–18) to in vitro cytoskeletal extracts (19–26) and manmade
microscopic objects (27–32). Energy input at the level of the indi-
vidual constituents drives active matter systems out of thermal
equilibrium and leads to a wide range of collective phenom-
ena, including flocking (7, 19, 28, 29, 33, 34), swarming (12, 13),
clustering (14, 27, 30, 32), 2D long-range order (15, 35), giant
number fluctuations (14, 15, 33, 35, 36), spontaneous flow (21,
24, 25, 37, 38), and synchronization (16).

Active matter systems consisting of elongated particles often
lead to local nematic orientational order. This important active
nematics class comprises experiments with vibrating granular
rods (36), crawling cells (39–41), swarming sperms (42), fil-
amentous bacteria (15), and motor-driven microtubules (20,
21, 24), which, together with theoretical work, have shown
that the interplay between orientational order, active stress,
and particle and fluid flow leads to complex spatial–temporal
dynamics and unusual fluctuations. The seminal work by Dogic
and coworkers (21, 43) has been particularly influential. They
experimentally observed spontaneous chaotic dynamics driven
by topological defects, and their results triggered a large num-
ber of theoretical and modeling approaches. These are of two
main types, particle-level “microscopic” models (43–45) and
continuous-level “hydrodynamic” descriptions (46–53), with the
latter usually written phenomenologically or by complementing
equilibrium liquid crystal theories with minimal active terms.
These studies provided important insights into the multifaceted
dynamics of active nematics, such as hydrodynamic instabilities,

long-range correlations, anomalous fluctuations, defect dynam-
ics, and spatial and temporal chaos. However, these models
generally contain a large number of parameters. This has made
comparisons between models and experiments semiquantitative
at best.

Bacteria are widely used as model systems to study active mat-
ter (12–16). A recent study showed that elongated E. coli cells
strongly confined between two glass plates can display the long-
range nematic order and anomalous fluctuations typical of dry,
dilute active nematics systems (15). However, so far, almost no
bacterial system has been reported to exhibit the phenomenol-
ogy of dense, wet active nematics, as reported first by Dogic and
coworkers (21, 43). One exception is a study of motile bacte-
ria dispersed in a nontoxic lyotropic nematic liquid crystal (54,
55). When bacteria concentration is high enough, active stress
destabilizes the ordered nematic state of this biosynthetic sys-
tem, leading to a state where topological defects in the liquid
crystal evolve chaotically in a manner closely resembling that of
the Dogic system. Here, we show that the typical phenomenology
of wet, dense, active nematics can be experimentally realized in
colonies of filamentous bacteria and show how to build a data-
driven quantitatively faithful theoretical description of it. To this
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aim, we introduce a type of microscopic model for active suspen-
sions, and we use simultaneous experimental measurements of
both orientation and velocity fields to estimate all its parameters.

Experimental Results
Our experiments are carried out with Serratia marcescens bac-
teria. At the edge of growing colonies, two to three layers of
cells actively swim by rotating flagella in a micrometer-thick,
millimeters-wide film of liquid on the agar surface (Fig. 1A).
Apart from a narrow (∼ 100µm) outer ring, the thickness of
this quasi-2D suspension is very constant. No obvious spatial or
temporal inhomogeneity is noticeable in measured fields. A sub-
lethal level of the antibiotic drug cephalexin is added into the
growth agar medium. The drug allows bacteria to grow but not
to divide, leading to long cells. By varying the drug concentra-
tion, we can change the mean cell length by a factor of 2 (SI
Appendix, Fig. S1 A). Bacteria are labeled with a green fluo-
rescent protein, which allows to record their motion under the
microscope. In the dense, thin layer of interest, cells are almost
always in close contact and nearly cover the whole surface. Our
elongated cells are also frequently nematically aligned, as testi-
fied by the presence of ± 1

2
charge topological defects typical of

2D nematics (Fig. 1B). (Standard cells cultivated without antibi-
otic drug do not give rise to any significant local order.) Our
images do not allow to distinguish the current polarity of each
cell, i.e., in which direction it is currently swimming with respect
to the fluid. In fact, the swimming of most bacteria is strongly
hampered at such high density. Nevertheless, our cells move col-
lectively, mainly advected by the fluid they have set in motion, in
a spatiotemporally chaotic manner strongly reminiscent of other
active nematics systems (21, 54) (Movies S1 and S2). From each
image, we extract a nematic orientation field û(r, t) through a
gradient-based method, and we extract v(r, t), the velocity field
of cells in the laboratory frame, using a standard particle image
velocimetry technique (Fig. 1 C and D and SI Appendix, Fig. S2).
Movie S1 shows the typical evolution of the obtained coarse-
grained orientation and velocity fields. This dynamics is fast.
Typical correlation times are of the order of seconds (see below).
In each experiment, we record images for 30 s, which is signifi-
cantly shorter than the cell division time (20 min). Therefore,
contributions of cell growth to active stress are negligible in our
work (56, 57).

Global Measurements. We first measure global statistical proper-
ties of our velocity and orientation fields. The average cell speed
v ≡〈|v(r, t)|〉r,t varies between 20 and 50 µm/s from experi-
ment to experiment but is approximately independent of the drug
concentration (SI Appendix, Fig. S1 B and C).

Next, we compute spatial and temporal two-point correlation
functions, which are defined and shown in Fig. 2 A–D. The spa-
tial/temporal separations corresponding to a correlation value of
1/e are identified as the correlation lengths and times. Symbols
Lv, Ln, tv, and tn, respectively, denote velocity and orienta-
tion correlation lengths and velocity and orientation correlation
times. These quantities are typically of the order of tens of µm
and 1 s. When we increase the cell length with antibiotics, the cor-
relation lengths Ln and Lv increase systematically (Fig. 2 A and
B). Such a systematic variation is only observed for correlation
times tn and tv if time is rescaled by the mean speed v (Fig. 2 C
and D). Correlation functions from various experiments with dif-
ferent drug concentrations collapse onto each other when space
and time are rescaled by correlation lengths and times (insets in
Fig. 2 A–D). Moreover, all of these quantities are linearly related
to each other. Strikingly, transforming correlation times into cor-
relation lengths using the mean speed v , we find that Ln, v · tn,
and v · tv are all proportional to Lv with approximately the same
slope (Fig. 2E). This indicates that our experiments are charac-
terized by a single lengthscale and the mean flow speed (58, 59).
Because our bacteria are too closely packed to measure their
length, we use Lv and v as “effective control parameters” of our
experiments, with Lv serving as a good proxy to the mean cell
length (SI Appendix, Fig. S1).

Defect Properties. To go beyond the reduction of the complex
spatiotemporal dynamics of our bacterial system to just a length-
scale and the mean speed, we now focus on the ± 1

2
topological

defects of the orientation field. Their detailed structure and their
dynamics offer unique access to the coupling between nematic
order and flow, all information that we will show later to be
crucial to determine model parameters.

We identify the location of ± 1
2

defects by contour integral of
the director field (see Fig. 1C and Movie S1 for typical results).
From the trajectories of defect cores, we measure v±, their veloc-
ity in the laboratory frame. We also measured the velocity of
defects in the fluid frame, ∆v±= v±− v±back, where v±back is the
fluid “backflow” velocity averaged over a small region surround-
ing the defect core (SI Appendix, Fig. S2 D). We finally determine
the intrinsic orientation û± of defects. This is straightforward for
the comet-shaped + 1

2
defects. For the− 1

2
defects, which are not

polar but have a threefold symmetry with three radial axes along
which the nematic director is aligned, we choose the axis closest
to the current orientation of v− (see SI Appendix, SI Text and
Fig. S2 for details).

As in other active nematics systems (21, 36, 41), defects are
created in ± pairs via the bending of ordered regions (Movie
S1). Upon generation, + 1

2
defects typically quickly move away

A B C D E

Fig. 1. (A) Schematic illustration of a bacteria colony growing on agar; the active nematics dynamics studied here takes place in a millimeter-wide, few-
micron-thick region at the edge; our observation region is typically 277× 277µm. Mean cell length varies from 6 to 14 µm, depending on antibiotic
concentration. (B) Raw image of our fluorescent cells (scale bar, 30 µm) in some experiment performed at 45 µg/mL drug level. (C and D) nematic order
and velocity fields extracted from B. Black rods in C represent unit length director vector û, and length of arrows in D is proportional to the local speed
(scale bar, 250 µm/s.) (E) Color maps coding the orientation of the nematic and velocity fields in C and D. The white symbols in C represent the ± 1

2 defects
(see SI Appendix, SI Text and Fig. S2 for details about their orientation).

778 | www.pnas.org/cgi/doi/10.1073/pnas.1812570116 Li et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1812570116/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1812570116/video-2
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1812570116/video-1
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1812570116/video-1
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1812570116/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1812570116/video-1
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1812570116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1812570116


PH
YS

IC
S

Fig. 2. Spatial (A and B) and temporal (C and D) two-point correlation functions (defined in y axis labels) from experiments with drug concentrations from
30 µg/mL to 60 µg/mL. The color of each curve codes for the velocity correlation length Lv. (Insets) Correlation functions rescaled by their correlation
length/time. Dashed lines indicate correlation functions calculated from numerical simulations of the model performed at the optimal-match parameter
values estimated for the typical 45 µg/mL experiment shown in Fig. 1, corresponding to the sixth column in SI Appendix, Table S1. (E) Variation of various
correlation lengths with the velocity correlation length Lv for both experiments (solid circles and open squares) and simulations of our model at optimal
parameter values (solid stars). The experiments noted by open squares are those corresponding to the optimal model simulations noted with solid stars.
Each symbol is colored according to the mean speed v measured (color map at the right).

and less motile − 1
2

defects stay longer near the generation site.
Pairs of defects of opposite charge may also annihilate upon
encounter. In a given experiment, generation and annihilation of
defects balance each other so that their total number is approx-
imately constant in time. The radial distribution functions of
defect position, g (r), reveals that defects with the same sign repel
from each other at short distances (Fig. 3 A–C). For defects of
opposite sign, g(r) has a short-scale peak reflecting the fact that
defects are created in ± pairs (43).

Restricting our analysis to “isolated” defects from now on, i.e.,
whose distance from nearest neighbors is larger than nematic
correlation length Ln, we observe that they are essentially dis-
tributed randomly in space: no global translational nor orienta-
tional order is observed. Defect speed distributions, both in the
laboratory and in the fluid frame, show that + 1

2
defects are more

motile, but− 1
2

defects do not have a negligible speed, even in the
fluid frame (Fig. 3 E and G). We also find that the defect orienta-
tion û± is strongly correlated to their velocity orientation, and to
the orientation of their velocity in the fluid frame. Essentially, all
three vectors are aligned, even for the − 1

2
defects (Fig. 3 H–K).

Note that a small but finite velocity in the fluid frame ∆v− is at
odds with usual statements about − 1

2
defects in active nematics,

where they are treated as symmetric, force-free, diffusive objects
(44, 53, 60). We elaborate on this point under Discussion.

To further quantify the structure of defects, we average, over
time and many defects, the orientation and velocity fields around
their core, sitting in their intrinsic reference frame. The famil-
iar mushroom-shape and threefold symmetry of, respectively,
the + 1

2
and − 1

2
defect are clearly observed (Fig. 4 A and

B). The flow field around the + 1
2

defect core shows a strong
jet, while three nearly symmetric jets go through the center of
the − 1

2
defect (Fig. 4 C and D), in agreement with previous

work (53, 60).
Because of the chaotic collective dynamics, the magnitude

of these averaged fields decays away from the defect core. We
define defect core sizes R± as the radius where the magnitude
of averaged director vector |ua| reaches value 1

2
. For the quanti-

tative modeling of our system, we also extracted angular profiles
of orientation and velocity around defect cores from the aver-
aged fields. In Fig. 4 E and F, we plot profiles of the angle of
the nematic director calculated at three different radii around
the defect cores. These profiles show clear systematic deviations
from the linear variation predicted in one-constant equilibrium
liquid crystals theory (61). The velocity orientation profiles, as
well as the profiles of the magnitude of orientation and velocity
fields, show also systematic variations reflecting the fine structure
of defects (Fig. 4 I–L).

We have performed the above analysis of the dynamics and
fine structure of defects on a large set of experiments. We
now describe how the main defect properties vary with our two

Fig. 3. Statistical properties of defect cores. Experimental data extracted
from the experiment at drug level 45 µg/mL that gives a correlation length
Lv = 39.7µm and a mean flow speed v = 50.4µm/s used in most of the
text (blue curves) and from simulations of our model at parameter values
optimized for that experiment (red curves), corresponding to the sixth col-
umn of SI Appendix, Table S1. (A–C) Two-point pair correlation functions
g(r) for the positions of defect cores (respectively (+ 1

2 , + 1
2 ), (− 1

2 ,− 1
2 ), and

(+ 1
2 ,− 1

2 ) pairs). (D–G) Probability distribution functions of various defect
speeds (respectively speed of + 1

2 and − 1
2 defects in laboratory frame and

speed of + 1
2 and − 1

2 defects in fluid frame). (H and I) Probability distribu-
tion functions of angle between defect orientations û± and fluid velocity at
their core v±

back. (J and K) Same as H and I but for the defect core velocities
in the laboratory frame v±.
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Fig. 4. Mean nematic (first and second columns) and velocity (third and fourth columns) fields around isolated + 1
2 (first and third columns) and− 1

2 (second
and fourth columns) defects. (A–D) Full 2D representation as in Fig. 1. The white circles show the defect sizes R+ and R− defined in the text. Panels in the
second (E–H) and third (I–L) rows contain angular profiles of the 2D fields measured at three different radii: 23µm (red), 33µm (blue), and 43µm (green).
Angle φ is the angle depicting the circles of various radii around the defect cores. Mean director θn and velocity θv angles are defined as the angles between
mean director/velocity vectors and x axis. The reference linear component ( 1

2φ in E, π− 1
2φ in F, and 2π− 2φ in H) has been subtracted in the orientation

profiles to emphasize deviations from single-Frank constant liquid crystal theory. Solid lines indicate angular profiles from experiments. Dashed lines in E–L
indicate angular profiles from simulations performed at optimal parameters.

effective control parameters, the correlation length Lv and the
mean flow speed v . The defect core sizes R± vary linearly with
Lv and are roughly independent of v (Fig. 5A). In the steady
state, the density of defects is statistically constant. From this
steady density, one can extract an interdefect lengthscale Ld,
which behaves like all other correlation lengths, in agreement
with previous work on wet active nematics (62, 63) (Fig. 5B). We
also find that the speed of defects relative to the local flow speed
at their core decreases with Lv while being also roughly inde-
pendent of v (Fig. 5 C and D; see a discussion of this below).
Remarkably, the detailed spatial structure of defects does not
vary significantly between experiments with different character-
istic lengths: after rescaling spatial coordinates by defect core
size, or, equivalently, correlation length, averaged director and
velocity fields from different datasets overlap nicely. We further
confirm this by comparing defect angular profiles at 0.6R± for
different experiments (Fig. 5 E–L).

Quantitative Modeling.
A microscopically faithful model of our dense, thin bacterial
system where cells and their many flagella are in constant con-
tact with each other and with the gel substrate is a formidable
task well beyond current numerical power. Besides, this would
require the knowledge of many specific details that are unknown.
Here, we adopt a radically different approach: we treat the colli-
sions and local interactions between cell bodies and their flagella
at some effective level, where, we assume, they amount to a
combination of steric repulsion and alignment. In addition, the

far-field interactions and other effects due to the incompressible
fluid surrounding bacteria are taken into account by solving the
Stokes equation for the fluid flow. All of this also allows us to
build an efficient, streamlined, but comprehensive model in two
space dimensions.

Description of the Numerical Model. Recall that most cells in our
dense system are not able to swim freely, simply because nearby
cells prevent them from doing so (see Movie S2). These crowded
cells mostly exert force dipoles on the fluid, which is then set
in motion by their collective action. Cells, in turn, are advected
and rotated by the fluid. Our model thus consists of nonswim-
ming force dipoles immersed in an incompressible fluid film and
differs significantly from the common choice of using a dynamic
equation for a director field (64–69). As shown by a schematic
diagram in SI Appendix, Fig. S3, each dipole represents the local
cell body orientation and active forcing.

The fluid flow v(r, t) is the solution of the (2D) Stokes
equation

µ∇2v +∇p−αv + F = 0 with ∇· v = 0, [1]

where µ is the fluid viscosity, α is the effective friction with the
substrate, p is the pressure enforcing the incompressibility con-
dition, and F is the active force field exerted by dipoles on the
fluid (64).

Our dipoles are point particles with position ri and orienta-
tion θi (or, equivalently, unit orientation vector ûi = (cos(θi),
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Fig. 5. Dependence of defects properties on experimental conditions. (A–D) variation with nematic correlation length Lv of defect core size R± (A), mean

interdefect lengthscale Ld (B), and mean of + 1
2 and − 1

2 defect speed S± divided by local flow speed
〈
|v±

back|
〉

(C and D). Experiment and simulation results

are shown by open squares and solid stars, color-coded by the mean speed v, following Fig. 2E. All experiments and simulations collapse onto single straight
lines, indicating that v does not influence the quantities represented. (E–L) Angular profiles as in Fig. 4 calculated along the circle of radius 0.6R± for
three experimental datasets obtained at different drug levels (blue: 30 µg/mL, first column in SI Appendix, Table S1; green: 45 µg/mL, sixth column in SI
Appendix, Table S1; red: 60 µg/mL, 12th column in SI Appendix, Table S1). Corresponding simulation results are shown using dashed lines.

sin(θi)). They locally align, are advected and rotated by the
flow, and experience pairwise repulsion to keep their density
homogeneous:

ṙi = v (ri)+Cr

∑
j∼i

Rij [2]

θ̇i =Ca

∑
j∼i

sin [2 (θj − θi)]+Cv (∇× v)· ẑ

+Csûi × (E · ûi)· ẑ +Cnξθ. [3]

In Eq. 3, the first term on the right-hand side, with strength
Ca, codes for the nematic alignment of dipole i with all neigh-
bors currently present within distance Ra. The next two terms
govern how dipoles are rotated by the flow field v, following
Jeffery’s classic work: both local vorticity ∇× v and local strain
E =

(
∇v +∇vT

)
/2 are playing a role, but with coefficients Cv

and Cs taking values a priori different from the classic ones calcu-
lated for perfect ellipsoids with no-slip boundaries (70). Finally,
ξθ is a unit-variance, white, angular Gaussian noise. In Eq. 2,
the right-hand side term Rij represents a unit-range pairwise
soft repulsion force between dipoles of strength Cr. Note that
self-propulsion is not included in Eq. 2 because our system is
crowded.

The force field F in Eq. 1 is assumed to be dominated by
the gradient of the active stress tensor field. (A small, resid-
ual contribution from the short-range repulsion force between
neighboring dipoles exists but can usually be neglected; see SI
Appendix, Eq. S2 for details about this point.) The active stress
tensor is itself assumed, as usual in wet active nematics studies

(50, 51), to be proportional to the gradient of the orientation
field:

F = f0∇· ûû, [4]

where f0 is the typical strength of dipoles. In experiments, û is the
measured nematic orientation field. In the model, û is the local
coarse-grained orientation of our dipoles.

The full system constituted by Eqs. 1–4 can be seen as a
minimal Vicsek-style model (71, 72) incorporating the main
mechanisms at play in our bacterial active nematics. One thus
expects a basic interplay between alignment and noise: if the
alignment strength Ca, or the alignment range Ra, or the number
density of dipoles ρ0 is large enough, or if the noise strength Cn

is weak enough, local orientational (nematic) order can emerge.
The global number density of dipoles ρ0 and the noise strength
Cn have opposite effects. We checked that changing ρ0 in the
experimentally reasonable range [1.5, 4] (in simulation units)
yields similar results. In the following, we fix ρ0 = 1.5 to lighten
the numerical task.

It is relatively easy to find parameter values such that the
dynamics of our model closely resembles the experimental obser-
vations. As a matter of fact, the region of parameter space
where spatiotemporally chaotic active nematics behavior occurs
is rather large. To go beyond such qualitative agreement, we have
systematically investigated the effects of parameters. We now
show that for each experimental dataset, there exists a unique
set of parameter values at which the model optimally matches
the experiment, in the sense that all quantities studied in the
previous section are in quantitative agreement.

Data-Driven Parameter Optimization. We proceed in two steps.
First, simultaneous measurements of velocity and orientation
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fields allow us to pinpoint the parameters in Eq. 1 without
resorting to the “microscopic” part of the model, i.e., Eqs. 2
and 3.

Dividing both sides of Eq. 1 by α, we are left with two indepen-
dent parameters, µ/α and f0/α. Therefore, for any given pair of
parameters µ/α and f0/α, and a particular experimentally mea-
sured orientation field û, we can compute the velocity field v∗
solution of Eq. 1. We then compare v∗ with v, the velocity field
measured at the same time as û. Scanning the whole (µ/α, f0/α)
parameter plane, we find that there is an optimal point where the
difference between v∗ and v is minimal on average. Specifically,
we measure the quality function Qv(µ/α, f0/α) = 〈|v∗(r, t)−
v(r, t)|2/|v(r, t)|2〉r,t , where the average is carried out over both
space and time. A typical result for an experiment with 45 µg/mL
drug concentration is in Fig. 6A, where Qv shows a minimum
for Qv = 0.23 at f0/α= 6174µm2/s and

√
µ/α= 36µm . Typi-

cal instantaneous velocity fields v∗ produced at these parameters

Fig. 6. Quality functions and results from hydrodynamic (A–C) and full (D)
model matching. Optimal parameters are marked by a red dot. (A) Quality
function Qv in the (

√
µ/α,

√
f0/α) plane. (B) A typical instantaneous exper-

imental velocity field. (C) Velocity field reconstructed from the orientation
field measured at the same time as B at the optimal parameters indicated in
A. The first three rows of D contain quality functions of characteristic length
(Ql), +1/2 defect speed (Q+), and −1/2 defect speed (Q−). Each panel rep-
resent a scan in the Cs− Ra plane, and panels in the same column use the
same CV value. Black contour lines mark regions of acceptable deviations.
Panels in the last row contain acceptable regions of parameters extracted
from quality functions: red from Ql, green from Q+, and blue from Q−;
they show that Cv = 0.5 yields largest overlap area for acceptable regions of
parameters and a red dot in the middle panels marks the optimal choice for
parameters Cs and Ra.

compare very well to the corresponding v fields (Fig. 6 B and C
and Movie S3).

After fluid parameters are fixed, we proceed to the second step
and match the full model with experiments. Eqs. 2 and 3 con-
tain six parameters. We first evaluate their influence by varying
them individually around a reference point (see SI Appendix, SI
Text and Fig. S4 for details). We find that angular noise level
Cn and repulsion strength Cr are not sensitive parameters pro-
vided local order is not destroyed by strong noise and particles do
not crystallize for too-strong repulsion. We therefore fix Cn = 1.0
and Cr = 0.5. Nematic alignment parameters Ca and Ra play
a major, but similar, role, so we decide to fix Ca = 0.4s−1 and
vary Ra, mimicking the change of cell length in experiments.
This leaves us with only three parameters to vary, Ra, Cv, and
Cs, when looking for an optimal match between model and
experiment.

We performed a systematic scan of this restricted parameter
space, running the model for many sets of parameter values,
and extracting from each of these runs the quantities of inter-
est, i.e., those measured also in the experiment. To quantify the
match between model and experiment, we found that using three
independent quality functions is sufficient. Here, we use Ql≡
Ln∗−Ln, the difference in nematic correlation length, Q+≡
S+
∗ −S+ and Q−≡S−∗ −S−, the differences in defect speed

(S±≡〈|v±|〉), respectively, for the + 1
2

and − 1
2

defects. (As
before, the ∗ subscript denotes quantities measured on the
model.) Computed quality functions in the 3D parameter space
{Ra, Cv, Cs} are shown in Fig. 6D. Perfect matching (Q{l,+,−}=
0) occurs for each function on a surface. These three surfaces
approximately cross at a single point, as shown in the bottom
row of Fig. 6D. For the particular experiment considered, we
find Ra = 13.8µm , Cv = 0.5, and Cs = 0.5, which thus defines our
optimal set of model parameters. By construction, these param-
eter values optimize the match between model and experiment
for what concerns the quantities involved in the quality func-
tions used. Remarkably, we observe that all other quantities not
used in these functions are also quantitatively matched. This is,
in particular, the case for all correlation functions in Fig. 2, all
distributions of defect speed and orientation, and spatial dis-
tributions of defects in Fig. 3, all averaged angular profiles of
isolated defects in Fig. 4 and defect size and speed in Fig. 5
(see also simulations of the model at optimal parameters in
Movie S4).

Finally, we performed two “consistency checks.” We verified
that choosing a different value of Ca yields a different opti-
mal value of Ra but that all other optimal parameter values
then approximately remain the same (SI Appendix, Fig. S6). In
short, Ra and Ca are fully redundant. Next, taking our optimal
parameter set, but now “freeing” the fluid parameters µ/α and
f0/α from the values determined during our first step, we find
that these initial values remain optimal (SI Appendix, Fig. S7).
This confirms that our procedure, for a given experiment, yields
a unique set of model parameters at which model dynamics
optimally matches spatiotemporal data.

Variation of Model Parameters. We have successfully applied our
matching procedure to a large set of experiments with drug
concentration above 15 µg/mL, the level below which cells
are too short to give rise to a clear local nematic orientation
that can be reliably measured. For each experiment, the quality
of the matching between experiments and simulations remains
excellent. Corresponding orientation and velocity fields from
simulations at these optimal parameters are shown in Movie S4.
We thus obtained the variation of the optimal model parameter
values with the two experimental effective control parameters,
the correlation length (proxy for cell size) and the mean flow
speed v (see Fig. 7 and SI Appendix, Table S1). This provides
us with a wealth of information about our experimental system.
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Fig. 7. Variation of optimal model parameters with mean flow speed
v (A–E) and velocity correlation length Lv (F–J). Data points in A–E have
Lv' 40 µm, and data points in F–J have v' 42µm/s. The numerical values
of all of these parameters are listed in SI Appendix, Table S1. Dashed lines
in A–I are linear fits (Variation of Model Parameters); the dashed line in J is
a fit of Ra∼

√
Łv with a R2 = 0.925.

We first discuss the effect of the mean speed v at fixed
correlation length. Choosing a subset of experiments yielding
approximately the same correlation length, we observe that v
almost exclusively influences f0, and does so linearly (Fig. 7A).
The other parameters remain constant with the exception of
the interaction range Ra, which grows slightly with v (Fig. 7 B–
E). The clear linear growth of f0 confirms that, via v , one has
direct access to the strength of forces dipoles, which, in turn,
can be interpreted to be proportional to the power developed
on average by each flagellum. As for the weaker linear varia-
tion of Ra with v , we attribute it to the fact that for higher v ,
which corresponds to higher f0, the fluid flow would be desta-
bilized faster, leading to a smaller correlation length. Increasing
Ra compensates for this.

The variation of optimal model parameters with correlation
length, at fixed mean speed v , is presented in Fig. 7 F–J. From
the extracted “fluid” parameters, we can construct two length
scales that are proportional to Lv. Balancing the active force
term ∇· (f0ûû) in Eq. 1 with the friction term αv, we have
f0/(α |v|)∼Ln, which leads to f0/(α |v|)∼Lv. This is confirmed
in Fig. 7F. We can also balance friction with the viscous force
µ∇2v and get

√
µ/α∼Ln, as shown in Fig. 7G. (We show that

the two scalings above are verified for all our data points in SI
Appendix, Fig. S8.) These findings provide a physical understand-
ing of the factors contributing to the correlation length and, in
particular, of how it is connected to the fluid effective param-
eters. The vorticity coupling parameter Cv is approximately a
constant, Cv' 0.5 (Fig. 7H). This is in agreement with Jeffery’s

theory, which shows that Cv = 1
2

for almost any axisymmetric
shape from needles to ellipsoids to disks. Nearly constant Cv is
also consistent with observations that defect shape changes little
in different experiments (Fig. 5 E–L) and that Cv is closely con-
nected to defect shape in our model (SI Appendix, Fig. S5). On
the other hand, the strain coupling parameter Cs decreases with
Lv (Fig. 7I), at odds with Jeffery’s results, which show that longer
objects have higher Cs. This can be understood by noticing that
in the model, particles do not represent cells. Rather, over the
interaction range Ra, several dipoles stand for a cell. They react
individually to the local strain, and thus their response must be
weaker than that of a cell, and the longer the cell, the weaker
the response. Finally, the range of nematic alignment Ra∼

√
Lv

(Fig. 7J), which shows that the correlation length increases lin-
early with the area where nematic alignment takes place, i.e., the
number of aligning neighbors, in our model.

Discussion
To summarize, we presented a systematic study of collective
motion and defect properties in a dense, wet active nematic sys-
tem composed of filamentous bacteria and introduced a minimal
microscopic model to account for our experiments. We have
shown that using both orientation and velocity measurements
enables to determine a unique, optimal set of parameter values
at which our Vicsek-style model for active suspensions accounts
quantitatively for many, if not all, quantities that one can extract
from experimental data. Because the collective dynamics of our
bacterial active nematics is always chaotic, we have used topo-
logical defects to estimate these optimal parameter values. As a
matter of fact, it is sufficient to use a small subset of the various
quantities we measured to determine all optimal parameter val-
ues, after which the remaining subset is “automatically” matched
too. The existence of a unique optimum at which matching is
nearly perfect constitutes, in retrospect, evidence of the quality
of our model.

Thanks to quantitative match at a remarkable level of detail,
the interplay between experiments and model provides a deeper
understanding of our system. This is, in particular, the case for
the dynamics and structure of topological defects. Fig. 5C demon-
strates that + 1

2
defects move approximately twice as fast as the

background flow. This acceleration can be explained by the local
flow field (Fig. 4C), which shows two vortices above and below the
strong jet advecting the defects. The shape of defects is essentially
governed by the vorticity coupling constant Cv [the orientation
field around + 1

2
defects changes from arrow-like to mushroom-

like shape when increasingCv (61, 73)]. This cannot be seen in our
experiments, in which Cv is essentially constant (Fig. 7 C and H)
but is shown by simulations of our quantitatively faithful model (SI
Appendix, Fig. S5). Thus, the vortices can destabilize orientational
order ahead of the core, causing the defect to move faster than
the background flow. The accelerating effect weakens when parti-
cles are less sensitive to flow vorticity or when nematic interaction
becomes stronger, as shown in simulation (SI Appendix, Fig. S4 C)
and experiments (Fig. 5 C and D).

The averaged orientation and velocity fields around − 1
2

defects (Fig. 4 B and D) show an approximate threefold rota-
tional symmetry, which is consistent with the conventional, equi-
librium picture: this symmetry implies that active and elastic
stresses are balanced around the defect core and that− 1

2
defects

are passive particles advected by the background flow. However,
our experiments and simulations indicate that − 1

2
defects pos-

sess a small but significant velocity in the fluid frame ∆v− (Figs. 3
E, I, G, and K and 5D). Moreover, instantaneous fields around
− 1

2
defects often deviate significantly from threefold symme-

try (SI Appendix, Fig. S9). Such deviations break stress balance
around the core and give− 1

2
defects their velocity over the back-

ground flow. Our data (SI Appendix, Figs. S9 and S10) indeed
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show that the degree of deviation from threefold symmetry
correlates with this velocity.

Our work also explains the multiple effects of cell length
(under the influence of cephalexin). Cell length directly, and not
surprisingly, governs all length scales in our system and does so
nearly identically (Figs. 2E, 5 A and B, and 7 F–J). More surpris-
ing is the observation that the relative speed of defects decreases
with cell length (Fig. 5 C and D) and that the strain coupling
constant Cs decreases for long cells (Fig. 7I).

These findings are just a subset of all those illustrating how,
thanks to the quantitative modeling, one cannot only determine
key effective parameters (such as the strength of flagella or the
effective viscosity of our suspension) but also “read” impor-
tant physical mechanisms from observing how model parameters
change in experiments or are changed in simulations.

Our data-driven quantitative matching was made possible
thanks to the relative simplicity of our Vicsek-style model: even
though it deals with wet active suspensions, it possesses a rela-
tively small number of parameters and is numerically efficient.
Treating near-field interactions only effectively, it is also versa-
tile, and we believe the same approach can be applied to other
active suspensions and extended to include other effects, such as
external field and polar order.

The simplicity of our model should also allow for derivation
of continuous, hydrodynamic equations. Works on hydrodynamic
theories of wet active nematics abound, but they typically lack a
direct connection to microscopic mechanisms. Thus, deriving a
faithful hydrodynamic theory from our quantitatively valid model
is a very promising step. That would, in particular, allow to esti-
mate how far our active nematics deviates from elastic theory
predictions, something hinted by the structure of defects (Fig. 4 E
and F).

Materials and Methods
Bacteria Strain and Colony Growth. We use wild-type S. marcescens strain
American Type Culture Collection 274 labeled with green fluorescent pro-
tein p15A-eGFP. Bacteria colonies are grown on a soft (0.5%) Difco agar
plate containing 2.5% Luria Broth (Sigma). We mix cephalexin with molten
agar at 70◦C. We then pour 40 mL of molten agar into a 15-cm-diameter
Petri dish, which is then dried with a lid on for 16 h (25◦C and 50%
humidity). About 10 µL of overnight bacteria culture is then inocu-
lated on the agar. The inoculated plates are dried for another 15 min
without a lid and then stored in an incubator at 30◦C and 90%
humidity.

Imaging Procedure. After a growth time of 8–9 h, collective motion is
observed for as long as 2 h near the expanding edge of a colony, in an
active region about 1 mm wide. The colony expansion speed is approxi-
mately 2 µm/s, i.e., much smaller than the measured bacteria flow speed.
Thus, its influence on bacteria velocity measurement can be neglected. We
capture bacteria motion in the central part (277× 277µm2) of this active
region through a 40×objective (Nikon S plan Fluor). S. marcescens colonies
quickly change from monolayer to three-layer within 100 µm from the
swarming edge; thus, the thickness of swarming cells is constant in the
observation region. A Nikon MBE45510 filter cube (excitation, 470/40nm;
emission, 525/50nm) is used for fluorescent imaging. Images are acquired
by a high-speed camera (Basler acA2040-180km) at 100 frame/s for 30s, dur-
ing which bacteria motility remains unchanged. Bacteria form an immobile
film in the central part of the colony. We record bacteria motion far enough
from this immobile region (Movies S1–S3).
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