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Abstract – We have conducted experiments and numerical simulations to investigate supersonic
cracks. The experiments are performed at 85 ◦C to suppress strain-induced crystallites that
complicate experiments at lower temperature. Calibration experiments were performed to obtain
the parameters needed to compare with a theory including viscous dissipation. We find that both
experiments and numerical simulations support supersonic cracks, and we discover a transition
from subsonic to supersonic as we plot experimental crack speed curves vs. extension ratio for
different sized samples. Both experiments and simulations show two different scaling regimes: the
speed of subsonic cracks scales with the elastic energy density while the speed of supersonic cracks
scales with the extension ratio. Crack openings have qualitatively different shapes in the two
scaling regimes.

Copyright c© EPLA, 2011

Introduction. – Our motivation in this letter is to
investigate a fundamental question in fracture mechanics:
“How fast can cracks propagate in brittle materials?”. It
was long believed that a crack cannot propagate faster
than sound speeds [1,2]. A single crack in a brittle material
can accelerate by consuming elastic energy stored when
material is stretched. But there seems to be a limiting
speed for crack motion. Transport of stored energy to
the crack tip is described by an energy flux tensor,
and once the crack speed exceeds a critical value —the
Rayleigh wave speed— the integrated energy flux becomes
imaginary or negative. Thus one reaches the conventional
conclusion that “the limiting crack speed in modes I and II
is the Rayleigh wave speed and in mode III, the shear wave
speed.” ([2], p. 73). In materials such as brittle plastics or
brittle crystals, cracks do not even reach the Rayleigh wave
speed. Instead, crack tips become unstable and sprout
complicated three-dimensional branches when cracks pass
a lower critical speed, on the order of half of Rayleigh wave
speed [3–5].
However, cracks in rubber are different. Natural rubber

can prevent the micro-branching instability spontaneously
and allows cracks to propagate faster than the speed

(a)E-mail: marder@chaos.ph.utexas.edu

of sound [6]. According to a supersonic rupture theory
developed to explain the observations, velocities of super-
sonic cracks should be independent of system size if strain
is held constant, in contrast to subsonic cracks whose
velocity is independent of system size if energy density
is held constant [7]. Nevertheless it has not been possi-
ble to compare theory and experiment in detail. At room
temperature and large strains, natural rubber undergoes
an increase in toughness of several orders of magnitude due
to strain crystallization, greatly complicating the velocity
response of cracks [8].
In this letter we carry out experiments at 85 ◦C where

the strain crystallization is suppressed. We obtain a
satisfactory quantitative description of the supersonic
cracks, and show that both subsonic and supersonic
propagation obey the predicted scaling laws.

Experimental methods. – The purpose of our stud-
ies is to understand the relation between crack speed
and extension ratio in rubber sheets for opening mode
cracks. The sheets are 0.15mm thick with mass density
ρ is 930 kg/m3. Extension ratio is defined as the ratio of
the length of stretched specimens to the original length.
In our experiments, natural rubber sheets are stretched
uni-axially over a range of extension states: the extension
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Fig. 1: Experimental setup for stretching rubber sheets in the
vertical (y) direction. After the sheet has been extended to
the desired state, it is clamped and a seed crack is initiated
by cutting the sheet with a blade (white line, towards left of
frame). A square grid is drawn on the sheet before it is stretched
in order to measure the extension level as rubber is stretched.

ratio in the crack propagation (x) direction is constrained
to be λx = 1, while the extension ratio λy along the load-
ing (y) direction is varied between 1 and 5. The extension
ratio in the thickness (z) direction is λz = 1/(λxλy) = 1/λy
because natural rubber is highly incompressible.
After rubber is stretched to a desired extension level,

the sheet is clamped between a pair of rectangular steel
frames. All frames have the same length 66 cm in the
x-direction and different heights in the y-direction (h=
5.1, 10.2, and 17.8 cm) as shown in fig. 1. A 1mm long
initial cut inserted into the prestretched sheet with a
blade can result in either dynamic fracture propagation or
a stationary fracture opening depending strongly on the
stretched state [6,8,9]. Once the crack begins propagating,
it reaches a steady state, typically within less than 0.1 s.
The fracture resistance determines crack speeds and it is
greatly enhanced by strains at room temperature. X-ray
diffraction measurements of scattering intensity from the
crystalline phase of rubber and systematic measurements
of crack motion in rubber sheets, show that strain-induced
crystallization occurs at 24 ◦C when the extension ratio
λy > 3. This toughening effect can be reduced by raising
the temperature. We find that crack speeds increase
monotonically with λy up to λy = 5 at 85

◦C [8]. All
experiments mentioned in this letter were performed at
85 ◦C for extension ratios λy < 5 so that crystallization
should not be important.
We recorded crack motion with video at 48000 frames

per second at a resolution of 384× 256 pixels. By deco-
rating the rubber sheet with ink marks and comparing
consecutive frames we could extract particle velocities in
the rubber sheet, as well as the velocity of the crack. Some
results appear in fig. 5.

Numerical model. – We developed a computational
model of rubber fracture with a minimal number of
adjustable parameters and used it to compare with the
experiments. At the continuum level, express deformations

Fig. 2: Diagram showing triangular lattice of lattice spacing ∆.

in terms of finite strain tensor

Eαβ =
1

2

[∑
γ

∂uγ

∂rα

∂uγ

∂rβ
− δαβ

]
. (1)

Here �u(�r ) describes the distance from the origin of a mass
point that was located at �r when the rubber was relaxed.
We adopt an effective two-dimensional Mooney-Rivlin

theory to describe the elastic behavior of thin rubber
sheets [7]:

U/ρ= eMR = a
[
I1+2bI2+Ezz(1+2bI1)

]
, (2)

where U has units of energy per volume, a is a constant
with units of velocity squared, b is a dimensionless
constant, I1 =Exx+Eyy, and I2 =ExxEyy −E2xy, and

Ezz =
1

2

(
1

4I2+2I1+1
− 1
)
. (3)

Our numerical approach is to consider microscopic
interactions between mass points in a discrete lattice
model that produce the rubber constitutive equation,
eq. (2), in the continuum limit, but break when the
separation between mass points is large enough. The
lattice model is made up of a two-dimensional network
of mass points which are connected with elastic bonds to
six nearest neighbors to form a triangular lattice as shown
in fig. 2. Take the original bond length between particles
i and j to be ∆ij . To obtain a numerical expression of
the strain invariants, let �uij ≡ �uj − �ui, let n(i) refer to the
nearest neighbors of i, and define

Fi =
1

6

∑
j∈n(i)

{(
�uij · �uij/∆2ij − 1

)
, if uij/∆ij <λf ,

λ2f − 1, else,
(4)

Ki =

{
1
18

∑
j �=k∈n(i)

(�uij×�uik)2
∆2ij∆

2
ik

, forKi <Kmax,

Kmax, else.
(5)

The quantity Ki has not previously been introduced in
publications on this method [7]. From these numerical
quantities, one can form representations of the strain
invariants as follows:

Ii1 = Fi, (6)

Ii2 =Ki/4−Fi/2− 1/4, (7)
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and finally construct the energy from

U =
∑
i

meMR(I
i
1,I
i
2), (8)

where m is the mass in a unit cell, and the energy density
eMR is given by eq. (2).
In the continuum limit,

Ki =
1

18

∑
j �=k∈n(i)

(�uij × �uik)2
∆2ij∆

2
ik

= (2Exx+1)(2Eyy +1)− (2Exy)2 = 4I2+2I1+1.

From eq. (3), Ki = 1/(2Ezz +1)≈ λ−2z ; Ki is approxi-
mately the inverse square of the extension ratio in thick-
ness direction λz.
If the criterion for rupture is that λf is a constant,

then cracks in numerical rubber undergo a tip-splitting
instability well below the shear wave speed that prevents
them from reaching supersonic speeds. To account for
experimental observations in rubber, it is necessary to
suppress these instabilities. This task was accomplished
previously in an ad hoc way by making the bonds into
a node tougher when two of the bonds attached to
it had already broken [7]. Making use of the physical
interpretation of Ki we posit a failure criterion that makes
physical sense and leads to the desired type of toughening.
The failure criterion is

λf = λ
0
f + g/K ≈ λ0f + gλ2z. (9)

Here λ0f and g are constants. The failure criterion can
be interpreted as saying that the sheet ruptures more
easily when it has been stretched thin. The particular
functional form 1/Ki is chosen for simplicity absent any
direct evidence that another form should be preferred. The
way this failure criterion stabilizes crack tips is that in
the wake of the tip, the rubber contracts perpendicular to
the direction of crack motion, and by contracting becomes
thicker and therefore tougher. Numerical simulation bears
out this physical reasoning, since simulations using eq. (9)
in fact can produce supersonic cracks.
The complete equation of motion of particle i reads

m
∂2uαi
∂t2

=− ∂U
∂uαi

−β ∂
2U

∂t∂uαi
, (10)

where the final term represents Kelvin dissipation with
a dissipation parameter, β. The fact that nothing but
dissipation is added to the equation of motion is a
severe simplification. Rubber is hysteretic, and its strain-
rate dependence is much more complicated than can be
captured by a Kelvin model [10–12]. However, it appears
that the very simple choice of dissipation allows adequate
comparison with the collection of experiments described
in this paper.

Determination of parameters. – The experimen-
tally determined sound speeds (or elastic modulus) are
used to calibrate the Mooney-Rivlin model [6]. Exper-
imentally, the dimensionless parameter b in eq. (2) is
0.053 (at 24 ◦C), so in a first theoretical account one
can set b= 0. In this approximation the Mooney-Rivlin
energy density eMR reduces to the Neo-Hookean energy
density

eMR ≈ eNH = a
(
I1+Ezz

)
. (11)

This simple expression provides an adequate although not
exceeding accurate description of rubber over the range of
extensions in our experiments. The parameter a is directly
related to sound speeds. We obtain it through fits to stress
vs. extension in the range where the extension ratio λy
ranges from 1 to 2. Reference [6] showed in experiments
at 24 ◦C that this procedure is in good accord with time-
of-flight measurements. We also measured stress-extension
curves at 80 ◦C and found that sound speed increases
slightly above the room temperature value [13]. In our
simulations we use a= 686.44 (m/s)2 and cs = 26.2m/s at
the temperature of 85 ◦C.
The simulations still depend upon three unknown para-

meters; β, λ0f , and g. The dissipation parameter β was
obtained from experiments in which bands of rubber were
allowed to undergo free retraction. This was done by
stretching a rubber band, releasing it, waiting for a retrac-
tion front to develop, and measuring its acceleration with
video images [14]. These results were compared with direct
numerical simulations using eq. (10). The parameter β was
modified in simulations until the calculated peak acceler-
ation of the simulation matched the peak acceleration of
the experiment. Since no bonds break in a retraction simu-
lation, the only tunable parameter is β.
The only parameter in simulations not directly obtained

from experiments is the failure extension ratio λf consist-
ing of two components: the cutoff constant λ0f and the
coefficient g in the toughening rule of eq. (9). By fitting
experimental and numerical crack speeds, we obtained
λ0f = 4.1, and g= 100. Results are quite insensitive to the
value of g so long as it is large enough to keep the crack tip
stable.
Assembling all experimentally derived parameters, we

perform our simulations with values of a= 686.44 (m/s)2,
b= 0, β = 9× 10−6s, and rupture extension λf = 4.1+
100λ−2z . We tested three numerical systems with heights
of 180, 360, and 630 rows to match the actual specimens
with 5.1 cm, 10.2 cm, and 17.8 cm height, respectively. The
system was at least five times as wide as it is tall in the
unstretched state. The system ran for more than 15000
time units (> 0.2 s) to ensure it has approached a steady
state.

Results and discussion. – In this section, we
compare the crack speeds from the simulations with those
from the experiments. For a Mooney-Rivlin material,
longitudinal wave speed depends strongly on extension
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Fig. 3: Crack speed scaled by the shear wave speed as a function of the extension ratio λy in (a), and of the elastic energy
density in (b). Both experimental results and simulations show two different scaling regimes for the crack speed. When we
let Mooney-Rivlin constant b vary between 0 and 0.053, the numerical crack speeds only vary by 10%. All crack speeds are
determined within the experimental error of ±0.75 m/s.

but shear wave speed (cs) behaves like a constant when
extensions λx and λy on the order of 2 or greater [7].
Therefore, it makes sense to measure crack speeds in
rubber in units of the shear wave speed. Our experimental
and numerical crack speeds, scaled by the shear wave
speed (cs = 26.2m/s at 85

◦C), are plotted as a function
of extension ratio λy in fig. 3(a) and of the elastic energy
density in fig. 3(b). Here, the elastic density is calculated
as E = eNH(λy)h/λy, where h is the height of the sample
and eNH is the Neo-Hookean elastic energy density as
shown in eq. (11). Figure 3 shows that our numerical
results based on the Neo-Hookean model are in agreement
with the laboratory measurements. As we expect, both
subsonic cracks (v < cs) and supersonic cracks (v > cs) are
observed in three different sized samples. The transition
from subsonic cracks to supersonic cracks occurs at
about λy = 2.0 for the largest sample with 17.8 cm height,
λy = 2.5 for samples with 10.2 cm height, and λy = 3.0 for
samples of 5.1 cm height.
As predicted by supersonic rupture theory, there are

two different scaling regimes for the crack speeds [7].
For subsonic cracks, crack speeds are independent of
system size when plotted as a function of the elastic
energy density E. This is the prediction of linear elastic
fracture mechanics, worked out for example for cracks in
strips by Marder [15] and verified in detail by Goldman
et al. [16]. However, supersonic cracks in rubber sheets
have quite different characteristics. Their crack speeds
become independent of system size when plotted vs. λy
rather than vs. elastic energy density shown in fig. 3.
There is so much elastic energy stored in the vicinity of
crack tip that it can support supersonic crack propagation
and even provide extra energy to flow outwards. The
crack speed is no longer limited by the time taken for
the elastic energy from far away to flow into the crack
tip [17].

Fig. 4: Comparison of the rupture opening angles for supersonic
cracks obtained from experimental results and numerical runs
based on the Neo-Hookean energy model over a range of states
where the extension ratio λy lies between 2.5 and 5. The
simulations overestimate the angles around 10◦ systematically
in all three sized samples. All crack speeds are determined
within the experimental error of ±0.75m/s.

Furthermore, crack openings have a qualitatively differ-
ent shape in two scaling regimes. Subsonic cracks have
a parabolic tip as expected and the opening increases as
λy increases; on the other hand, supersonic cracks have
a wedge-like opening, with an opening angle of about
150◦ in experiment and 160◦ from numerics as shown
in fig. 4. Figure 5 shows experimental and numerical
measurements of velocity fields around a crack tip. The
simulations slightly overestimate the openings and particle
velocity, but otherwise theory and experiment correspond
well.

Conclusion. – We measured properties of cracks
in rubber at a temperature of 85 ◦C and studied the
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Fig. 5: (Color online) Top panels: images showing the experimental particle velocity fields of three steadily propagating cracks
in h= 17.8 cm specimens: (a) λy = 1.3 and v= 0.63 cs; (b) λy = 1.75 and v= 0.93 cs; (c) λy = 3.0 and v= 1.02 cs. The bottom
panels show the particle velocity image of simulations compared to three experimental results which have the same crack speeds
within 3% and extension ratios (d) λy = 1.27 and v= 0.63 cs; (e) λy = 1.6 and v= 0.95 cs; (f) λy = 3.0 and v= 1.047 cs. Cracks
propagate to the right, and black regions are the actual opening. The grayscale is coded according to the particle velocity and
arrows show the direction of particle motion. We note that the particle velocity close to the crack tip is falsely represented in
(c), because the velocity gradient in these regions is so large that are particle image velocimetry (PIV) algorithm cannot yield
reliable results. The particle velocity fields in simulations are similar to those in experiments, but the opening angles of the
ruptures are slightly larger than experimental results. Wedge-like openings are observed at λy = 3.0 in both experimental results
(c) and simulations (f).

transition between subsonic and supersonic cracks. We
also conducted numerical simulations based on a Neo-
Hookean theory with Kelvin dissipation and a new rule
for increasing toughness. This simple model produces
satisfactory agreement with experiment for crack speeds
and particle velocity fields. The experiments provide the
first confirmation that supersonic cracks obey a scaling
law in which speed naturally depends upon strain rather
than energy density. The validity of this new scaling
law implies that there exists a small characteristic scale
length related to dissipative processes ∼ (βv) which is not
present in linear elastic fracture mechanics, a scale-free

theory. Remaining quantitative inaccuracies, such as
overestimation of opening angles and particle velocity,
are likely related to the very simple equation of motion,
eq. (10), employed for the simulations.
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