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Abstract—Collectivemotions of crowds are common in nature and have attracted a great deal of attention in a variety of multidisciplinary

fields. Collectiveness, which indicates the degree of individuals acting as a union, is a fundamental and universal measurement for

various crowd systems. By quantifying the topological structures of collectivemanifolds of crowd, this paper proposes a descriptor of

collectiveness and its efficient computation for the crowd and its constituent individuals. TheCollectiveMerging algorithm is then

proposed to detect collectivemotions from randommotions.We validate the effectiveness and robustness of the proposed collectiveness

on the system of self-driven particles as well as other real crowd systems such as pedestrian crowds and bacteria colony.We compare

the collectiveness descriptor with human perception for collectivemotion and show their high consistency. As a universal descriptor, the

proposed crowd collectiveness can be used to compare different crowd systems. It has a wide range of applications, such as detecting

collectivemotions from crowd clutters, monitoring crowd dynamics, and generatingmaps of collectiveness for crowded scenes. A new

CollectiveMotion Database, which consists of 413 video clips from 62 crowded scenes, is released to the public.

Index Terms—Crowd behavior analysis, collective motion, video analysis, graph connectivity

Ç

1 INTRODUCTION

O NE of the most captivating phenomena in nature is the
collective motions of crowds. From bacterial colonies

and insect swarms to fish shoals, collective motions widely
exist in different crowd systems and reflect the ordered
macroscopic behaviors of constituent individuals. Many
interdisciplinary efforts have been made to explore the
underlying principles of this phenomenon. Physicists treat
crowds as sets of particles and use equations from fluid
mechanics to characterize individual movements and their
interactions [1]. Behavioral studies show that complex
crowd behaviors may result from repeated simple interac-
tions among its constituent individuals, i.e., individuals
locally coordinate their behaviors with their neighbors, and
then the crowd is self-organized into collective motions
without external control [2], [3]. Meanwhile, animal aggre-
gation is considered as an evolutionary advantage for spe-
cies survival, since the integrated whole of individuals can
generate complex patterns, quickly process information,
and engage in collective decision-making [4].

One remarkable observation of collective motions in
various crowd systems is that some spatially coherent
structures emerge from the movements of different indi-
viduals, such as the arch-like geometric structures illus-
trated in Fig. 1. We refer to the spatially coherent
structures of collective motions as collective manifold. One

of the important structural properties of collective mani-
folds is that behavioral consistency remains high among
individuals in local neighborhoods, but low among those
that are far apart, even if they are on the same collective
manifold. In fact, individuals in crowds only have limited
sensing range, then they often base their movements on
locally acquired information such as the positions and
motions of their neighbors. However, information can
propagate to distant areas through local interactions and
coordination, which lead to the collective motion of the
whole crowd. Some empirical studies have explored the
importance of topological relations and information trans-
mission among neighboring individuals in crowd [5], [6].
However, there is a lack of quantitative analysis of the
collective manifold and its structural properties corre-
sponding to the overall crowd dynamics.

Collectiveness describes the degree of individuals acting
as a union in collective motions. It depends on multiple
factors, such as the decision making process of individu-
als, crowd density, and scene structures. Quantitatively
measuring this universal property and comparing it across
different crowd systems play an important role to under-
stand the general principles of various crowd behaviors. It
is important to many applications, such as monitoring the
transition of a crowd system from disordered to ordered
states, studying correlation between collectiveness and
other crowd properties such as population density, charac-
terizing the dynamic evolution of collective motions, and
comparing the collectiveness of different crowd systems.
Most existing crowd surveillance technologies [7], [8] can-
not compare crowd behaviors across different scenes
because they lack universal descriptors with which to
characterize the crowd behaviors. Monitoring collective-
ness is also useful in crowd management, control of
swarming desert locusts [9], prevention of disease spread-
ing [10], and many other fields. However, this important
property lacks accurate measurements. Existing works [6],
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[11] simply measure the average velocity of all the individ-
uals to indicate the collectiveness of the whole crowd,
which is neither accurate nor robust. The collectiveness of
individuals in crowd is also ill-defined.

In this paper, by quantifying the structural properties of
collective manifolds of crowds, we propose a descriptor of
collectiveness for crowds as well as their constituent indi-
viduals. Based on collectiveness, we propose an algorithm
called Collective Merging to detect collective motions from
random motions. We validate the effectiveness and robust-
ness of the proposed collectiveness on self-driven particles
(SDPs) [11]. It is further compared with human motion per-
ception on a new collective video database with ground-
truth. In addition, our experiments of detecting collective
motions and measuring crowd collectiveness in videos of
pedestrian crowds and bacterial colonies demonstrate the
wide applications of the collectiveness descriptor.1

The novelty and contributions of this work are summa-
rized as follows. 1) Rather than learning/extracting motion
patterns from time-series data, we propose a general
descriptor of collectiveness to measure crowd dynamics,
which is based on a common observation of collective
manifolds in collective motions of different crowds. 2)
This collectiveness descriptor along with the collective
motion detection algorithm can be effectively applied to a
variety of data (such as self-driven particle systems, pedes-
trian crowd videos, natural scene videos, and real bacteria
motion data) and a range of novel applications (such as
detecting collective motions, monitoring crowd dynamics,
and generating collective maps of scenes). 3) By applying
this collectiveness descriptor to motion analysis of bacte-
rial colony, we illustrate that our work has potential con-
tributions to the scientific studies of collective motions. 4)
The first video database of evaluating collectiveness of

various crowd systems is introduced to the computer
vision community. The conference version of this work
was published in [12] as an oral presentation. More techni-
cal details, theoretic analysis, experimental evaluations
and applications are provided in this paper.

2 RELATED WORKS

Crowd behavior analysis has recently become a hot topic in
computer vision because of the large demands on crowd
surveillance. Many studies [13], [14] show that various
crowd systems do share a set of universal properties
because some general principles underlie different types of
crowd behaviors. Quantitatively measuring such properties
and comparing them across different crowd systems is
important for understanding the underlying general princi-
ples of various crowd behaviors and plays an important
role in surveillance applications.

2.1 Scientific Studies on Collective Motions

The remarkable collective motions of organisms have
long captivated the attention of scientists from different
scientific fields. Understanding the collective behaviors
of crowds is a fundamental problem in social science. It
has shown that individuals staying in crowd tend to lose
their personalities. Instead of behaving independently
they tend to follow the behaviors of others and move
along the same direction as their neighbors [15], [16].
Some collective behaviors of crowds such as herding
have been studied in the field of social psychology [17].

In biology, considerable progress has been made in
revealing the principles of collective behaviors of different
crowds using empirical or theoretical approaches. A com-
pact review can be found in [18]. As for empirical
approaches, behavior data of different crowds such as bacte-
rial colonies [10], locust swarm [19], fish shoals [20], and bird
flocks [6] has been collected and analyzed. People study the
mechanism underlying the collective organization of

Fig. 1. (A) Collective motions of the bacterial colony, fish shoal, bird flock, sheep herd, athletic group, and traffic flow.(B) One common spatially
coherent structure, i.e., collective manifold, emerges in these different crowds. Since individuals in a crowd system only coordinate their behaviors
with their local neighbors, individuals at a distance may have low velocity correlation even though they are on the same collective manifold. Consider
the red and green individuals as examples. By characterizing the structural property of collective manifolds in various crowds, this work aims at pro-
posing a general measurement of collectiveness for different crowd systems and its efficient computation. Colored dash links represent
neighborhoods.

1. Data and codes are available at http://mmlab.ie.cuhk.edu.hk/
project/collectiveness/.
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individuals [4], the evolutionary origin of animal aggrega-
tion [14] and collective information processing in crowds [2]
at bothmacroscopic andmicroscopic levels. Many important
factors and laws affecting collective motions have also been
discovered and analyzed, such as phase transition, criticality
of crowd density, and self-organization [21], [22]. Zhang
et al. [10] studied the correlation between collective motions
and bacteria densities. Makris et al. [20] conducted quantita-
tive study on the collective temporal and spatial processes
formed by vast oceanic shoals.

As for theoretical approaches, differential equations of
continuum [23], statistical physics models, such as the maxi-
mum entropy model [24], have been proposed to under-
stand the mechanism of collective motions. Besides, based
on some local behavioral rules many agent-based models
have been proposed for crowd modeling and simulation
[3], [11], [25]. Vicsek et al. [11] and Chate and Ginelli [26]
proposed self-driven particle models and observed a rapid
phase transition from disordered to highly synchronized
behaviours in crowd systems as crowd density reaches a
critical level. Understanding such a transition is crucial to
many applications related to crowd systems, such as man-
agement of locust outbreaks. Detailed quantitative analysis
of collective motions becomes essential in order to under-
stand when, how and where they happen and how to
improve the control of crowd systems. Buhl et al. [9] video-
taped locust motions, empirically studied the transition
phase and validated SDP.

In the field of network science and control theory, the
flock of interacting units (human beings, robots, agents, and
dynamic systems) are connected into dynamically changing
networks. Then, community structures with shared collec-
tive behaviors are detected [27]. The community and net-
work evolving dynamics are further analyzed [28].
Meanwhile, flocking and consensus algorithms from control
theory have been proposed to control these distributed com-
plex systems in which these units can be synchronized into
collective movements despite of the absence of centralized
coordination [29].

Given the huge literature on collective behaviors, how-
ever, the study on quantitative measurements of collective-
ness is very limited. Most existing works [11] simply
measure collectiveness as the average velocity of particles in
a crowd system, and assume that the magnitude of the aver-
age velocity of a disordered crowd system is close to zero.
Petitjean et al. [30] computed it as the average of cosðfiÞ
where fi is the moving direction of each individual i. Such
measurements cannot deal with collective motions with
manifold structures or a mixture of heterogeneous collective
patterns as shown in Fig. 1.

2.2 Collective Motions in Computer Vision

In computer vision, a lot of works have been done on
learning global motion patterns related to crowd behav-
iors [7], [8], [31], [32], [33], [34], [35], [36], [37], [38], [39],
detecting coherent or incoherent motions from crowd
clutters [40], [41], [42], [43], [44], [45], [46], [47], [48],
[49], and analyzing interactions among individuals in
crowd [25], [50], [51], [52], [53], [54], [55], [56], [57]. A
brief review is given below.

There has been significant amount of work on learning
the motion patterns of crowd behaviors. Ali and Shah [31]
and Lin et al. [7], [58] modeled crowd flows with Lagrang-
ian coherent structures or Lie algebra based on computed
flow fields. Mehran et al. [32] proposed a streakline repre-
sentation for crowd flows. With topic models, Wang et al.
[33] explored the co-occurrence of moving pixels to learn
the motion patterns in crowd. Topic models have been
augmented by adding spatio-temporal dependency among
motion patterns [34], [35]. Some approaches [8], [36], [37],
[38], [39] learn motion patterns through clustering trajecto-
ries or tracklets in crowded scenes. For example, Zhou
et al. [8] used a mixture of dynamic systems to learn
pedestrian dynamics and applied it to crowd simulation.
However, none of the above-mentioned approaches mea-
sured the collectiveness of crowd behaviors or explored its
potential applications.

Meanwhile, detecting coherent and incoherent (abnor-
mal) behaviors in crowd is of great interests in surveillance
and crowd management. Rabaud and Belongie [44] and
Brostow and Cipolla [45] detected independent motions in
order to count moving objects. Zhou et al. [46] proposed a
graph-based method to detect coherent motions from track-
lets. Brox and Malik [47] extended spectral clustering to
group long-term dense trajectories for the segmentation of
moving objects in videos. These coherent motion detection
methods extract and cluster collectively moving targets from
randomly moving points. Some approaches have been pro-
posed to model local spatio-temporal variations for abnor-
mality detection with dynamic texture [48], [49], HMM [43],
distributions of spatio-temporal oriented energy [42], chaotic
invariants [41], and local motion descriptors [40]. These
methods are scene-specific and their features or descriptors
cannot be used to compare crowd videos captured from dif-
ferent scenes.

Individuals in social groups have the same destination
and closer relationship. They are more likely to form col-
lective behaviors. To analyze interactions and social influ-
ence among pedestrians, the social force model, first
proposed by Helbing and Molnar [25] for crowd simula-
tion, was introduced to the computer vision community
recently and was applied to multi-target tracking [56] and
abnormality detection [55]. Ge et al. [52] proposed a hier-
archical clustering method to detect groups and Chang
et al. [59] proposed a probabilistic strategy to softly assign
individuals into groups. Moussaid et al. [60] modified the
social force model to account for the influence of social
groups. Lan et al. [50] analyzed individual behaviors con-
sidering the context of social groups with hierarchical
models. Recently Kratz and Nishino [54] proposed effi-
ciency to measure the difference between the actual
motion and intended motion of pedestrians in crowd for
tracking and abnormality detection.

In computer graphics, simulating collective behaviors
of virtual crowds has attracted many attentions due to its
wide applications to digital entertainment, emergency
training, and urban planning. A recent survey can be
found in [61]. Agent-based models are commonly used to
model complex behaviors of crowd [3], [62], [63]. The
seminal work of Reynolds [3] demonstrated emergent
flocking and other collective behaviors using simple local
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rules. Flow-based models have been used to simulate
crowd flows and dynamics [64]. Some approaches can
learn model parameters from the real-world data of
crowd movements then simulate the crowd [65]. Recently
an information-theoretic metric has been proposed to
measure the similarity between real-world crowd move-
ments and crowd simulation results [66]. It is related to
our collectiveness measurement. Rather than directly
comparing crowd movements as [66], we first compute
the collectiveness of a single crowd, then compare the col-
lectiveness of different crowds. It would be interesting to
integrate these two measurements in the future to esti-
mate cross-crowd collectiveness.

3 THEORY OF COLLECTIVENESS

3.1 Emergence of Collective Manifolds in Crowds

As shown in Fig. 1A, from lower-level bacterial colony to
higher-level human crowd, one common observation of
collective motions in different crowd systems is that some
spatiotemporal coherent structures emerge from the col-
lective movements of constituent individuals in crowds.
We define such structures as collective manifolds of collec-
tive motions. There are two key properties of collective
manifolds, which distinguish collective motions from ran-
dom movements.

� Behavior consistency in neighborhoods: neighboring
constituent individuals have consistent behaviors.

� Global consistency among non-neighbors: although
constituent individuals at a distance may have dif-
ferent behaviors, they are correlated by behavior
similarity through intermediate individuals in neigh-
borhoods on the manifold.

Thus individuals in a crowd system coordinate their
behaviors in local neighborhood, but the behavior consis-
tency betweens individuals at a distance may have some
uncertainty, such as the low velocity correlation between
the red and green individuals illustrated in Fig. 1B.

Crowd collectiveness, described as the degree of individ-
uals acting as a union in collective motion, measures the
holistic behavior consistency of collective manifold. Mean-
while, individual collectiveness measures the behavior con-
sistency of each individual with all the other individuals.
But due to the behavior uncertainty between individuals at
a distance, we could not directly measure the individual col-
lectiveness, which prevents the estimation of crowd collec-
tiveness. To handle this problem, we study behavior
consistency along paths on the collective manifolds. Thus,
in our framework collectiveness is measured in a bottom-up
way: from behavior consistency in neighborhood of individ-
uals to behavior consistency among all pairwise individuals
along paths in the crowd, then from individual collective-
ness to crowd collectiveness.

3.2 Behavior Consistency in Neighborhood

We first measure the similarity of individual behaviors in
neighborhood. When individual j is in the neighborhood of
i, i.e., j 2 NðiÞ at time t, the similarity is defined as

wtði; jÞ ¼ maxðCtði; jÞ; 0Þ; (1)

where Ctði; jÞ is the velocity correlation coefficient at

t between i and j, i.e., Ctði; jÞ ¼ vi�vj
kvik2kvjk2. N is defined as

K-nearest-neighbor, motivated by existing empirical

studies of collective motions, which have shown that ani-

mals maintain local interaction among neighbors with a

fixed number of neighbors on topological distance, rather

than with all neighbors within a fixed spatial distance

[5]. Thus, wtði; jÞ 2 ½0; 1� measures an individual’s behav-

ior consistency in its neighborhood.
In fact, K represents the topological range of neighbor-

hood. A large K may result in inaccurate estimation of
behavior consistency in neighborhood. Later we will have a
discussion on howK affects the estimation of collectiveness.

Because of the behavior uncertainty between non-neigh-
bors, this pairwise similarity estimation would be unreliable
if two individuals are not in neighborhood. A better behav-
ior similarity based on the connectivity of collective mani-
fold is proposed below.

3.3 Global Consistency via Paths

Since behavior consistency cannot be directly estimated
when two individuals are not in neighborhood, we propose
a new pairwise similarity based on an important structure
of collective manifold: paths, which represent the connectiv-
ity of the network associated with a graph [67]. In crowd
systems, paths have important roles in characterizing the
behavior consistency among individuals outside neighbor-
hood in crowds.

Let W be the weighted adjacency matrix of the graph,
where an edge wtði; jÞ is the similarity between individual i
and j in its neighborhood defined in Eq. (1). Let
gl ¼ fp0 ! p1 ! � � � ! plg ðp0 ¼ i; pl ¼ jÞ denote a path of
length l through nodes p0; p1; . . . ; pl on W between individ-
ual i and j. Then ngl ¼

Ql
k¼0 wtðpk; pkþ1Þ is defined as the

path similarity on a specific path g l. Fig. 2 illustrates five spe-
cific paths of four different lengths between two individuals
which have no neighborhood relation.

Since there can be more than one path of length l between
i and j, let the set Pl contain all the paths of length l between
i and j, then the l-path similarity is defined as

nlði; jÞ ¼
X
gl2Pl

nglði; jÞ: (2)

Fig. 2. Paths connecting two individuals. Colored dashed lines shows
some representative paths of length l ¼ 3; 4; 5; 6 between red and green
points. The paths could be longer and more complicated. Only a few of
them are shown due to space limit. Red point and green points have no
neighborhood relation, but their behavior consistency can be measured
via integrating the path similarities between them.
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nlði; jÞ can be efficiently computed with Theorem 1.

Theorem 1. nlði; jÞ is the ði; jÞ entry of matrixWl.

Proof. According to the algebraic graph theory [67],

Wlði; jÞ ¼
X
gl2Pl

p0¼i;pl¼j

Yl
k¼0

wtðpk; pkþ1Þ ¼
X
gl2Pl

nglði; jÞ

¼ nlði; jÞ;
where set Pl contains all the paths with length l between p0
and pl. W

lði; jÞ is the sum of the products of the weights

over all paths with length l that start at vertex i and finish

at vertex j in the weighted graphW. tu

3.4 Collectiveness at l-Path Scale

Since l-path similarity nlði; jÞ measures the behavior consis-
tency between i and j at l-path scale, we define the individ-
ual collectiveness of individual i at l-path scale as

flðiÞ ¼
X
j2C

nlði; jÞ ¼ ½Wle�i: (3)

Here C is the set containing all the individuals in the
crowd and e is a vector with all elements as 1, ½:�i denotes
ith element of a vector. Then we define the crowd collective-
ness at l-path scale as the mean of individual collectiveness

Fl ¼ 1

jCj e
>Wle: (4)

To further measure the overall collectiveness of individuals
and crowd, intuitively we should integrate the individual
collectiveness and crowd collectiveness over all the path
scales, i.e., l ¼ f1; 2; . . . ;1g. However, due to the exponen-
tial growth of fl and Fl with l shown in Property 2
and Property 3 of collectiveness in Section 4, individual col-
lectiveness at different path scales cannot be directly
summed. Therefore, we define a generating function with
regularization to integrate all path similarities, such that the
convergence of summation can be guaranteed.

3.5 Regularizing Collectiveness over All Scales

Generating function regularization is used to assign a mean-
ingful value for the sum of a possibly divergent series [68].
There are different forms of generating functions. We define
the generating function for the l-path similarities as

ti;j ¼
X1
l¼1

zlnlði; jÞ; (5)

where z is a real-valued regularization factor, and zl can be

interpreted as the weight for l-path similarity. z < 1 and can-

cels the effect that fl and Fl exponentially grow with l. ti;j can
be computed with Theorem 2.

Theorem 2. ti;j is the (i, j) entry of matrix Z, where Z ¼ ðI�
zWÞ�1 � I and 0 < z < 1

rðWÞ, where r is the spectral radius
of matrixW.

Proof. Let the eigendecomposition of the matrix W be
W ¼ QLQ�1, and �1�jCj be the diagonal elements of the
diagonal matrix L. The matrix summation is

Z ¼ zWþ z2W2 þ � � � þ z1W1

¼ zQLQ�1 þ z2QL2Q�1 þ � � � þ z1QL1Q�1

¼ QðIþ zLþ z2L2 þ � � � þ z1L1ÞQ�1 � I

¼ Q

P1
l¼0ðz�1Þl � � � 0

..

. . .
.

0

0 0
P1

l¼0ðz�jCjÞl

2
6664

3
7775Q

�1 � I

¼ Q

1
1�z�1

� � � 0

..

. . .
.

0

0 0 1
1�z�jCj

2
66664

3
77775
Q�1 � I

¼ ðI� zWÞ�1 � I;

where z < 1
rðWÞ guarantees the convergence of seriesP1

l¼0ðz�iÞl as 1
1�z�i

. tu
Thus, the individual collectiveness from the generating

function regularization on all the path similarities can be
written as

fðiÞ ¼
X1
l¼1

zlflðiÞ ¼ ½Ze�i: (6)

Crowd collectiveness of a crowd system C is defined as the

mean of all the individual collectiveness, which can be explic-

itly written in a closed form as

F ¼ 1

jCj
XjCj

i¼1

fðiÞ ¼ 1

jCj e
>ððI� zWÞ�1 � IÞe: (7)

A strong convergence condition of collectiveness will be given

in Property 1 in Section 4.

4 PROPERTIES OF THE COLLECTIVENESS

We derive some important properties of collectiveness.

Property 1 (Strong Convergence Condition). Z converges
when z < 1

K.

Proof. From Lemma 1, we know that rðWÞ < rðAÞ ¼ K.
Thus, when z < 1

K � 1
rðWÞ, according to Theorem 2, Z

converges. tu
Lemma 1. rðWÞ � rðAÞ ¼ K, where A is any (0,1)-adjacency

matrix according to K nearest neighbors,W is the weighted
adjacency matrix corresponding to A, and all the weights
wði; jÞ 2 ½0;þ1�.

Proof. Since adjacency matrix A is computed from K near-
est neighbors, we haveAe ¼ Ke, thusK is an eigenvalue
of A. Let �i be any eigenvalue of A, since aii ¼ 0 accord-
ing to Gershgorin Circle Theorem we have

j�ij �
X
j6¼i

jaijj ¼ K:

Now we know K ¼ maxiðj�ijÞ, thus rðAÞ ¼ K. Similarly,

for any eigenvalue �i of W;maxiðj�ijÞ �
P

j6¼i jwijj � K.

Thus rðWÞ � rðAÞ ¼ K tu
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Note that it is computationally expensive to choose z
by comparing it with rðWÞ, especially for a large crowd
system, since we need to compute the eigenvalues of
W to get rðWÞ with complexity Oðn3Þ. Because of Prop-
erty 1, the value of z can be determined without com-
puting rðWÞ.
Property 2 (Bounds of Fl). 0 � Fl � Kl.

Proof. Let A be the ð0; 1Þ K-nearest-neighbor adjacency
matrix corresponding to W. Then we easily have
Ae ¼ Ke. We use mathematical induction to prove the
statement e>Wne � jCjKn holds for any n as follows:

(1) When n ¼ 1, since wði; jÞ � aði; jÞ ¼ 1 if j 2 NðiÞ,
we have

e>We �
X
i;j

wði; jÞ �
X
i;j

aði; jÞ ¼ e>Ae ¼ jCjK:

(2) When n ¼ m, we assume the statement

e>Wme � jCjKm holds, and let wmði; jÞ denote the ði; jÞ
entry ofWm, then

e>Wmþ1e ¼ e>WmWe ¼
X
i;j;k

wmði; kÞwðk; jÞ

�
X
i;j;k

wmði; kÞaðk; jÞ ¼ e>WmAe

¼ Ke>Wme ¼ jCjKmþ1:

Then the statement e>Wmþ1e � jCjKmþ1 holds. Thus

e>Wne � jCjKn holds for any n. Meanwhile, it is obvious

to see Fl � 0.
We proved that Fl ¼ 1

jCj e
>Wle � Kl. The upper

bound is reached when W ¼ A, where A is ð0; 1Þ adja-
cency matrix according toK-nearest-neighbor. tu

Property 3 (Asymptotic limit of Fl). liml!1
ln Fl
l ¼ ln �

� ln K; where � is the largest eigenvalue of W.

Proof. According to the Perron-Frobenius theorem, we have
liml!1 Wl

�l
¼ vw>, where v and w are left and right eigen-

vectors of W corresponding to � and are normalized to
w>v ¼ 1. Then we have

lim
l!1

ln Fl

l
� ln � ¼ lim

l!1
ln Fl

�l

l
¼ lim

l!1

ln e>Wle
jCj�l
l

¼ lim
l!1

ln e>vw>e
jCj
l

¼ 0:

tu
This quantity is related to the topological entropy of a

graph W [69], where the maximal entropy rate of random
walk on the graph is bounded by ln �. It can be interpreted
as that as collective motion emerges among individuals of
crowd, the links of the whole crowd become homogenous,
and the random surfer on the collective manifold reaches
the maximal entropy rate. It also shows the exponential
growth of Fl with l.

Property 4 (Bounds of F). 0 � F � zK
1�zK, if z < 1

K.

Proof. From the proof of Property 2 we know that
e>Wne � jCjKn holds for any n. By expanding e>Ze we
have

F ¼ 1

jCj ðze
>Weþ z2e>W2e � � � þ z1e>W1eÞ

� zK þ z2K2 þ � � � þ z1K1 ¼ zK

1� zK
:

ð8Þ

And it is obvious that F � 0. tu
The equality stands when W ¼ A, where A is the ð0; 1Þ

adjacency matrix according to K-nearest-neighbor. It indi-
cates that there are perfect velocity correlations among
neighbors, i.e., wtði; jÞ ¼ 1 if j 2 NðiÞ for any i, and thus all
the constituent individuals in neighborhood move in the
same direction.

Note that K determines the topological range of neigh-

borhood. Different K and z result in different sup F 	 zK
1�zK.

We can define the normalized crowd collectiveness

F̂ ¼ F
sup F. Then The range of F̂ is scaled to ½0; 1�. For simplic-

ity, in most of our experiments we let K ¼ 20 and z ¼ 0:025,

so the range of F is ½0; 1�. Relations among F, K and z are

discussed in Section 6.3.

Property 5 (Upper bound of entries of Z). ti;j < z
1�zK, for

every entry (i,j) of Z.

Proof. Let the eigendecomposition of matrix W be
W ¼ QLQ�1, and �1�jCj be the diagonal elements of the
diagonal matrix L. From Lemma 1 we know that
K > maxið�iÞ. Thus we have

Z ¼ ðI� zWÞ�1 � I

¼ Q

1
1�z�1

� � � 0

..

. . .
.

0

0 0 1
1�z�jCj

2
66664

3
77775
Q�1 � I

¼ Q

z�1
1�z�1

� � � 0

..

. . .
.

0

0 0
z�jCj

1�z�jCj

2
66664

3
77775
Q�1

< Q

z�1
1�zK � � � 0

..

. . .
.

0

0 0
z�jCj
1�zK

2
6664

3
7775Q

�1

¼ z

1� zK
Q

�1 � � � 0

..

. . .
.

0

0 0 �jCj

2
6664

3
7775Q

�1 ¼ z

1� zK
W:

ð9Þ

Since the maximum entry on W is no larger than 1,

ti;j < z
1�zK. tu

This property will be used in the following algorithm of
detecting collective motion patterns from crowd clutters.

Property 6 (Approximate error bound of Z). kZ� Z1�nk2 �
ðzsðWÞÞnþ1

1�zsðWÞ , where Z1�n denotes the sum of first n powers of W

and sðWÞ is the largest singular value of matrixW.
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Proof. Since Z1�n 	 zWþ z2W2 þ � � � þ znWn, we can get
Z1�n � Z1�nzW ¼ zW� znþ1Wnþ1. Then

Z1�n ¼ ðI� zWÞ�1ðzW� ðzWÞnþ1Þ: (10)

Meanwhile, with Z ¼ ðI� zWÞ�1 � I ¼ ðI� zWÞ�1zW,

we get

kZ� Z1�nk2 ¼ kðI� zWÞ�1ðzWÞnþ1k2
� kðI� zWÞ�1k2kðzWÞnþ1k2
¼ 1

1� kzWk2
kzWknþ1

2 ¼ ðzsðWÞÞnþ1

1� zsðWÞ :

ð11Þ
Here kzWk2 ¼ zsðWÞ and zK < 1. tu
According to this property, we can approximate Z by

Z1�n with the error bound ðzsðWÞÞnþ1

1�zsðWÞ .

5 COLLECTIVE MOTION DETECTION

Based on the proposed collectiveness, an algorithm called
Collective Merging is proposed to detect collective motions
from crowd clutters with random motions (see Algo-
rithm 1). The algorithm in the case of single frames is sum-
marized in Algorithm 1. Given the spatial locations xi and
velocities vi of individuals i at time t, we first compute W.
Then by thresholding the values on Z, we can easily
remove outlier particles with low collectiveness and get the
clusters of collective motion patterns as the connected com-
ponents from thresholded Z. As for the threshold k, accord-
ing to the bound in Property 3 we let k ¼ az

1�zK where
0:4 < a < 0:8. On a Intel Core i5-3210M laptop, this four-
lined algorithm in Matlab implementation runs as 10 FPS
with jCj ¼ 500. It does not include the time of tracking key-
points. The main computation bottleneck comes from the
matrix inversion, which can be solved with current fastest
algorithm with Oðn2:38Þ time [70]. In the experiment section,

we demonstrate its effectiveness on detecting collective
motion patterns on various videos.

6 NUMERICAL ANALYSIS ON CROWD SYSTEMS OF

SELF-DRIVEN PARTICLES

We take the self-driven particle model [11] to evaluate the
proposed collectiveness, because SDP has been used
extensively for studying collective motion and shows
high similarity with various crowd systems in nature [9],
[10]. Importantly, the groundtruth of collectiveness in
SDP is known for evaluation. SDP was firstly proposed to
investigate the emergence of collective motion in a system
of moving particles. These simple particles are driven
with a constant speed, and the directions of their veloci-
ties are updated to the average direction of the particles
in their neighborhood at each frame. It is shown that the
level of random perturbation h on the aligned direction in
neighborhood would cause the phase transition of this
crowd system from disordered movements into collective
motion. The update of velocity direction u for every indi-
vidual i in SDP is

uiðtþ 1Þ ¼ hujðtÞij2NðiÞ þ Du; (12)

where hujij2NðiÞ denotes the average direction of velocities of

particles within the neighborhood of i, Du is a random angle

chosen with a uniform distribution within the interval

½�hp; hp�. h tunes the noise level of alignment.2

6.1 Crowd Collectiveness of SDP

As shown in Fig. 3, we compute crowd collectiveness F
at each time t. F monitors the emergence of collective
motion over time. At initialization, the spatial locations
and velocity directions of all the particles are randomly
assigned. The crowd gradually turns into the state of col-
lective motion. The dynamic variation of F accurately
reflects this phase transition.

As h increases, particles in SDP become disordered. As
shown in Fig. 4, F accurately measures the collectiveness of
crowd systems under different levels of random perturba-
tion h. For comparison, Fig. 4B plots the average normalized
velocity v ¼ k 1

N

PN
i¼1

vi
kvik k, which was commonly used as a

Fig. 3. Emergence of collective motion in SDP. At the beginning,F is low
since the spatial locations and moving directions of individuals are ran-
domly assigned. The behaviors of individuals gradually turn into collec-
tive motion from random movements, and F accurately reflects the
phase transition of crowd dynamics. Here K ¼ 20; z ¼ 0:025, and h ¼ 0,
then the upper bound of F is 1.

(A) (B)

Fig. 4. (A)F and v with increasing h. The bars indicate the standard devi-
ations of these two measurements. The large deviations of v show that v
is unstable and sensitive to initialization of SDP. At each h, simulation
repeats for 20 times. (B) For a low h, all the individuals are in a global col-
lective motion, and F is close to the upper bound. For a relatively larger
h, individuals form multiple clusters of collective motions. For a high h,
individuals move randomly and F is low.

2. In our implementation of SDP, the absolute value of velocity
kvk ¼ 0:03; the number of individuals N ¼ 400, and interaction radius
r ¼ 1. Experimental results in [11] have shown that these three parame-
ters only have a marginal effect on the general behaviors of SDP.
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measure of collectiveness in existing works [6], [11]. From
the large standard deviation of v under multiple simulations
with the same h, we see that v is unstable and sensitive to
initialization conditions of SDP. On the contrary, F shows
its robustness for measuring crowd collectiveness.

6.2 Collectiveness in Mixed-Crowd Systems

SDP assumes that all the individuals are homogeneous.
Studies on complex systems [71] have shown that individu-
als in most crowd systems in nature are inhomogeneous. To
evaluate the robustness of our collectiveness descriptor, we
extend SDP to a mixture model by adding outlier particles,
which do not have alignment in neighborhood and move
randomly all the time. We measure individual collective-
ness in this mixed-crowd system. As shown in Fig. 5A, indi-
viduals are randomly initialized at the start, so the
histogram of individual collectiveness has a single mode.
When self-driven particles gradually turn into clusters of
collective motions, there is a clear separation between two
modes in the histogram of individual collectiveness. By
removing individuals with collectiveness smaller than 0.5,
we can effectively extract collectively moving self-driven
particles from outliers as shown in Fig. 5B. The threshold is
chosen empirically. Notice that although crowd collective-
ness is non-negative according to Property 4, the computed
individual collectiveness could be negative.

6.3 Collectiveness at lll-Path Scale

We evaluate the behaviors of collectiveness at l-path scale

while SDP are at three different levels of collective motions

in Fig. 6. We can see that as the SDP gradually turns into col-

lective motion, the regularized 1
Kl fl at large l-path scale

approaches to 1, which makes
P1

l¼1 z
lfl not converge, and

estimated crowd collectivenessF unstable when z ¼ 1=K. In

order tomake it converge, we choose z < 1=K.

In Fig. 7, we plot the regularized crowd collectiveness

with SDP at two different levels of collective motions in

Fig. 7. In Fig. 7B when z ¼ 0:5
K ¼ 0:025, zlFl decrease quickly

with l. It can be seen that when regularizing collectiveness

we consider the crowd collectiveness at higher l-path scale

Fl has less contributions to the overall regularized F. In

Fig. 7C, we illustrate the asymptotic limit of Fl at different l.

In Fig. 7D, we illustrate the approximate error kZ� Z1�nk2
with error bound ðzsðWÞÞnþ1

1�zsðWÞ at different n.

6.4 Convergence Condition of Collectiveness

There are two parameters z and K for computing collec-
tiveness in practical applications: K defines the topologi-
cal range of neighborhood and z makes the series
summation converge. K affects similarity estimation in
neighborhood. A large K makes the estimation inaccu-
rate due to the behavior uncertainty between non-neigh-
bors on collective manifold. In Fig. 8A, we keep z ¼ 0:5

K

and let K take increasingly large values, the estimated F
become unstable. Empirically K could be 5-10 percent of
jCj. In all our experiments, we fix K ¼ 20. Meanwhile, z
is constrained by K in Property 1. With different K and
z, the upper bound of F varies, as shown in Fig. 8C.
With a larger upper bound, the derivative dF

dh is larger
and the measurement is more sensitive to the change of
crowd motion. F can also be re-scaled to [0, 1] by diving
it by the upper bound, the plot of F̂ is shown in Fig. 8D.
Thus by tuning z and K we can control the sensitivity of

(A) (B)

Fig. 5. (A) Two frames of the mixture crowd system and their histograms
of individual collectiveness. After a while, self-driven particles are orga-
nized into clusters of collective motions. The histogram of ft is clearly
separated into two modes. (B) By removing particles with individual col-
lectiveness lower than 0.5, we can extract self-driven particles in collec-
tive motions. Blue and red points represent self-driven particles and
outliers. The number of outliers is equal to that of self-driven particles
and h ¼ 0.

(A) (B) (C) (D)

Fig. 7. (A) Two frames of SDP under different levels of collective motion.
(B) Regularized crowd collectiveness at l-path scale zlFl with increasing
l. The values above are the summation of the crowd collectivenss at top
10 l-path scale. (C) The asymptotic limit of Fl. � is the largest eigenvalue
of W computed at current frame of SDP. (D) Approximate errors and
error bounds of Z at different n.

Fig. 6. Regularized individual collectiveness at l-path scale 1
Kl fl while

SDP are at three different levels of collective motions. In each diagram,
the left-hand side shows the average zlfl with l ¼ 1 � 30 and the right-
hand side shows the visualization of all the values of zlflðiÞ with
l ¼ 1 � 30 and i ¼ 1 � 400. Since the convergence condition is not satis-
fied,F become unstable when SDP is in a high level of collective motion.
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collectiveness in practical applications. The upper bound
of F grows quickly when z approaches to 1

K, which
makes the value of F unstable, as shown in Fig. 8B. The
ideal range is 0:4

K < z < 0:8
K .

7 FURTHER EVALUATION AND APPLICATIONS

We evaluate the consistency between our collectiveness and
human perception, and apply the proposed descriptor and
algorithm on various videos of pedestrian crowds and bac-
terial colony.

7.1 Human Perception for Collective Motion

To quantitatively evaluate the proposed crowd collective-
ness, we compare it with human motion perception on a
new collective motion database, and then analyze the con-
sistency and correlation with human-labeled ground-
truth for collective motions. The collective motion data-
base consists of 413 video clips from 62 crowded scenes.

116 clips are selected from Getty Image [72], 297 clips are
collected by us. This database contains different levels of
collective motions with 100 frames per clips. Some repre-
sentative frames are shown in Fig. 9. To get the ground-
truth, 10 subjects are invited to rate all the videos inde-
pendently. A subject is asked to rate the level of collective
motions in a video from three options: low, medium, and
high. Then we propose two criteria to evaluate the consis-
tency between human labeled ground-truth and the pro-
posed collectiveness.

The first is the correlation between the human scores and
our collectiveness descriptor. We count the low option as 0,
the medium option as 1, and the high option as 2. Since
each video is labeled by 10 subjects, we sum up all the
scores as the collective score for a video. The range of collec-
tive scores is [0, 20]. The histogram of collective scores for
the whole database is plotted in Fig. 9. We compute the
crowd collectiveness F at each frame using the motion fea-
tures extracted with a generalized KLT(gKLT) tracker
derived from [73], and take the average value of F over all
the frames as the collectiveness for this video. We compute

(A) (B) (C) (D)

Fig. 10. (A) Scatters of collective scores with F and v for all the videos. (B) Histograms of F and v for the three categories of videos. (C) ROC
curves and best accuracies for high-low, high-medium, and medium-low classification. (D) Error examples of collectiveness due to tracking failure or
perspective distortion.

Fig. 9. Histogram of collective scores of all the videos in the Collective
Motion Database and some representative video frames, along with their
collective scores, F, and v. The three rows are from the three collective-
ness categories.

z
^

(A) (B)

(C) (D)

Fig. 8. (A) Large K results in the inaccurate estimation of F due to the
behavior uncertainty between non-neighbors on collective manifold.
Given each h, SDP simulation repeats for 20 times. (B) Given K fixed,
the upper bound of F grows quickly when z approaches to 1

K, which
makes F unstable. (C) F with increasing h at different K and z in SDP.
(D) By dividing sup F, the rescaled F̂ have different sensitivity of
dynamic order.

1594 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 8, AUGUST 2014



average v over all the frames using the same motion features
as a comparison baseline. Fig. 9 shows the collective scores,
F, and v for some representative videos. Fig. 10A scatters
the collective scores with F and v of all the videos, respec-
tively. There is a high correlation between collective scores
and F, and the proposed collectiveness is consistent with
human perception.

The second is the classification accuracy based on the col-
lectiveness descriptor. We divide all the videos into three
collectiveness categories by majority voting of subjects’ rat-
ing, then evaluate how the proposed collectiveness descrip-
tor can classify them. Histograms of F and v for the three
categories are plotted in Fig. 10B. F has better discrimina-
tion capability than v. Fig. 10C plots the ROC curves and the
best accuracies which can be achieved with all the possible
decision boundaries for binary classification of high and
low, high and medium, and medium and low categories
based on F and v, respectively. F can better classify
different levels of collective motions than v, especially on
the binary classification of high-medium categories and
medium-low categories of videos. It indicates our

collectiveness descriptor can delicately measure the
dynamic state of crowd motions.

Classification failures come from two sources. Since
there are overlapping areas between high-medium and
medium-low collective motions and it is difficult to quan-
tify human perception of collective motion into three clas-
ses, some samples are even difficult for humans to reach
consensus and are also difficult to our descriptor. Mean-
while, collectiveness may not be properly computed due
to tracking failures, projective distortion, and special
scene structures. Two failure examples are shown in
Fig. 10D. The computed collectiveness in the two videos
is low because the KLT tracker does not capture the
motions well due to the perspective distortion and the
extremely low frame rate, while all 10 subjects give high
collective scores because of the regular pedestrian and
traffic flows in the scenes.

Since collectiveness in videos is computed based on
keypoint tracking on image plane while human perception
is based on velocities in the ground plane, here we further
evaluate how scene perspective distortion affects the pro-
posed collectiveness. As shown in Fig. 11A, we compare
the collectiveness of self-driven particles in the ground
plane with that after three different perspective projec-
tions. When h is small, perspective distortion leads to
smaller collectiveness. When h is large, collectiveness is
large and perspective distortion does not make much dif-
ference. This is understandable. If two points are very
close in space and move in parallel, they still move in simi-
lar directions in the image space even with perspective dis-
tortion. However, if they are close in space but move in
different directions, perspective projection may increase
the angles between velocities. In Fig. 11B, two real scenes
are selected and calibrated to the ground plane. After cali-
bration, the collectiveness slightly increases.

7.2 Collective Motion Detection in Videos

We apply the proposed collectiveness descriptor and collec-
tive merging algorithm to analyze collective motions in vid-
eos. We first detect collective motions in various videos
from the collective motion database. A variety of collective
motion patterns are extracted from the crowd movements
and their collectiveness is measured.

(A)

(B)

Fig. 11. (A) Comparing the collectiveness of SDP with different perspec-
tive projections and different h. (B) Comparing the collectiveness of real
crowd scenes before (f) and after (f) calibration to the ground plane.
Red polygons are manually annotated ground planes.

Fig. 12. Detecting collective motions from crowd videos. Keypoints with the same color belong to the same cluster of collective motion. Red crosses
are detected outliers.
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Collective motion detection in crowd videos is challeng-
ing due to the short and fragmented nature of extracted
trajectories, as well as the existence of outlier trajectories.
Fig. 12A shows the detected collective motions by Collec-
tive Merging in 10 videos, along with their computed F
and v. The detected collective motion patterns correspond
to a variety of behaviors, such as group walking, lane for-
mation, and different traffic modes, which are of great
interest for further video analysis and scene understand-
ing. The estimated crowd collectiveness also varies across
scenes and reflects different levels of collective motions in
videos. However v cannot accurately reflect the collective-
ness of crowd motions in these videos. As the crowds in
the videos at first row of Fig. 12, v is falsely rather small
because the groups of people collectively move in the
opposite directions so that the whole average velocity is
compromised.

In the algorithm of Collective Merging, a determines the
scale of collective motion patterns to be detected. Fig. 13
shows the collective motion detection results with threshold
a ¼ 0:5, a ¼ 0:6 and a ¼ 0:7 in three scenes. We can see that
when the threshold is high, some weak links near the
boundary of collective motions are filtered so that the
detected collective motion patterns are divided into small
fragments. When the threshold is low, the detected collec-
tive motion patterns become large and some noise may be
included. The setting of a is related to the scale of collective
motion patterns to be detected.

7.3 Monitoring Crowd Dynamics in Videos

We use the proposed crowd collectiveness descriptor to
monitor the crowd dynamics over time. The real-time com-
puted collectiveness accurately records the evolving states
of crowd systems, as shown in Fig. 14. In the first scene, the
collectiveness changes abruptly when two groups of pedes-
trians pass with each other. In the second scene where ath-
letics start running, collectiveness reflects the phase
transition of the athlete crowd. In the third scene, the collec-
tiveness keeps relatively consistent since the flow of run-
ning people continues as the same. Such events indicate
rapid phase transition of a crowd system or some critical

point has been reached. They are useful for crowd control
and scientific studies.

7.4 Generating Collective Maps of Scenes

We estimate the collective maps of scenes by accumulating
the individual collectiveness at each location over time.
They reveals valuable information on the interaction
between scene structures and crowd behaviors. At each
time t we estimate fðiÞ for each keypoints i at spatial loca-
tion xi of one scene. By accumulating the collectiveness val-
ues at the spatial locations of keypoints over time, we get
the collective map of the scene, which represents the spatial
distribution of collectiveness in the scene. It might provide
valuable information for crowd management and public
facility optimization.

Fig. 15 shows the estimated collective maps of six differ-
ent scenes. Areas with high collectiveness value in these
scenes are 1) traffic roads and escalators regularized by
scene structures, such as shown in the three collective maps
in the first row, and 2) pedestrian lanes formed from self-
organization, such as the first collective map in the second
row. Empirically we know that regions with high collective-
ness values would have fluent traffic thus low probability of
accidents. However, in real life crowds of pedestrians are
often hard to self-organize into walking lanes with different
moving direction. To increase the crowd collectiveness of
the scenes and promote fluent flow, physical barriers could

Fig. 13. Collective motion detection results of the Collective Merging
algorithm with threshold a ¼ 0:5, a ¼ 0:6, and a ¼ 0:7, respectively.

Fig. 14. Monitoring crowd dynamics with collectiveness. Two frames
indicate the representative states of the crowd along the time line.

Fig. 15. Collective map of different scenes. High energy areas indicate
scene regions with high collectiveness value. These regions have fluent
traffic flows.
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be used to divide the crowd into different lanes (such as the
trash bin and the barriers between escalators in the last two
collective maps in the second row in Fig. 15).

7.5 Collective Motions in Bacterial Colony

In this experiment, we use the proposed collectiveness to
study collective motions emerging in a bacterial colony. The
wild-type Bacillus subtilis colony grows on agar substrates,
and bacteria inside the colony freely swim on the agar sur-
face. The real motion data of individual bacteria comes
from [10]. There are 200 � 400 bacteria moving around at
every frame.

Fig. 16A plot F and v with bacteria number over time
respectively. Crowd density was proved to be one of the
key factors for the formation of collective motion [10],
[11]. A lot of scientific studies are conducted to analyze
their correlation. For the same type of bacteria in the
same environment, bacteria collectiveness should mono-
tonically increase with density. Fig. 16A shows that bac-
teria density has a much better correlation with F than
v. In Fig. 16B, we scatter F and v with the number of
bacteria in every frames, respectively. A fractional poly-
nomial is fit to the data of F with bacteria numbers.
From the polynomial relation we could know the
expected collectiveness under some given bacteria num-
ber. v does not have some sufficient polynomial relation
with bacteria numbers. Fig. 16C shows representative
frames and the collective motion patterns detected by
Collective Merging. Our proposed collectiveness mea-
surement has promising potentials for scientific studies.

8 CONCLUSIONS AND FUTURE WORK

We proposed a collectiveness descriptor for crowd sys-
tems as well as their constituent individuals along with
the efficient computation. Collective Merging can be used
to detect collective motions from randomly moving out-
liers. We have validated the effectiveness and robustness

of the proposed collectiveness on the system of self-
driven particles, and shown the high consistency with
human perception for collective motion. Further experi-
ments on videos of pedestrian crowds and bacteria colony
demonstrate its potential applications in video surveil-
lance and scientific studies.

As a new universal descriptor for various types of crowd
systems, the proposed crowd collectiveness should inspire
many interesting applications and extensions in the future
work. Individuals in a crowd system can move collectively in
a single group or in several groups with different collective
patterns, even though the system has the same value of F.
Our single collectiveness measurement can be well extended
to a spectrum vector of characterizing collectiveness at differ-
ent length scales. It is also desirable to enhance the descriptive
power of collectiveness by modeling its spatial and temporal
variations. The enhanced descriptor can be applied to cross-
scene crowd video retrieval, which is difficult previously
because universal properties of crowd systems could not be
well quantitatively measured. Collectiveness also provides
useful information in crowd saliency detection and abnormal-
ity detection. This paper is an important starting point in these
exciting research directions.
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