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Experimetal study of a freely falling plate with an inhomogeneous mass distribution
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A homogeneous thin plate often flutters while falling through a fluid under gravity. The center of gravity of the
plate moves back-and-forth horizontally and the plate tilting angle oscillates symmetrically from the horizontal.
Here we show that such a scenario is qualitatively changed for a plate with noncoinciding centers of gravity and
buoyancy due to an inhomogeneous mass distribution. Mismatch of the centers causes an external torque that
breaks the symmetry of rotational motion, shifts the mean tilting position from the horizontal, and leads to a net
horizontal plate displacement. In laboratory experiments with a Reynolds number around 1500, we found that the
net horizontal displacement scales linearly with the separation between the centers up to a critical value, beyond
which the plate falls vertically in an edge-on configuration with the heavier side downward. Experimental results
are compared to predictions of a quasi-steady numerical model. Our work demonstrates that motion of freely
moving objects in a fluid depends sensitively on external torques, which potentially can be used as an effective
control method.
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I. INTRODUCTION

When a leave falls from a tree, its trajectory is often not
straight but exhibits complex dynamics. Understanding and
predicting such falling trajectories have impacts in a broad
range of fields [1], such as meteorology [2], sedimentology [3],
and biomechanics [4,5]. Studies of the subject have a long
history starting with Maxwell [6] who provided a qualita-
tive description for tumbling motion. Kirchhoff theoretically
considered motion of a solid body in an inviscid fluid [7]
and demonstrated that the inertial interaction of the liquid
with the moving solid can be quantified by a renormalized
added mass tensor and that the motion of the body can be
described by a set of ordinary differential equations [8–11].
The inviscid theory misses two crucial ingredients: viscous
drag and vorticity, both of which are related to the motion of
the body in a complex manner. Therefore, a general analytical
description of a falling body in a viscous fluid has not be
obtained. To investigate this problem, researchers have turned
to experiments [12–20], numerical simulations [21–26], and
phenomenological models [17,27,28].

To reduce the complexity of the problem, many previous
studies [15–17,27] focused on thin quasi-two-dimensional
plates. Centers of gravity of these plates falls within a vertical
plane and exhibit at least three kinds of nonchaotic motion:
steady vertical descent, oscillatory flutter, and rotary tumbling.
At low Reynolds numbers, the flow around the plate is
symmetric and the plate falls vertically. As the Reynolds
number increases, more complex trajectories emerge. A thin
plate with a large width-to-thickness ratio flutters: plate tilting
angle oscillates symmetrically from the horizontal and the
center of mass moves back and forth horizontally, producing no
mean horizontal displacement. As the width-to-thickness ratio
decreases, the plate transits from fluttering to tumbling motion,
in which the plate undergoes full end-over-end rotation and
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drifts horizontally. The three kinds of motion and transitions
between them have been studied extensively [15–17,29–31].
Plates in these previous studies all have a homogeneous mass
distribution; this leads the centers of buoyancy and gravity to
coincide and therefore the two forces produce zero net torque.

In this paper, we investigate how the fluttering dynamics of a
plate is changed if an external torque is introduced by offsetting
the centers of gravity and buoyancy. Through laboratory
experiments and a quasi-steady numerical model, we show
that torque generated by an offset as small as a few thousandth
of the plate width can shift the mean tilting position from the
horizontal and lead to a net horizontal plate displacement,
therefore qualitatively changing the falling dynamics. We
further show that the net horizontal displacement scales
linearly with the separation between the centers up to a critical
value, beyond which the plate falls vertically in an edge-on
configuration with the heavier side downward.

The paper is organized as follows. In Sec. II we describe
the experimental setup and the quasi-steady numerical model.
The main results of this work are given in Sec. III and we
summarize our results in Sec. IV.

II. EXPERIMENT AND MODEL

A. Experimental setup

Experiments are performed in a glass tank (1 m × 0.5 m ×
0.5 m) that is filled of water seeded with 10 μm TiO2 tracer
particles, as shown in Fig. 1. Plates are held and released by a
robotic hand mounted at the top of the tank. Upon releasing,
plates fall with two-dimensional trajectories in the XY plane.
Motion of the plates and TiO2 tracer particles in a vertical
(XY ) plane is illuminated by a light-sheet and recorded by a
camera with a resolution of 512 pixels × 512 pixels that runs
at 50 frames/s. Images are analyzed in Matlab to extract the
plate motion. Fluid flow is quantified by applying a particle
image velocimetry algorithm to the images of tracer particles.
Plates are released from rest with an initial tilt angle θ = 0
[defined in Fig. 2(b)]. In most of our experiments, plates exhibit
periodic motion that is insensitively dependent on the small
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FIG. 1. (Color online) Front view of the experimental system
showing the falling plate, the illuminating light-sheet, and the imaging
window. A laboratory reference frame (XYZ) is fixed in space with
Y axis pointing vertically and other two horizontally. The light-sheet
lies in the XY plane.

variations of the initial tilt angle. We perform measurements
in the center region of the tank to minimize the influences of
the tank boundaries.

Plates are quasi-two-dimensional and the longest dimension
along the Z direction is 25 cm. Results are checked against
additional experiments performed with a longer plate (35 cm)
to ensure that end effects are negligible. A schematic drawing
of the plate’s XY cross-section is shown in Fig. 2(a). To
construct a plate, we start with a piece of plastic (acrylic) with
a cross section of a × b and a center at O ′ which is called the
center of (exterior) geometry or buoyancy. Part of the acrylic

FIG. 2. (Color online) (a) Construction of the plates. Two ma-
terials (distinguished by colors) with different densities are used to
construct the plate. Geometric parameters are defined in the text.
(b) A comoving frame (xy) is fixed on the plate and follows the plate
motion. The moving frame has its origin at the center of gravity of
the plate, denoted as O, and its two axes are along and perpendicular
to the plate orientation that is quantified by a tilting angle θ from
the horizontal. The center of exterior geometry, i.e., the center of
buoyancy, is denoted by O ′. The centers of gravity and buoyancy
have velocities of �V and �V ′, respectively.

TABLE I. Geometric parameters of two sets of plates. Definitions
of symbols are given in the text and Fig. 2.

a (cm) b (cm) c (cm) d (cm) e/a

Set A 2.5 0.3 1 0.1 [0,0.02]
Set B 3.0 0.3 1.2 0.1 [0,0.02]

plate is milled off and replaced by an aluminum plate with a
cross section of c × d; the aluminum plate is centered at O

′′

which is horizontally displaced from O ′ by h.
The mass (per unit length along Z direction) of the

composite plate is

m = ρpab + (ρa − ρp)cd, (1)

where ρp = 1.2 g/cm3 and ρa = 2.7 g/cm3 are densities for
plastic and aluminum. The center of gravity of the plate is
denoted as O and the offset of O from O ′ is

e = (ρa − ρp)cd

m
h. (2)

The moment of inertia with respect to the axis through O into
the plate is

I = ρpab

(
(a2 + b2)

12
+ e2

)

+ (ρa − ρp)cd

(
(c2 + d2)

12
+ (h − e)2

)
. (3)

Two different sets of plates are used in experiments. As
shown in Table I, in each set, plates have the same parameters
of a, b, c, and d but different offset e, which ranges from 0 to
two percent of the width a. By varying e, we can systematically
change the net torque produced by the gravity and buoyancy.

B. Quasi-steady model

Building on Kirchhoff’s theory of a solid moving in an
inviscid fluid, Wang et al. proposed a quasi-steady model to de-
scribe the falling dynamics of homogeneous plates [17,21,29].
The model can be conveniently expressed in a frame comoving
with the plate, the xy frame in Fig. 2(b). The moving frame
has its origin at the center of gravity of the plate and its
two axes are along and perpendicular to the plate orientation,
respectively. As shown in Fig. 2(b), the plate tilts with an angle
of θ with respect to the horizontal. The instantaneous velocities
for the centers of gravity and buoyancy are �V = u�i + v �j and
�V ′ = u′�i + v′ �j ; they are related by

�V ′ = �V − (eθ̇ ) �j . (4)

The plate dynamics is governed by the following coupled
ordinary differential equations expressed in the co-moving
frame:

(m + m11)u̇ = (m + m22)θ̇v − m′g sin θ − ρf �v − Fx,

(5)

(m + m22)v̇ = (m + m11)θ̇u − m′g cos θ + ρf �u − Fy,

(6)

(I + Ia)θ̈ = (m11 − m22)uv − (ρf ab)ge cos θ − τ, (7)
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where ρf = 1.0 g/cm3 is the fluid density, g is the acceleration
of gravity, the buoyancy-corrected mass is m′ = m − ρf ab,
and m11, m22, and Ia are added mass coefficients. We estimate
the added mass coefficients for a rectangular cylinder by
averaging coefficients of two elliptical cylinders that have an
inscribed ellipse and a circumscribed ellipse with a minimal
area, respectively. Under this approximation, we have

m11 = 3π

8
ρf b2, m22 = 3π

8
ρf a2,

(8)

Ia = 5π

256
ρf (a2 − b2) + 3π

8
ρf a2e2.

The second (small) term for Ia reflects the fact that the origin
of the comoving xy frame is set at the center of gravity not at
the center of buoyancy [32].

Equation (5) and (6) describe translational motion in
the comoving xy frame. The third and forth terms on the
right-hand side represent aerodynamic lift and drag forces;
parametrization of these forces will be discussed in the next
paragraph. Rotational dynamics is governed by Eq. (7). The
second term on the right-hand side, −(ρf ab)ge cos θ, is the
torque due to buoyancy force acting at the center of buoyancy;
such an external torque does not exist in plates with zero offset
e = 0. The last term in Eq. (7) is the rotational drag. All three
degrees of freedom couple with each other through the first
terms on the right-hand side of the equations; these terms arise
from added-mass effects and from the fact that the xy frame
rotates with an angular velocity of θ̇ .

Translation and rotation of the plate are also coupled
through aerodynamic lift. To parametrize the lift, Wang et al.
[21,29,33] have used numerical and experimental results to
construct a self-consistent form for the circulation around the
body, �, in terms of the velocity of the center of buoyancy,
(u′,v′), and the angular velocity, θ̇ , as

� = −CT a
u′v′

√
u′2 + v′2 + 1

2
CRa2θ̇ , (9)

where CT , CR are nondimensional constants controlling
contributions from translation and rotation, respectively. For
drag terms, in the regime of the relatively high Reynolds
numbers ∼O(103), Wang et al. proposed quadratic drag terms
for both translation and rotation:

Fx = −ρf a

2

[
C0

u′2
√

u′2 + v′2 + Cπ/2
v′2

√
u′2 + v′2

]
u′, (10)

Fy = −ρf a

2

[
C0

u′2
√

u′2 + v′2 + Cπ/2
v′2

√
u′2 + v′2

]
v′, (11)

τ = Cτ

ρf a4θ̇ |θ̇ |
64

, (12)

where C0, Cπ/2, and Cτ are nondimensional drag coefficients.
Wang et al. computed the torque produced by drag [Eq. (12)]
with respect to the center of buoyancy; a shift of the reference
point from the center of buoyancy to the center of gravity in
our work leads to a negligible error proportional to (e/a)2. As
shown in Refs. [17,29], this set of parameters can capture the
qualitative behavior of the forces acting on plates during both
fluttering and tumbling motion. We note that the circulation
in Eq. (9) and drags in Eqs. (10) to (12) depend only on the
plate’s instantaneous motion and have no history dependence;

TABLE II. Fitting parameters of the quasi-steady model.

CT CR C0 Cπ/2 Cτ

Fitting values 4.5 1.8 0.2 0.5 1.9

such a quasi-steady assumption is a great simplification of the
full flow-structure interaction problem.

Dynamic equations [Eqs. (5) and (6)], parametrization
[Eqs. (9) to (12)], and the kinematic relation [Eq. (4)] form
a closed system. For any given set of parameters, we solve the
system with a Runge-Kutta algorithm to compute velocities
(u,v,θ ) that can be further integrated to get trajectories. The
five parameters (CT , CR , C0, Cπ , and Cτ ) used in Eqs. (9) to
(12) primarily depend on the exterior dimensions of the plates,
a and b in Fig. 2. Since two sets of plates used in experiments
have similar exterior geometry, shown in Table I, we assume
that the five parameters have the same values for all plates.
A global fit of model predictions to experimental trajectories
for all plates leads to parameters shown in Table II. As in
experiments, plates in models are released from rest and with
an initial tilt angle θ = 0.

III. RESULTS

A. Falling trajectories

In the left column of Fig. 3, we plot falling trajectories of
the center of gravity of four plates from Set A (cf. Table I);
these plates have the same geometric parameters but different
offsets. The corresponding model results are plotted in the right
column of Fig. 3. In Figs. 3(a) and 3(b), a zero-offset plate with
a width-to-thickness ratio b/a = 0.12 and a dimensionless
moment of inertia I ∗ = 8ρab(a2 + b2)/(3πρf a3) = 0.13 falls
with a mean vertical speed V = 6 cm/s. A Reynolds number
can be defined by using the width of the plate and the descent
speed: Re = aV/ν = 1500. Since the moment of inertia of
the plate, I ∗ = 0.13, is less than the critical value 0.2–0.3
characterizing the transition from fluttering to tumbling motion
[13,15,29], the plate exhibits fluttering motion which consists
of alternating gliding at low angle of attack and fast rotation at
the turning points. As it falls, the plate oscillates symmetrically
from side to side horizontally. With such a left-right symmetry,
fluttering motion produces zero net horizontal motion.

The left-right symmetry can be broken by introducing a
nonzero offset. In Fig. 3(c), the center of gravity of the plate
is shifted to the right by less than one percent of the plate
width (e/a = 0.0086) and the consequence is obvious: the
plate travels less to the left in each period and drifts to the right
for about 20 cm while falling vertically for 35 cm. Increasing
the offset leads to larger horizontal displacements, as shown in
Fig. 3(e). If the offset is too large, the external torque dominates
over other terms in Eq. (7) and forces the plate to fall vertically
in an edge-on configuration with the heavier side downward.
The initial phase of such a trajectory is shown in Fig. 3(g).

With the parameters in Table I, the quasi-steady model
can reproduce trajectories of plates with zero or small offsets
as shown in Figs. 3(b), 3(d), and 3(f), but it fails to predict
the edge-on vertical descending observed in the plate with
e/a = 0.0172. This inadequacy of the model may arise from
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FIG. 3. (Color online) Experimental (left column) and simulated (right column) trajectories (dashed lines) of four plates from Set A with
increasing offsets between the centers of gravity and buoyancy. Schematic drawings of plates are shown in the upper right corner of each panel
in the left column. Instantaneous positions of plates are shown by short red lines on top of the trajectories of the center of gravity and blue dots
denote the direction of the offset.

the assumption that torque generated by aerodynamic lift
is negligible in Eq. (7); such an aerodynamic torque has
been proven difficult to incorporate in a quasi-steady model
[17,29,34].

B. Temporal dynamics

To understand left-right spatial asymmetry in Figs. 3(c)–
3(h), we turn to the plate temporal dynamics. In Fig. 4, we
plot the tilting angle θ and position (X0 and Y0) of the center
of gravity in the laboratory frame as a function of time for
two plates from Set A, e/a = 0 on the left and e/a = 0.0143
on the right. Rotational dynamics, (a) and (b), for both plates
is periodic. Let us focus on the period marked by dashed

lines. At time t = 2.4 s, the titling angle of the zero-offset
plate reaches its maximum, θmax = 1.037 rad. During the next
0.75 s, the plate rotates clockwise to its minimal tilt angle
θmin = −1.037 rad; at the same time, the plate moves to the
left. Then the plate spends another 0.75 s to reorient back to
θmax and to move to the right. At the end of the period, the plate
produces no horizontal displacement. However, as shown in
Figs. 4(b) and 4(d), the plate with an offset e/a = 0.014 spends
more time in the state of counterclockwise (positive) rotation
(0.84 s per period) than clockwise (negative) rotation (0.52 s
per period), and produces more displacement to the right that
leads to a net horizontal translation.

The asymmetry in rotational dynamics originates from the
external torque that is produced by buoyancy acting on the
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FIG. 4. (Color online) Temporal records for titling angle (top row), horizontal coordinate (middle row), and vertical coordinate (bottom
row) for the centers of gravity for a plate with e/a = 0 (left column) and a plate with e/a = 0.014 (right column) from Set A. Experimental
and quasi-steady model results are shown by solid and dashed lines, respectively. Simulations reproduce the overall features of experiments
but they are different in details.

center of buoyancy and quantified as −(ρf ab)ge cos θ , the
second term on the right-hand side of Eq. (7). Because the
magnitude of plate tilting angle in our experiments is less than
π/2, buoyancy, which points upward, produces a negative
(clockwise) external torque that speeds up clockwise plate
rotation and slows down counterclockwise rotation. We can
estimate the magnitude of the offset that is needed to make
a difference by balancing two terms in Eq. (7): (I + Ia)θ̈
and ρf abge. Then we have e ∼ (I + Ia)θ̈max/(ρf abg), where
θ̈max, the maximal angular acceleration, can be estimated from
experimental data in Fig. 4(a). In the end, we get e ∼ 0.045 cm
that corresponds to e/a ∼ 2% and lies within the range of
our experimental parameters. This approximate calculation
supports the idea that a small offset, on the order of a few
percent of the plate width, can produce enough torque to
qualitatively change the rotational dynamics. To be more quan-
titative, predictions of the quasi-steady model are plotted as
dashed lines in Fig. 4. With the same parameters as in Table II,
the quasi-steady model successfully predicts the symmetric
dynamics for the zero-offset plate and the spatially-temporally
asymmetric dynamics for the plate with a nonzero offset.

Sensitive dependence of falling dynamics on toque has also
been reported in recent studies of controlled aerial descent
in canopy ants [35] and in bristletails [36]. These studies
showed that creatures with very different evolutionary lineage
can control their falling trajectories by bending their bodies or
rotating their legs. It has been suggested that these changes
in the body shape may alter the distribution of drag over
different body parts and produce enough torque to affect the
trajectories [34,37].

C. Offset dependence

Besides modifying the rotation speeds, the external torque
also changes the mean tilting angle. We averaged θ (t) over two
full periods and plotted the averaged angle, 〈−θ〉, in Figs. 5(a)
and 5(b) as a function of the offset for all plates in Sets A
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FIG. 5. (Color online) (a),(b) Temporally averaged tilting angle,
〈−θ〉. (c),(d) Temporally averaged velocities of the center of gravity,
〈u〉 (blue diamonds) and 〈−v〉 (red circles), as functions of the offset
for plates in Set A in the left column and for plates in Set B in the right
column. Experimental and model results are shown by symbols and
lines, respectively. Crosses in (a) and (c) are results from repeated ex-
periments to show experimental reproducibility. Solid triangles in (a)
and (c) are measured with a plate that is 35 cm long in the Z direction.
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FIG. 6. (Color online) Instantaneous velocity and vorticity fields overlayed with trajectories of two plates from Set A: (a) e/a = 0,
(b) e/a = 0.014 .

and B. Both experiments and models show that, on average,
the external torque rotates the plate clockwise and leads to a
positive 〈−θ〉 whose magnitude increases with the offset. The
sharp increase in 〈−θ〉 seen at the last experimental data point
in (a) is caused by the transition to edge-on vertical falling. No
such transition has been observed in plates of Set B, possibly
because the larger plate width in Set B increases the rotational
drag that stabilizes the periodic motion. As shown in Eq. (12),
rotational drag depends sensitively on the plate width as a4,
which means that a 20% increase in a from 2.5 cm in Set A to
3 cm in Set B leads to a doubling in rotational drag.

To quantify net translational motion, we average the
velocities of the center of gravity over two full periods and
plot the magnitude of averaged quantities, 〈u〉 and 〈−v〉, in
Figs. 5(c) and 5(d). Change in the offset has little effect on
the vertical falling speed, and horizontal mean speed increases
approximately linearly with the offset. While plates in Set A
always fall faster than horizontal drift, we see a crossover of
〈u〉 and 〈−v〉 in Fig. 5(d) at e/a = 0.015. Also, the last data
point in (d) shows a horizontal mean speed that is 50% larger
than the vertical mean speed. This demonstrates that a small
external torque can be used to generate efficient horizontal
motion in falling objects; such a capability may be useful in a
few situations, such as plant seed dispersal or glider design.

D. Flow fields

Plate motion is closely related to the dynamics of the
surrounding fluid. We plot instantaneous velocity and vorticity
fields overlayed with plate trajectory in Fig. 6. In (a), we
see that a vortex is created and shed when the plate angle
reaches its limit value. The shed vortices form a periodic wake
synchronized with plate motion. Similar behavior is observed
for the plate with e/a = 0.014 in (b); vortices are displaced

horizontally following the plate trajectory. Generated vortices
generally stay in the wake behind the plate and no obvious
flow features are observed ahead of the plate. This means that
the interaction between the plate and the wake it generates is
weak, and the plate motion does not depend crucially on its
history, supporting the quasi-steady assumption made in the
model [17,21,29].

IV. CONCLUSION

We have studied the falling dynamics of plates driven
simultaneously by an external force and an external torque
through laboratory experiments and a quasi-steady model. The
magnitude of the torque was systematically varied by changing
the offset between the centers of buoyancy and gravity. Torque
generated by a small offset on the order of 1% of the plate
width can significantly change the rotational dynamics by
breaking the symmetry in rotational dynamics and by changing
the mean plate orientation. Changes in rotational dynamics
then lead to symmetry breaking in the left/right translational
motion and cause a net horizontal drift. In experiments with
a Reynolds number around 1500, we found that the mean
horizontal velocity scales linearly with the offset up to a critical
value, beyond which the plate falls vertically in an edge-on
configuration. Our study demonstrates that motion of freely
moving objects in a fluid, such as that of falling leaves, flying
birds, or swimming fish, is sensitive to external torque, and that
external torque potentially can be used as an effective control
method [34].
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