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We investigate the jamming transition in packings of emulsions and granular materials via molecular dy-
namics simulations. The emulsion model is composed of frictionless droplets interacting via nonlinear normal
forces obtained using experimental data acquired by confocal microscopy of compressed emulsions systems.
Granular materials are modeled by Hertz-Mindlin deformable spherical grains with Coulomb friction. In both
cases, we find power-law scaling for the vanishing of pressure and excess number of contacts as the system
approaches the jamming transition from high volume fractions. We find that the construction history param-
etrized by the compression rate during the preparation protocol has a strong effect on the micromechanical
properties of granular materials but not on emulsions. This leads the granular system to jam at different volume
fractions depending on the histories. Isostaticity is found in the packings close to the jamming transition in
emulsions and in granular materials at slow compression rates and infinite friction. Heterogeneity of interpar-
ticle forces increases as the packings approach the jamming transition which is demonstrated by the exponen-
tial tail in force distributions and the small values of the participation number measuring spatial localization of
the forces. However, no signatures of the jamming transition are observed in structural properties, like the
radial distribution functions and the distributions of contacts.
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I. INTRODUCTION

A variety of systems such as granular materials, com-
pressed emulsions, or molecular glasses, exhibit a nonequi-
librium transition from a fluidlike to a solidlike state. When
the constituent particles of such systems are so crowded that
they are in close contact with one another, the whole system
experiences a sudden dynamical arrest, which is referred to
as the glass or jamming transition �1–3�. A jammed system is
a many-body system blocked in a configuration far from
equilibrium, from which it takes too long a time to relax in
the laboratory time scale. Jammed systems are usually ran-
dom packings of particles, which have been the starting point
for many studies of liquids and glasses �3–7�. A theoretical
approach to treat these systems has been developed by Ed-
wards and co-workers �8,9� who have proposed a statistical
mechanics description of such jammed system, in which
thermodynamic quantities are computed as flat average over
jammed configurations �10–12�.

In a recent paper �13� we found that the jamming transi-
tion in packings of granular materials and emulsions can be
viewed as a phase transition at the critical concentration of
random close packing for frictionless emulsions or random
loose packing for frictional grains. The transition is charac-
terized by a power-law behavior and the corresponding set of
exponents describing the stress, coordination number, and
elastic moduli as the system approaches the jamming transi-
tion. This idea has also been investigated for packings of
frictionless particles �14,15� and colloids �16�. Here we
elaborate further on the results of �13� and present our de-
tailed computer simulation studies about many aspects of the
jamming transitions in these systems.

We consider packings of spherical deformable particles
interacting via friction and frictionless forces. Granular pack-

ings are characterized by elastic Hertz-Mindlin forces
�17–19� with Coulomb friction. Concentrated emulsion sys-
tems are modeled as a collection of frictionless deformable
droplets interacting via a nonlinear normal force law which
is obtained from the analysis of experimental data acquired
using confocal microscopy in �20�.

We first introduce a protocol to generate a series of pack-
ings near the jamming transition and beyond for both emul-
sions and granular materials. Then we study how the con-
struction history of the packings affects the jamming
transition. The existence of frictional tangential forces is one
of many generic properties of granular materials. In the elas-
tic Hertz-Mindlin model the tangential force is proportional
to the tangential displacement, and it is truncated by a Cou-
lomb cutoff. Both the elastic tangential force and Coulomb
friction are path dependent. The path dependence in the mi-
croscopic interactions leads to the path dependence of the
granular packings at the macroscopic level, an effect that has
been shown in several classical experiments �5,6,21�. In our
simulations we find that the construction history affects the
properties at the jamming transition in the granular packings
through their direct impact on the tangential forces, while in
the case of emulsions we do not find any path dependence.

Next, we fully characterize the evolution of the microme-
chanical and microstructural properties, such as the stress,
the coordination number and isostaticity, the radial distribu-
tion function, the probability distributions of normal and tan-
gential forces and interparticle contacts, the existence of
force chains, the participation number and plasticity index,
as the system approaches the jamming transition. We found
that the heterogeneity of interparticle forces increases as the
packings approach the jamming transition which is demon-
strated by the exponential tail in force distributions and the
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small values of the participation number. However, no clear
signatures of the jamming transition are observed in struc-
tural properties, like the radial distribution functions and the
distributions of contacts.

The paper is organized as follows. In Sec. II we discuss
the microscopic force models used in our simulations of
granular materials and emulsions. In Sec. III we give the
details of the numerical protocol to generate packings near
the jamming transition and beyond and the various measure-
ments to be performed. The main results of this work are
given in Sec. IV and we summarize our results in Sec. V.

II. MICROSCOPIC MODEL

In this section we discuss the microscopic models of in-
terparticle forces for granular materials and emulsions. We
first briefly review the standard Hertz-Mindlin model for
granular materials; more details can be found in �17,19,22�.
Then we describe the linear “Princen model” �23� for the
interparticle forces in emulsions and its nonlinear modifica-
tion according to experimental data on deformation in con-
centrated emulsion systems �20�.

A. Contact mechanics in granular materials

We describe the microscopic interaction between grains
by the nonlinear Hertz-Mindlin normal and tangential forces.
The normal force between two contacting grains at position
x�1 and x�2 with uncompressed radii R1 and R2 is �17,22�

Fn =
2

3
knR1/2�3/2, �1�

where R is the geometric mean of R1 and R2, R
=2R1R2 / �R1+R2�, and � is the normal overlap, �= �1/2��R1

+R2− �x�1−x�2��. The normal force acts only in compression,
i.e., Fn=0 when ��0. The effective stiffness kn=4G / �1
−�� is defined in terms of the shear modulus of the grains G
and the Poisson ratio � of the material from which the grains
are made. From Eq. �1�, we can see that the normal forces
are completely determined by the geometrical configuration
of the packing and have nothing to do with the construction
history.

The tangential contact force was first calculated by Mind-
lin �18� for grains under oblique loading. In his model, the
increment in tangential force is

�Ft = kt�R��1/2�s �2�

where kt=8G / �2−��, and the variable s is defined such that
the relative tangential displacement between the two grain
centers is 2s. Therefore the tangential force is obtained by
integrating Eq. �2� over the path taken by the particles in
contact with the initial condition, Fn=0, Ft=0 at �=0, s=0,
yielding

Ft = �
path

kt�R��1/2ds . �3�

As the tangential displacement increases, the elastic tangen-
tial force Ft reaches its limiting value given by a Coulomb
cutoff for granular materials, which is

Ft = �Fn. �4�

The Coulomb cutoff adds a second source of path depen-
dence to the problem.

From the discussion above, one can see that a straightfor-
ward way to affect the tangential force is to change the fric-
tional coefficient �, which controls the maximum value of
the ratio between tangential and normal force. But the elastic
tangential force Eq. �2� is even more intimately related to the
tangential displacement, which is mainly determined by the
construction history.

B. Force law for emulsion

Emulsions are a class of material that is both industrially
important and exhibits very interesting physics �23�. They
belong to the wider material class of colloids in that they
consist of two immiscible phases one of which is dispersed
into the other, the continuous phase. Both of the phases are
liquids and their interface is stabilized by the presence of
surface-active species. Emulsions are composed of droplets
of a liquid �for instance silicone oil� stabilized by a surfac-
tant �like sodium dodecylsulfate� in a continuum phase �such
as a water and glycerol mixture� �20�. Being composed of
only liquids, emulsion droplets interact with each other only
via normal forces with no solid friction between them. The
determination of an accurate force model for the compres-
sion of two droplets is by no means trivial, but it can be
simplified in certain limits. For small deformation with re-
spect to the droplets surface area the Laplace pressure re-
mains unchanged and all energy of the applied stress is pre-
sumed to be restored in the deformation of the surface. Then
the normal repulsive force between two spherical droplets in
contacts with uncompressed radii R1 and R2 can be calcu-
lated at the microscopic level as

f =
�

R
Amea. �5�

This is known as the Princen model �23�, where � is the
interfacial tension of droplets, f is the normal force between
two droplets, R is the geometric mean of R1 and R2, and Amea
is the measured contact area between the droplets. As in the
granular materials, the normal force acts only in compres-
sion.

In �20� a linear model was used to relate the area of de-
formation with the overlap between the spheres �, resulting
in a linear spring model for the force law between the drop-
lets. More detailed calculations �24� and numerical simula-
tions �25� show that the interdroplet forces in emulsions are
better represented by a nonlinear spring f ��� with the expo-
nent � between 1 and 1.5 and, more importantly, depending
on the number of contact forces acting on the droplet.

Recently, Brujić et al. �20� used confocal microscopy to
study a compressed polydisperse emulsion. This system con-
sists of a dense packing of emulsion oil droplets, with a
sufficiently elastic surfactant stabilizing layer to mimic solid
particle behavior, suspended in a continuous phase fluid. By
refractive index matching of the two phases they obtained a
three-dimensional �3D� image of the packing structure by
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using confocal microscopy for the imaging of the droplet
packings at varying external pressures, i.e., volume fractions.
The key feature of this optical microscopy technique is that
only light from the focal plane is detected. Thus 3D images
of translucent samples can be acquired by moving the sample
through the focal plane of the objective and acquiring a se-
quence of 2D images. One 2D image obtained experimen-
tally is shown in Fig. 1�b�.

The emulsion system, stable to coalescence and Ostwald
ripening, consisted of silicone oil droplets �	=10 centistoke
�cS�� in a refractive index matching solution of water �wt

=51% � and glycerol �wt=49% �, stabilized by 20 mM so-
dium dodecylsulfate upon emulsification and later diluted to
below the critical micellar concentration of 13 mM to ensure
a repulsive interdroplet potential. The droplet phase is fluo-
rescently dyed using Nile Red, prior to emulsification. The
control of the particle size distribution, prior to imaging, is
achieved by applying very high shear rates to the sample,
inducing droplet breakup down to a radius mean size of
3.4 �m. This system is a modification of the emulsion re-
ported by Mason et al. �26� to produce a transparent sample
suitable for confocal microscopy.

In these images, the area of contacts, the droplets and the
aqueous background differ by the darkness in an eight-bit
gray-scale image such as the one displayed in Fig. 1�a�
which has an average darkness 210, 90, and 30, respectively.
The result of the image analysis carried out by Brujić et al. is
a set of contact areas Amea along with the undeformed radii
�R1 ,R2� and positions �x�1 ,x�2� of two droplets giving rise to
each contact. Using the obtained information of Ri and x�i and
ignoring the droplet deformations, we can reconstruct the
images as shown in Fig. 1�b� and calculate a geometric over-
lapping area

Acal = 
R� , �6�

where � is the overlapping. For all the 1439 contacts ob-
tained in the experiments, Acal is plotted against Amea in the
inset of Fig. 2, from which we can see that Acal is generally
different from Amea, indicating that there exist deviations
from the linear force law Eq. �5�. This fact provides a direct
measure of the effects of anharmonicity of interaction be-
tween the droplet surfaces.

In order to extract the nonlinear dependence of the force
law between the force and the deformation characterized by
�, we plot the calculated area Acal from the reconstructed
image versus the real area of deformation Amea. In order to

achieve this, we need to improve the estimation of the drop-
let centers and radii by minimizing the difference between
the reconstructed image and the original one. In this minimi-
zation, Ri and x�i are the changing variables and we use a
Monte Carlo annealing method to find the optimum set of
parameters. The corresponding image after the minimization
is shown in Fig. 1�c�, which is closer to the original image
than the reconstructed image shown in Fig. 1�a� as indicated
by the rectangular region in the figures. Finally, we choose
only those contacts for which Ri and x�i change less than 5%
before and after the minimization, and plot Acal versus Amea
in the main panel of Fig. 2. The plot shows a clear trend
which can be fitted as

Acal = 2.67�Amea�0.78. �7�

Combining Eqs. �5�, �6�, and �7�, we obtain the nonlinear
force law for emulsion droplets:

f = 1.23�R̃0.28�1.28. �8�

In our simulations, Eq. �8�, which takes in account partially
the effects of the anharmonicity of interaction between the
droplets, is used. We also use a linear spring force law f
=4
��, which completely neglects the anharmonicity of in-
teraction. These two forces give similar results. In this paper,
we only present the results using Eq. �8�.

FIG. 1. Image slice of emul-
sion packing from confocal micro-
scope �b�; reconstructed image be-
fore �a� and after Monte Carlo
annealing �c�.

FIG. 2. �Color online� Acal is plotted against Amea after Monte
Carlo annealing; the line is a fit of Eq. �7�. In the inset, Acal is
plotted against Amea for all forces before Monte Carlo annealing.
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III. SIMULATIONS, PROTOCOL AND MEASUREMENTS

In this section, we first describe the method of molecular
dynamics �MD� simulations. Then we show the protocol to
generate packings approaching the jamming transition, and
in the third part we define various quantities we use to char-
acterize the jamming transition.

A. Molecular dynamics simulation

We follow the discrete element method �DEM� or mo-
lecular dynamics developed by Cundall and Strack �27� and
solve the Newton equations for an ensemble of particles with
zero gravity, which interact via the microscopic models dis-
cussed in Sec. II. The DEM employs a time-stepping, finite-
difference approach to solve the Newton equations of motion
simultaneously for every particle in the system:

F� = m
d2X�

dt2 , �9�

M� = I
d2��

dt2 �10�

where F� and M� are the total force and torque acting on a
given particle, m and I are the mass and moment of inertia,

and X� and �� are the position and angle of the particles, re-
spectively. The numerical solutions of Eqs. �9� and �10� are
obtained by integration, assuming constant velocities and ac-
celerations for a given time step. We choose the time step to
be a fraction of the time that it takes for sound waves to
propagate on one grain �or droplet�. A global damping pro-
portional to the translational velocity was used to dissipate
energy in both cases. The damping simulates the drag force
from the suspending medium, i.e., water-glycerol mixture in
emulsions and ambient air in granular materials. We con-
strain the global damping to be small enough not to have any
effect on results presented in this paper. More details about
the simulations can be found in �19�.

In the simulations of emulsions, the system consists of
10 000 droplets, which are all 2 �m in diameter. Droplets
interact via the normal force given by Eq. �8� with the inter-
facial tension �=9.8�10−3 N/m and the density 
=103 kg/m3. The granular system is composed of 10 000
glass beads of equal size �radius 0.1 mm� interacting via the
Hertz-Mindlin forces Eqs. �1� and �3� and the Coulomb force
Eq. �4�. The microscopic parameters defining the glass beads
are the shear modulus G=29 GPa, the Poisson ration �
=0.2, the friction coefficient �=0.3, and the density =2
�103 kg/m3.

B. Numerical protocol

We start our simulations from a set of nonoverlapping
particles located at random positions in a periodically re-
peated cubic box with an initial volume fraction around �
�0.2. The box is compressed isotropically by constant com-
pression rate � until a given volume fraction, �, is reached.
Then the compression is turned off and the system is allowed

to relax with constant volume until it reaches a stable state,
which means that the pressure of system remains unchanged
over a period of time �usually 5�105 MD steps�. This pro-
tocol can generate packings with different volume fractions.
From simulations, we find that there is a critical volume
fraction �c, below which a jammed packing with nonzero
pressure can not be obtained. This fact is illustrated in Fig. 3,
where the time evolution of the pressure in this compress-
and-relax process for two packings is shown. The packing
with �1��c stabilizes at nonzero pressures but the pressure
decreases very fast to zero for �2��c, even though �1 and
�2 are different only by 1.6�10−5.

Several other ways of preparing static packings of par-
ticles exist in the literature. Conjugate gradient methods were
used to study dense random packing of frictionless particles
by O’Hern et al. �14�. A pouring-ball method, which mimics
the process of pouring balls into a container under gravity,
was used by Silbert et al. �28,29�. A servo mechanism which
adjusts the strain in the system to equilibrate the packing at a
given stress was used in �19�. One of the advantages of the
present protocol is that it allows us to generate packings with
different construction histories by using different compres-
sion rates. Thus we can study the path dependency system-
atically.

C. Computation of characteristic quantities

After generating the packings, we compute the following
quantities to characterize their micromechanical and struc-
tural properties.

1. Pressure and coordination number

The macroscopic stress tensor for point contacts in a vol-
ume V is given by

�ij =
1

V
�

k

Rkni
kFj

k

where V is the volume of the system, R� k is the vector joining

the center of two particles in contact k, n�k=R� k /Rk, and F� k is

FIG. 3. �Color online� Time evolutions of pressure for two pack-
ings in simulation of granular material. Line represents a packing
with �1��c and circles represent a packing with �2��c, where
�1=�2+1.6�10−5.
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the total force in contact k. The pressure � is the average of
three diagonal elements of the stress tensor, i.e., �= ��11

+�22+�33� /3. The coordination number Z is the average of
contacts per particle in the contact network, Z=2M /N, where
M is the total number of contacts and N is the total number
of particles in the contact network. Due to the nongravity
environment in our simulation, some floaters, which have
zero contacts and do not participate in the contact network,
exist. We exclude them when calculating the coordination
number. We note the floaters were also reported in Ref. �14�.

2. Force distributions, force chains, and participation
number

In both emulsion and granular packing, interparticle
forces are highly inhomogeneous. This is quantified by the
probability distribution of the normal and tangential forces
calculated for emulsions and grains. Moreover, photoelastic
visualization experiments �30� and simulations �13,31,32�
have shown that the contact forces are strongly localized
along “force chains” which carry most of the applied stress.
To quantify the degree of force localization, we consider the
participation number � �33�:

� = 	M�
i=1

M

qi
2
−1

. �11�

Here M is the number of total contacts, and

qi = f i/�
j=1

M

f j ,

where f j is the total force at contact j. From the definition,
�=1 indicates qi=1/M, for all qi and a state with a spatially
homogeneous force distribution. On the other hand, in the
limit of complete localization, ��1/M, which is essentially
zero in our simulation.

3. Plasticity index

In order to quantitatively characterize the tangential
forces in the granular packings, we measure the plasticity
index following �28�

� =
Ft

�Fn
, �12�

which has values between 0 and 1. The maximum means the
contact is “plastic” and the tangential force is the Coulomb
friction; otherwise the contact is elastic and the tangential
force is the Mindlin elastic force.

IV. RESULTS

A. Power-law scaling near jamming, effect of construction
history, and isostaticity

In this section, we first show the power-law scaling ob-
served in simulations and the interpretation of the obtained
power indices. Then, we discuss the effect of construction
history in granular materials. In the third part, we show how
our understanding of the effect of construction history can

help to recover isostaticity in granular materials.
Using the protocol discussed above, we generate series of

packings of emulsions and granular materials approaching
the jamming transition. In order to study the effect of con-
struction history, different compression rates are used to gen-
erate the packings. For the case of granular materials, we use
four compression rates, 2�104 ,2�103 ,2�102, and 2
�10 m/s, while for emulsions we use two, 1.5�10−2 and
1.5�10−3 m/s. Compression rates 2�10 m/s in granular
materials and 1.5�10−3 m/s in emulsions correspond, re-
spectively, to compressing 1�10−7 and 6.7�10−8 of a par-
ticle diameter per MD step in one spatial direction. Due to
the different stiffness of emulsions and granular materials,
similar compression rates in units of particle diameters per
MD step correspond to quite different values in unit of m/s.
In Fig. 4 we plot the pressure � and coordination number Z
of the resulting packings as a function of volume fraction �,
where different symbols correspond to different compression
rates. Quantitative analysis of the data in Fig. 4 shows that in
both cases the pressure � and extra contacts Z−Zc vanish as
power laws as � approaches the jamming transition at �c as
shown in �13�,

� � �� − �c��, �13�

and

Z − Zc � �� − �c��. �14�

The power-law fits are shown by lines in Fig. 4 and the
extracted fitting parameters including the critical volume
fraction �c, the critical �minimal� coordination number Zc
and two power indices � and � are listed in Table I.

As shown in Fig. 4, the jamming transition for emulsions
occurs at �c=0.645 and Zc=6 regardless of the compression
rate, i.e., the construction history. We identify �c=0.645 as
the random close packing volume fraction, whose value has
been reported many times before �13,14,28�. The minimal
coordination number Zc=6 indicates that the packings near
the jamming transition in emulsions are isostatic
�13,14,34,28�.

A packing is isostatic �35� when the number of contact
forces equals the number of force balance equations. In a 3D
packing of perfectly smooth �frictionless� particles there are
NZ /2 unknown normal forces and 3N force balance equa-
tions. This gives rise to a minimal coordination number
needed for mechanical stability as Zc=6 in 3D �the isostatic
limit�. In the case of packings of perfectly rough particles,
which is realized by frictional particles with infinite friction
�→� �notice that in this case there are still tangential forces
given by the Mindlin elastic component Eq. �2��, in addition
to NZ /2 unknown normal forces and 3N force balance equa-
tions, there are NZ unknown tangential forces and 3N torque
balance equations. Thus the coordination number in the iso-
static limit is Zc=4 for frictional packings in 3D. In such
isostatic packings, there is possibly a unique solution for the
forces between particles for a given geometrical configura-
tion, because the number of equations equals the number of
unknowns. The existence of isostaticity is the foundation of
recent theories of stress propagation in granular materials
�36–38�.
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Thus, in our simulation the isostatic limit in the friction-
less case is approached as �→0 or �→�c. In other words,
the isostaticity appears in the limit of rigid balls, or when the
rigidity of the particles goes to infinity. This corresponds to
the so-called marginal rigidity state �38�.

Quite different from the results is emulsions, �c in fric-
tional granular materials with finite �=0.3 varies depending
on the compression rates from 0.576 �slowest rate� to 0.604
�fastest rate� as seen in Fig. 4. The critical coordination num-
bers in Table I for granular materials are around Zc�4.5.

This value is above Zc=4, the value required by isostaticity.
However, it does not mean that these frictional granular
packings with finite �=0.3 are not isostatic since the predic-
tion Zc=4 is strictly valid for packings with �→�. We will
elaborate more on this result below and discuss this limit in
more detail.

Next we try to understand the values of the power in-
dexes. In the granular systems, due to the Coulomb cutoff
�with �=0.3�, the intergranular normal forces are always
larger than the tangential forces. The main contribution to the

TABLE I. Parameters in the power-law fittings near the jamming transition from Eqs. �13� and �14� for
emulsions and granular materials.

System Compression rate �m/s� �c Zc � �

Emulsion, �=0 1.5�10−2�10−3� 0.645 6.01 1.25 0.51

Granular, �=0.3 2�104 0.604 4.52 1.52 0.46

Granular, �=0.3 2�103 0.590 4.53 1.46 0.45

Granular, �=0.3 2�102 0.581 4.53 1.48 0.46

Granular, �=0.3 2�101 0.576 4.54 1.52 0.47

Granular, �=� 2�102 0.571 3.98 1.66 0.45

FIG. 4. �Color online� Power-law scalings in the packings of granular materials and emulsions approaching the jamming transition. The
symbols are the data from the simulations and different symbol corresponds to different compression rate. The lines are power-law fits. �a�
� vs � in emulsions, �b� Z vs � in emulsions, �c� � vs � in granular materials, and �d� Z vs � in granular materials.
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pressure is from the normal forces and not the tangential
ones. Therefore, for Hertzian balls we expect the following
scaling:

� � Fn � �3/2 � �� − �c�3/2,

which implies that the exponent � in Eq. �13� should be
equal to the 3/2 exponent of the normal force law in Eq. �1�.
The values of � obtained in our simulations for different
compression rates shown in Table I are all around 3/2, sup-
porting the above argument. This argument should also hold
in the case of emulsions since only normal forces act be-
tween the droplets. In fact, we get �=1.25 for emulsions
independent of the compression rate which is close to the
exponent 1.28 in the force law Eq. �8�. We note that in fric-
tionless simulations using a linear spring as the force law,
�=1.05 is obtained. From Table I we find that the exponents
� in Eq. �14� are very close to 0.5 for both emulsions and
grains, independent of the force law and also of the compres-
sion rate. This numerical value and the independence of the
force law were also reported by O’Hern et al. �15�. These
authors provided a possible way to understand �=0.5. In
�28� it was shown that the radial distribution function g�r� in
packings near the jamming transition displays a power-law
behavior near r=D, where D is the diameter of the spheres:

g�r� � �r/D − 1�−0.5. �15�

If one assumes an affine deformation upon compression, then
one consequence of Eq. �15� is that the coordination number
should increase with the power �=0.5. However, as shown
below, we do not observe the power-law region in g�r� from
our data. Therefore, in our opinion, the origin of �=0.5 is
still not clear. In �19� we provide a more detailed analysis of
this argument assuming a narrow peak of the pair distribu-
tion function at r=D. However, the predicted dependence of
the coordination number on pressure still disagrees with the
�=0.5 result.

Here we elaborate further on the topic and present an
analogous derivation of the exponent �. Let us assume that,
in the limit of zero pressure, there is a probability distribu-
tion P�h� of gap sizes h between each ball and its neighbors:

P�h� = Zc��h� + d1h−�, �16�

which is consistent with a power law in g�r� as given by Eq.
�15�. In �19� we considered a � function followed by a Taylor
expansion around h=0 instead of the singular behavior of
Eq. �16�. Following the derivations in �19�, which employ an
effective-medium approximation that assumes an affine mo-
tion of the grains with the external perturbation �being com-
pression of shear�, we arrive at the pressure expressed in
terms of the static compressive strain ��0 as

� =
�kn

6

�Zc�− ��3/2 + d1�− ��5/2−�� , �17�

and the coordination number becomes

Z = Zc + d3��2/3��1−��. �18�

This last result is consistent with Eqs. �13� and �14� with
� /�= �2/3��1−��. Thus a value of �=0.5 would fit all our

data. However, we could not find evidence of Eq. �16� in our
simulations.

As we discussed in Sec. II, the tangential forces in the
Hertz-Mindlin model are proportional to the normal dis-
placements and therefore depend on the history of interac-
tion. The history dependence shown in Figs. 4�c� and 4�d� for
the granular packings is a result of this microscopic path
dependence. In our simulations, a lower compression rate
allows the grains to have enough time to relax and slide
against each other during the preparation protocol. This al-
lows for larger tangential displacement between the grains.
On the other hand, a higher compression rate “freezes” the
system so quickly that the grains have no time to slide. Thus
we expect that the tangential force will be smaller in the
packing generated by fast compression rates. In order to
quantify this idea, we measured the plasticity index Eq. �12�
�=Ft /�Fn for four packings around 650 kPa generated by

FIG. 5. �Color online� Distributions of � parameter. The mea-
surements are carried out on four packings around 650 kPa gener-
ated by different compression rates.

FIG. 6. �Color online� Probability distribution of the tangential
forces in packings generated by different compression rates. The X
and Y axes are scaled by the averaged force and the probability of
the averaged force, respectively. This scaling convention will be
used in all the probability distribution plots of forces throughout the
paper.
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different compression rates. The probability distributions
P���, shown in Fig. 5, confirm the above argument. In the
packing generated by �=2�10 m/s, almost 20% of the tan-
gential forces are truncated by the Coulomb cutoff as evi-
denced by the fact that P��� has a maximum at �=1. On the
other hand, for the fastest compression rate �=2�104 m/s,
the peak of the distribution is around ��0.4 and P��=1�

�0, implying that there are almost no plastic contacts. This
indicates that the grains in the packing generated by lower
compression rates feel more “sticky” to each other; therefore
the packings can sustain nonzero pressure at lower volume
fraction. This explains why �c decreases as � decreases in
granular materials. In Fig. 6, we plot the probability distri-
bution functions of the tangential forces in the packings gen-
erated by different compression rates. The distributions are
different in the small force regions. The packing generated
by �=2�104 m/s contains more small forces, which are
less than the average forces, than the packing generated by
�=2�10 m/s. This observation can be explained by the ar-
gument given above. A lower compression rate produces bet-
ter developed tangential forces and thus reduces the number
of small tangential forces.

We have shown that the critical contact number Zc�4.5
in the packings of granular materials with �=0.3 is larger
than the prediction of isostatic considerations Zc=4. We first
noticed that Zc=4 is strictly valid when �→�. Moreover,
we showed above that a fast compression rate inhibits the
developments of tangential forces and therefore may also
contribute to the breakdown of isostaticity. Therefore, we
now investigate the slow compression rate limit of a granular
packing in the �→� limit. We carried out a set of simula-

FIG. 7. �Color online� � vs Z in the packings of granular mate-
rial in the infinite friction limit.

FIG. 8. �Color online� Micromechanical properties at different pressures in the packings of granular materials. Measurements are carried
on the packings generated by �=2�104 m/s. �a� Distribution of the normal forces; �b� distribution of the tangential forces; �c� � �partici-
pation number� vs pressure; and �d� distribution of � �plasticity index�.
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tions of grains interacting via Hertz forces Eq. �1� and tan-
gential Mindlin forces Eq. �2� but without the Coulomb cut-
off ��=�� for a compression rate �=2�102 m/s, slow
enough to allow sufficient time for grains to rearrange. The
result of the simulations is shown in Fig. 7. The pressure
versus volume fraction can be fitted by

� � �Z − 3.98�3.69, �19�

with a minimal coordination number Zc=3.98 indicating the
recovery of isostaticity. We find �c=0.571 and exponents
�=1.66 and �=0.45. We also find that Zc is larger than 4 if
a compression rate larger than �=2�102 m/s is used. This
may also suggest that the lack of isostaticity found in �29� for
frictional packings might be due to the fast preparation pro-
tocol inherent to the pouring-ball method.

Finally, we note that, in addition to � and the probability
distribution function of tangential forces, we also measure
the normal force distribution, coordination number distribu-
tion and radial distribution function for the four packings
around 650 kPa at different compression rates and found no
clear signature of history dependency in these measurements.

B. Micromechanical and microstructural properties

In order to study the micromechanical and microstructural
properties near the jamming transition we carry out the mea-
surements described in Sec. II B. For the micromechanical
properties, we measure the normal and tangential force dis-
tributions �20,29,30,32� and the � �13� and � parameters
�28�. For the microstructural properties we calculate the dis-
tribution of contacts and the radial distribution function. In
this subsection, we will show the results of the above mea-
surements carried on the packings generated by �=1.5
�10−3 m/s for emulsions and �=2�104 m/s for granular
materials. The measurements done on the packings generated
by other �’s are basically the same.

1. Micromechanical properties

The normal force distributions in emulsions and granular
materials at different pressures are plotted in Figs. 8 and 9,
respectively, as a function of the magnitude of forces normal-
ized by the average forces. At low pressures, the distributions
show a plateau below the average force which has been con-
sidered as the signature of the jamming transition �14�. The
distributions show a broad exponential tail for forces larger
than the average which extend up to eight times the average
force for the packings with the lowest pressures. On the other
hand, the � parameters in Figs. 8�c� and 10 have small values
at low pressures, which means the forces are distributed het-
erogeneously in space, i.e., they are localized. Combining the
information from the force distributions and the � parameter
we may conclude that at low pressures there are very large
forces in the packings and the forces are distributed hetero-
geneously. This agrees with the picture of force chains,
which have been visualized in granular matter in both experi-
ment �30� and simulations �13,31,32�. As shown in �13�,
these force chains sustain most of the external loading. At
low pressures, the number of the force chains are small and
they are well separated �13�. We also point out that the ex-

periments with confocal microscopy of compressed emul-
sions systems �20� did not find evidence of force chains in
the bulk. Our computer simulations of frictionless grains
could not reproduce these results as we find evidence of lo-
calization even for frictionless droplets.

As the pressure increases, the force distributions get nar-
row; the exponential tails bend down and transform into a
Gaussian-like one, as shown by the fitting of the dashed lines
in Figs. 8�a� and 9 for grains and emulsions. The deviation
from the exponential tail indicates that the very large forces
�in comparison with the average force� are disappearing. At
the same time, � increases sharply with pressure in Figs. 8�c�
and 10, which indicates that the packing is becoming homo-
geneous. This sharp increase happens roughly at 10 MPa for
granular materials and 50 Pa for emulsions. Similar behavior
of � has also been reported in �13� for grains and the in-
crease of � was understood as the indication of the disap-
pearance of well-separated force chains.

FIG. 9. �Color online� Distribution of the normal forces in emul-
sions. Measurements were carried on the packings generated by �
=1.5�10−3 m/s.

FIG. 10. � vs pressure in emulsions. Measurements were carried
on the packings generated by �=1.5�10−3 m/s.
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The distribution at low pressures, containing a plateau and
the exponential tail, can be fitted by various expressions.
Here we choose one from �20�,

P� f� = af�exp�− �1 + ��f� .

This expression comes from a simple Boltzmann equation
theory and the power-law coefficient � is determined by the

packing geometry of the system. The fits are shown as solid
lines in the plots.

The tangential force distributions in granular materials
also show exponential tails and their pressure dependence is
weaker than in the normal force distributions, as seen in Fig.
8�b�. The distributions of � are plotted in Fig. 8�d� for five
pressures. As the pressure decreases, the distribution of �

FIG. 11. �Color online� Radial distribution functions in the packings of emulsions and granular materials; X axis is in units of particle
diameter. �a-1� The complete RDF in granular matter; �a-2�, �a-3� the first and second peaks of the RDF in granular materials; �b-1� the
complete RDF in emulsions; �b-2�, �b-3� the first and second peaks of the RDF in emulsions.

FIG. 12. �Color online� Distribution of con-
tacts in the packings of granular materials. The
lines are Guassian fits to the distributions, with
the floaters excluded.
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shifts slightly to higher values. This is due to the fact that, in
our protocol, the system arrests itself more quickly during
the construction of high-pressure packings than in low-
pressure cases. Therefore, the particles in packings at lower
pressures have more time to slide and have larger tangential
displacements; therefore larger tangential forces.

2. Microstructural properties

The radial distribution function �RDF� describes how the
particles are distributed radially. In Fig. 11, the radial distri-
bution functions show prominent peaks at r=r0, a second
peak at r=2r0, and a subpeak approximately at r=�3r0. As
the system approaches the jamming transition from high
pressures, the distribution functions shift to the right due to
the increase of system size �Figs. 11�a-1� and 11�b-1� for
emulsions and grains, respectively�. The first peak decreases
in width and increases in height, as shown in Figs. 11�a-2�
and 11�b-2�. However, we do not find a tendency for the first
peak to evolve into a � function as reported in �15�. In �28�
Silbert et al. reported the power-law behavior of Eq. �15�
near the first peak in granular materials. However, from our
data we cannot clearly identify this power-law region. At low
pressures we find ro�D, which means that the particles
barely touch each other.

The splitting of the second peak in the RDF observed in
Figs. 11�a-3� and 11�b-3� has been reported by various au-
thors studying dense liquids and granular materials
�26,39–42�. The authors of Ref. �39� considered this splitting
to be a structural precursor to the freezing transition and the
development of long-range order. They attributed this split-
ting to four-particle hexagonally close-packed arrangements,
which help the system to lower its energy. From Figs. 11�a-3�

and 11�b-3�, we see that the subpeaks in granular materials
are less pronounced than in emulsions. This indicates that the
tangential forces prevent the formation of these four-particle
clusters.

The distributions of contacts are shown in Fig. 12 for
granular materials and in Fig. 13 for emulsions. Both distri-
butions can be fitted by Gaussians. As the pressure is in-
creased the distributions move to the right and get slightly
narrower. Floaters �those particles with zero coordination
number� exist in granular materials at low pressure �around
12% at 46.74 kPa� while the fraction of floaters is much
lower �2% at 0.498 Pa� in emulsions. As expected the num-
ber of floaters decreases as pressure increases. Excluding the
floaters, we can fit the distributions with a Gaussian function,
as shown by the lines in Figs. 12 and 13. We note that similar
results on the distribution of contacts have been reported in
�43�.

V. SUMMARY

We have studied the jamming transition in packings of
emulsions and granular materials via molecular dynamics
simulations. Power-law scaling is found for the vanishing of
the pressure and excess number of contacts as the system
approaches the jamming transition from high volume frac-
tions. The emulsion system jams at �c=0.645 independent of
the construction histories while granular materials jam at �c
between 0.576 and 0.604 depending on the construction his-
tories. We found that the preparation protocol has a strong
effect on the tangential forces in granular materials. Longer
construction times of the packings allow the particles to relax
and slide against each other and therefore to have larger tan-
gential displacements, which lead to larger tangential forces.
Isostaticity is found in the packings close to the jamming
transition in emulsions and in granular materials in the limit
of infinite friction and slow compression rate. Heterogeneity
of the force distribution increases while the system ap-
proaches the jamming transition, demonstrated by the expo-
nential tail in the force distributions and the small values of
the participation number. However, no signatures of jamming
transitions are observed in structural properties, like the ra-
dial distribution functions and the distributions of contacts.
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FIG. 13. �Color online� Distribution of contacts in the packings
of emulsions. The lines are Guassian fits to the distributions, with
the floaters excluded.
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