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SPECIAL TOPIC — Non-equilibrium phenomena in soft matters

Propulsive matrix of a helical flagellum∗
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We study the propulsion matrix of bacterial flagella numerically using slender body theory and the regularized
Stokeslet method in a biologically relevant parameter regime. All three independent elements of the matrix are measured by
computing propulsive force and torque generated by a rotating flagellum, and the drag force on a translating flagellum. Nu-
merical results are compared with the predictions of resistive force theory, which is often used to interpret micro-organism
propulsion. Neglecting hydrodynamic interactions between different parts of a flagellum in resistive force theory leads to
both qualitative and quantitative discrepancies between the theoretical prediction of resistive force theory and the numerical
results. We improve the original theory by empirically incorporating the effects of hydrodynamic interactions and propose
new expressions for propulsive matrix elements that are accurate over the parameter regime explored.
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1. Introduction
Many types of bacteria[1–4] and micro-robots[5,6] use ro-

tating helical flagella for propulsive motion. A bacterial flag-
ellum can be modeled as a rigid rotating helix[2] with radius R,
pitch λ , length L, pitch angle θ , contour length Λ = L/cosθ ,
and filament radius a, as shown in Fig. 1. For example, in
Rhizobium lupini, a flagellum in its normal form is described
by the following parameters: a = 0.01 µm, R = 0.25 µm,
λ = 5.4R, and L = 4λ .[1] A survey of the current literature[3,4]

has shown that the pitch of bacterial flagella is typically in the
range 2R < λ < 11R and the length is in the range 3λ < L <

11λ .
For a microorganism driven by a helical flagellum rotat-

ing about its axis, the Reynolds number Re is typically 10−4 to
10−2, where Re = ρΩR2/µ (Ω is the rotation rate; µ , the dy-
namic viscosity; ρ , the fluid density). At low Reynolds num-
ber, a rotating and translating flagellum exerts an axial thrust
F and torque τ that are related to the flagellum’s axial velocity
U and rotation rate Ω by[7–9](

F
τ

)
=

(
A11 A12
A12 A22

)
·
(

U
Ω

)
. (1)

The symmetric 2×2 propulsive matrix in Eq. (1) depends only
on the geometry of the flagellum. The elements of the propul-
sive matrix can be determined by measuring the axial thrust F
and torque T for a rotating non-translating flagellum, and the
axial drag D on a translating non-rotating flagellum.

The propulsive matrix can be calculated by the resis-
tive force theory developed by Gray and Hancock[10] and
Lighthill.[11] Their theory decomposes a flagellum into short
segments and calculates the fluid force on each element, ignor-
ing the hydrodynamic interactions between different parts of a
flagellum. Integrating over the contour length of the flagel-
lum leads to algebraic expressions that relate force and torque
to the axial velocity and rotation rate of a helical flagellum.
Recent experimental and numerical studies have shown that
these expressions are only qualitatively correct.[4,12–14] In the
parameter regime relevant to bacteria, predictions of resistive
force theory differ from experiments by at least a factor of
two.[13] Further, numerical simulations, experiments, and an
asymptotic analysis show that the thrust and drag for long he-
lices vary as (L/R)/ ln(L/R) rather than as L/R as predicted
by resistive force theory. The failures of resistive force theory
have been attributed to its neglect of hydrodynamic interac-
tions.

Despite its quantitative limitations, resistive force the-
ory has been successfully used as a simple and convenient
framework to interpret biological self-propulsion, includ-
ing sperm,[15] Caenorhabditis elegans,[16] Chlamydomonas
reinhardtii,[17] swimmers in a granular material,[18,19] and
snake motion.[20] In these studies, rather than using the drag
coefficients given in the original theory,[10,11] the researchers
have treated the coefficients as free parameters that were ad-
justed to fit the observations, such as sperm trajectories in
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Ref. [15] and swimming speed of C. elegans in Ref. [16].
Here we explore the possibility of adapting resistive force

theory for accurate prediction of the propulsive matrix of a he-
lical flagellum. To this end, we use slender body theory and the
regularized Stokeslet method to compute the propulsive matrix
of bacterial flagella in a biologically relevant regime. Guided
by the numerical results, we empirically incorporate effects of
hydrodynamic interactions into resistive force theory and ob-
tain parametrized expressions that quantitatively describe the
propulsive matrix for a wide range of bacterially relevant flag-
ella.

2. Methods
In this section, we briefly review the formulation of nu-

merical methods and resistive force theory. Details of the nu-
merical implementation can be found in Ref. [4].

2.1. Stokeslet and regularized Stokeslet methods

A flow at a low Reynolds number is governed by the
Stokes equations.[8,9] The linearity of the Stokes equations al-
lows for important theoretical simplifications because the flow
dynamics can be solved using a Green’s function method. The
solution for the fluid velocity, or Stokeslet,[10] resulting from
a point-force at the origin, 𝑓δ (𝑟), is given by[7–9]

𝑢(𝑟) = 𝑓 ·J(𝑟), (2)

where J(𝑟) is the Oseen tensor, defined as

J(𝑟)≡ 1
8πµ

(
I
|𝑟|

+
𝑟𝑟T

|𝑟|3

)
, (3)

and µ is the dynamic viscosity of the fluid. Lorentz showed
that the response to a continuous force distribution from an im-
mersed body can be found by superposing these Stokeslets;[21]

that is,

𝑢(𝑟) =
∫

𝑓(𝑟′) ·J(𝑟−𝑟′)d𝑟′. (4)

The hydrodynamic theory discussed above includes Dirac
delta functions, which are difficult to calculate computation-
ally. The regularized Stokeslets method[4,22] eases the evalu-
ation of integrals with singular kernels by replacing the delta
distribution of forces, δ (𝑟), with a smooth, localized distribu-
tion

φε (𝑟) =
15ε4

8π (r2 + ε2)7/2 , (5)

where r = |𝑟| and regularization parameter ε is assumed to be
small. This parameter ε prevents non-integrable kernels, but
also has a physical meaning of representing surface area over
which the force is distributed. In the regularized Stokeslets
method, for N regularized point forces 𝑓φε (𝑟n) at locations

𝑟n on the surface of a body in motion, the fluid velocity at any
point 𝑟 is

u j (𝑟) =
1

8πµ

N

∑
n=1

3

∑
i=1

Sε
i j (𝑟−𝑟n) fn,iAn, (6)

where An are quadrature weights, and the regularized Green’s
function Sε

i j is

Sε
i j (𝑟) =

δi j(r2 +2ε2)+ rir j

(r2 + ε2)3/2 . (7)

We can determine the strength of the N regularized Stokeslets,
fn,i, from the velocity at the surface of the body, u j (𝑟), by in-
verting Eq. (6). From fn,i, the force and torque on the body
can be computed. Details of the numerical implementation of
the regularized Stokeslets method can be found in Refs. [4]
and [22].
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Fig. 1. Schematic program of a flagellum with filament radius a, helix
radius R, pitch λ , axial length L, filament contour length Λ = λ/cosθ ,
and pitch angle θ , where tanθ = 2πR/λ . A filament segment ds is
shown in the inset with tangential, normal, and bio-normal directions
denoted as t̂(x), n̂(x), b̂(x), respectively. The two filament segments in
red illustrate nearby points affected by hydrodynamic interactions (see
text).

2.2. Slender body theory

Bacteria flagella are slender, and their filament radius a is
usually much smaller than other geometric parameters. Tak-
ing advantage of this slenderness, Lighthill developed slender
body theory,[11] which represents a flagellum with an arrange-
ment of Stokeslets and doublets along the flagellum’s center-
line. Since dipolar fields fall off as r−2 while Stokeslets fall off
as r−1, Lighthill reasoned there should be some intermediate
distance q from any given point on the flagellum where only
the dipoles within q are important in determining the flow at
that point, although all of the Stokeslets on the centerline must
be considered because they are longer ranged. He showed that
the sum of the near and far field solutions for the induced fluid
flow on a given segment could be made independent of q by
the choice of dipoles of the form[9,11]

− a2𝑓⊥(s)
4µ

, (8)
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where 𝑓⊥(s) is the component of the Stokeslet strength 𝑓 in
the plane perpendicular to the flagellum’s centerline at a loca-
tion s along the centerline of the flagellum.[11,23] This combi-
nation of a Stokeslet plus a dipole determines the flow induced
by each element of the flagellum. Lighthill showed the local
velocity of a segment of the helix located at s is related to the
force per unit length (i.e., Stokeslet strength) along the fila-
ment 𝑓(s) by

𝑢(s) =
𝑓⊥(s)
4πµ

+
∫
|𝑟0(s′,s)|>δ

𝑓(s′) ·J(𝑟0)ds′, (9)

where δ = a
√

e/2 is the “natural cutoff”[9,11] and J is given
by Eq. (3). We evaluate Eq. (9) using the rectangular rule of
numerical integration to calculate the thrust, torque, and drag
for flagella; the numerical details can be found in Ref. [4].

Consider a flagellum parametrized by s as in Eq. (9) with
a length L. For a sufficiently long flagellum (L � R and
L� λ ), the end effects are minimal and we have translational
invariance. Therefore, the force per unit length in Eq. (9),
𝑓(s), does not depend on s. In this case, we have shown
in Ref. [4] that the following scaling relationships for thrust,
torque and drag hold in the limit that L→ ∞:

F ∝
L

ln(L/R)
, (10)

T ∝ L, (11)

D ∝
L

ln(L/R)
. (12)

2.3. Resistive force theory for a helical flagellum

Obtaining numerical predictions from slender body theo-
ries requires inversions of an integral equation, such as Eq. (9).
Such computations were difficult when the original theories
were developed, so a further simplification was sought by con-
sidering each segment of the flagellum as an independent slen-
der rod, a model now known as the resistive force theory.[10,11]

The resistance of the fluid to the slender rod’s motion is cal-
culable if the local coefficient of drag for the segment and its
velocity are known. The drag is expressed in terms of normal
and tangential drag coefficients per unit length, Cn, and Ct, re-
spectively. The total force and torque for any motion of the
flagellum is then obtained by an integration of the force and
torque from each small segment. Resistive force theory then
predicts the thrust, torque, and drag on a flagellum as given by

F = (ΩR)(Cn−Ct)sinθ cosθ
L

cosθ
, (13)

T =
(
ΩR2)(Cn cos2

θ +Ct sin2
θ
) L

cosθ
, (14)

D =U
(
Cn sin2

θ +Ct cos2
θ
) L

cosθ
, (15)

where F and T are the axial force and torque for a rotating,
non-translating flagellum, and D is the axial drag on a non-
rotating flagellum. These three quantities uniquely determine

the elements of the propulsive matrix (1) as

A11 = D/U, (16)

A12 = F/Ω , (17)

A22 = T/Ω . (18)

Equations (13)–(15) predict that thrust, torque, and drag de-
pend linearly on the axial length L, which is in contradiction
with predictions of slender body theory, Eqs. (10)–(12).

Evaluating Eqs. (13)–(15) requires determining the local
drag coefficients. Two sets of drag coefficients are commonly
used in the literature, those by Gray and Hancock[10] and those
by Lighthill.[11] We focus on the latter.

Lighthill’s analysis is based on his slender body theory
formulation for the zero-thrust swimming speed of a helical
flagellum. He obtained

Ct =
2πµ

ln
0.18λ

acosθ

, (19)

Cn =
4πµ

ln
0.18λ

acosθ
+1/2

. (20)

Equations (13)–(15) along with drag coefficients expressions,
Eqs. (19) and (20), predict the elements of a flagellum’s
propulsive matrix, which we test using numerical simulations
in the next section.

3. Results
In this section, we present the main results of our study.

First, we compare the theory to the numerical results and show
that the current resistive force theory is inadequate to describe
the propulsive matrix. Guided by this comparison, we pro-
pose new empirical expressions for the propulsive matrix and
relate the parameters in the new expressions to the geometric
measures of the helical flagellum. Finally, we show that our
empirical expressions accurately predict the hydrodynamic ef-
ficiency of biologically relevant flagella.

3.1. New expressions for thrust, torque, and drag

Our results computed for the thrust, torque, and drag for
flagella with filament radii a = R/10 and a = R/30 are shown
in Fig. 2 as a function of helical pitch (R < λ < 19R); the
axial length is L = 30R. The numerical results from slender
body theory and the regularized Stokeslet method[22] are in
excellent agreement. In Ref. [4], we showed that predictions
of slender body theory and the regularized Stokeslet method
compare well with experimental measurements. Since the
computational cost of slender body theory is much less than
that of the regularized Stokeslet method, we will use slender
body theory for numerical calculations for the rest of the paper.
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Fig. 2. Nondimensional thrust (a), torque (b), and drag (c) for flagella
with filament radii a = R/10 (black) and a = R/30 (red), as a func-
tion of pitch λ (normalized by the helix radius R): regularized Stokeslet
method (diamonds), slender body theory of Lighthill (solid black/red
lines), and resistive force theory of Lighthill (dashed red lines). (Here,
L = 30R).

The resistive force theory prediction compares poorly
with the numerical results. For long wavelengths, λ > 10R,
theoretical predictions of thrust agree qualitatively with the
other data within a factor of 2. However, for flagella with
λ < 10R, theoretical predictions for thrust diverge signifi-
cantly from experiments and simulations. Resistive force the-
ory (13) predicts that F increases as the helical pitch decreases,
while other methods show that F has a maximum at approx-
imately λ = 5.5R. The theory also predicts that the drag D
is larger by about a factor of two. Theoretical predictions
for torque (red dashed line in Fig. 2(b)) are close to simula-
tion results (solid line), but such an agreement is coinciden-
tal for this particular set of parameters. The results in Fig. 2
also show interesting filament radius dependence. An increase
in the filament radius from a = R/30 (red lines) to a = R/10
(black lines) barely changes the thrust (less than 5%) but re-
sults in significant increases in both torque (∼ 30%) and drag
(∼ 20%).[4]

Despite its lack of quantitative accuracy, as shown in
Fig. 2, resistive force theory provides a simple and convenient
framework to interpret biological self-propulsion. In order to
reproduce experimental observations, researchers have treated
drag coefficients in Eqs. (13)–(15) as free fitting parameters.
For example, Sznitman et al.[16] showed that C. elegans swim-
ming motility can be described by resistive force theory with a
ratio of drag coefficients Cn/Ct = 1.4, and Friedrich et al.[15]

found Cn/Ct to be 1.8 in studies of sperm. In our study, it is
difficult to find a pair of drag coefficients that can accurately
predict all three quantities: thrust, torque, and drag. A third
parameter, Sdrag, has to be introduced to the expression for
drag, Eq. (15); the origin of Sdrag will be discussed in the next
sub-section. By combining this point with asymptotic scal-

ings (Eqs. (10), (11), and (12)), we propose new expressions
for thrust, torque, and drag as

F = (ΩR) [(Cn−Ct)sinθ cosθ ]

[
L

cosθ

][
ln30

ln(L/R)

]
, (21)

T =
(
ΩR2)[Cn cos2

θ +Ct sin2
θ
][ L

cosθ

]
, (22)

D = SdragV
[
Cn sin2

θ +Ct cos2
θ
][ L

cosθ

][
ln30

ln(L/R)

]
. (23)

In Eq. (21) and (23), a factor of ln30 is included because our
study covers the biologically relevant regime: 20R < L < 50R.
In this regime, the ratio of ln30/ ln(L/R) is around one (0.86
to 1.14).

3.2. Parametrization of Cn, CtCn, CtCn, Ct, and SdragSdragSdrag

For a given flagellum, we can obtain Cn, Ct and Sdrag us-
ing the computed results for thrust, torque, and drag along with
Eqs. (21) and (23). The results from a set of flagella with var-
ious wavelengths are shown by symbols in Fig. 3. Lighthill’s
expressions for drag coefficients, dashed lines in Fig. 3(a),
diverge from the computational results significantly for flag-
ella with small pitch, which is consistent with the results in
Fig. 2(a). The extracted Sdrag (symbols in Fig. 3(b)), has a
value around 0.5 and increases nonlinearly with helical pitch.
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Fig. 3. (a) Drag coefficients Cn (circles) and Ct (squares) from simu-
lations with a = (1/20)R, L = 30R, and R < λ < 20R. The solid lines
are the new parametrization of these coefficients provided in Eqs. (24)
and (25). Lighthill’s expression (Eqs. (19) and (20)) for Cn and Ct are
shown as dashed lines. (b) The drag scaling factor extracted from the
same simulations (diamonds) with the parametrization from Eq. (26)
plotted as the solid line.

The origin of Sdrag can be understood qualitatively as fol-
lows. A point force 𝑓 generates a flow field at a location 𝑟

away from itself as

𝑢(𝑟) =
1

8πµ

(
I
r
+

𝑟𝑟

r3

)
·𝑓 .
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If 𝑟 is in the direction of 𝑓 , then the generated flow is 𝑢q =

𝑓/4πµr. If 𝑟 is perpendicular to 𝑓 , then the generated flow is
𝑢⊥ = 𝑢q/2. This means that the flow induced by a Stokeslet
is spatially anisotropic: the flow at a location in the Stokelet
direction is twice as strong as the flow at an equally-distant lo-
cation in the perpendicular direction. When a flagellum trans-
lates in the x̂ direction, as in our results computed for the drag,
local velocities of these segments are also in x̂ direction, mean-
ing that the representative Stokeslets have a large component
in the x̂ direction. When the flagellum rotates in the axial
direction, as in our force and torque computations, local ve-
locities are perpendicular to the x̂ direction, so the associated
Stokeslets have a larger component perpendicular to the x̂ di-
rection than parallel to the axis. Consequently, hydrodynamic
interaction between flow induced by segments of a flagellum
is stronger if the flagellum translates as opposed to when it
rotates. This is analogous to the case of translating a slender
cylinder along and perpendicular to its axis, where the ratio of
the two drag coefficients is approximately 2 for long slender
cylinders.[9]
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Fig. 4. Collapse of Cn (a), Ct (b), and Sdrag (c) (symbols) according to
Eqs. (25) to (26) (dashed lines). Our study covers a biologically rele-
vant parameter regime of (1/30)R < a < (1/10)R, R < λ < 20R, and
20R < L < 50R.

Next, we parametrize Cn, Ct and Sdrag as functions of a
flagellum’s geometric parameters. To that end, we compute
thrust, torque, and drag for flagella in a biologically relevant
regime where (1/30)R < a < (1/10)R, R < λ < 20R, and
20R < L < 50R. From each geometry, Cn, Ct, and Sdrag are
computed from Eqs. (21) to (23). We find that Cn, Ct, and
Sdrag mainly depend on three geometric parameters λ , a, and
R. The dependence is simple enough to be parametrized. In
Fig. 4, results for Cn, Ct, and Sdrag are plotted as functions of

scaled variables, and we find that the following expressions
describe the data well:

Ct = 2.21πµ/ ln
[

0.105λ

a(cosθ)1.77

]
, (24)

Cn = 4.05πµ/ ln

[
0.271λ

a(cosθ)−6.23a/R+3.1

]
, (25)

Sdrag = (−1.252a/R+0.359)(λ/R)a/R+0.21 , (26)

which are the lines in the figure.

3.3. Hydrodynamic efficiency

Equations (21) to (23) coupled with Eqs. (24) to (26) from
a closed system that can predict thrust, torque, and drag for any
flagellum. We test the accuracy of our scheme by computing
the hydrodynamic efficiency as defined by Purcell[3,24]

ε =
A2

12
4A11A22

=
F2U

4T DΩ
, (27)

where A11, A12, A22 are elements of the propulsion matrix.
We compute this efficiency for nine forms of bacterial flag-
ella observed in nature, which varies in radius and pitch angle.
The geometric parameters of the flagella, hydrodynamic effi-
ciency from numerical simulations εn, and efficiency given by
our parametrization εp are shown in Table 1. In all our calcu-
lations, we use a filament radius a = 0.01 µm and a contour
length Λ = 10 µm. The difference between εp and εn is less
than 10% except for “coiled” flagella which have very small
λ/R. In the regime of small λ/R, hydrodynamic interactions
are strong and our parametrization is not accurate. For both
Peritrichous and Monotrichous flagella, the “normal” form has
the highest efficiency, which is consistent with a recent study
by Spagnolie and Lauga.[3]

To further test the parametrization scheme, we compute
the hydrodynamic efficiency of two flagella from Table 1 that
have the same filament radius a = 0.01 µm and contour length
Λ = 10 µm, but different helical radii—Peritrichous normal
form (R = 0.221 µm) and curly form (R = 0.123 µm). The
helical pitch is allowed to vary from 0 to 90 degrees, and in
both cases, an optimal efficiency appears around θ ≈ 41◦, as
shown in Fig. 5. We also see that a larger helix radius R in the
normal form leads to a higher efficiency. This can be qualita-
tively understood as a consequence of change in axial length
L. From Eqs. (21)–(23) and the definition of hydrodynamic
efficiency Eq. (27), we find hydrodynamic efficiency depends
on the axial length as

ε ∝
1

ln(L/R)
.

Since we fixed the contour length (Λ 2 = (2πR)2 + L2), a
smaller helix radius R leads to a larger axial length L and,
therefore a lower hydrodynamic efficiency.
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Table 1. Geometric parameters and hydrodynamic efficiency of naturally observed bacterial flagella. Geometric parameters were
extracted from Spagnolie and Lauga.[3] In all our computations, we use a filament radius r = 0.01 µm and a contour length Λ = 10 µm.

Peritrichous Monotrichous
Normal Semi-coiled Curly Curly-II Coiled Normal Semi-coiled Curly Coiled

R/µm 0.221 0.257 0.128 0.074 0.689 0.170 0.298 0.132 0.405
λ /µm 2.284 1.167 1.029 0.961 0.784 1.402 1.177 0.971 1.059

εn/10−3 8.749 7.232 7.239 4.661 0.748 8.347 6.504 7.257 3.715
εp/10−3 8.901 7.818 7.041 4.343 1.522 8.349 7.251 7.121 4.56
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0.002

0.004

0.006

0.008

0.010

E
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curly
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θ/(Ο)

Fig. 5. Hydrodynamic efficiency of two sets of flagella (R = 0.221 µm,
upper curves, and R = 0.123 µm, lower curves). In both cases, the fila-
ment radius is a = 0.01 µm and the contour length is Λ = 10 µm. The
solid lines are our numerical simulation results and the dashed lines are
computed from our new resistive force parametrization scheme. The
range of pitch angles for the Peritrichous normal and curly forms are
indicated below the blue and red curves, respectively.

4. Conclusions
Current and previous[4] studies have shown that resistive

force theory in its original form is not sufficient to describe
swimming with a helical flagellum. Neglecting hydrodynamic
interactions between different parts of a flagellum in resistive
force theory leads to three types of discrepancies. First, the
theory significantly overestimates thrust for flagella with small
pitch (λ < 8R), as shown in Fig. 2. Second, resistive force
theory overestimates the drag force for all flagella by a fac-
tor of about two. Third, resistive force theory predicts that
thrust, torque, and drag all scale linearly with axial length L,
but a theoretical analysis including hydrodynamic interactions
shows that only torque scales linearly, while thrust F and drag
D scale as L/ ln(L/R).

We have improved the original theory by empirically
incorporating the effects of hydrodynamic interactions, and
we have proposed new expressions for propulsive matrix el-

ements, Eqs. (21)–(23). The drag coefficients (Cn and Ct)
and the new parameter (Sdrag) in our expressions have been
parametrized as functions of geometric parameters, Eq. (24)–
(26). We have shown that our parametrization scheme is quan-
titatively accurate for a wide range of bacterial flagella.
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