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Our laboratory experiments and numerical simulations of stratified tidal flow past model topography
�a half sphere on a horizontal plane� reveal several three-dimensional flow features, including an
unexpected flow perpendicular to the forcing plane �the vertical plane through the center of the
sphere, in the direction of the oscillating tide�. This perpendicular flow has a time-independent
component and a component oscillating at twice the tidal frequency. Our results show that the
time-independent part of the perpendicular flow forms a large-scale horizontal circulation, which
could enhance material transport and mixing near bottom topography in the oceans. In addition, for
small forcing amplitude we find that the azimuthal dependence of the internal wave field is
described by the functional form cos �, as predicted by linear inviscid theory. At higher forcing
amplitude, the internal wave energy is more concentrated in the forcing direction. Finally, we
observe a wave intensity asymmetry in the polar direction and explain the asymmetry using a
geometrical argument. © 2009 American Institute of Physics. �doi:10.1063/1.3253692�

I. INTRODUCTION

To maintain the observed global ocean circulation,
roughly 2 TW of power is required to mix the deep ocean1

and to bring cool dense water from great depths to the sur-
face. While the magnitude of the required mixing energy is
known, the source of this energy is poorly understood. A
significant amount of mixing is probably caused by breaking
internal gravity waves which, through a cascade of length
scales, transfer large-scale tidal motion into internal waves
and eventually into small-scale overturning and mixing when
the internal waves break.2–4 About half of the internal wave
energy is generated by oscillating tidal flow past bottom to-
pography such as ridges and seamounts; the other half is
generated by wind forcing at the surface.5

Much work has been done to characterize the generation
of internal waves by two-dimensional �2D� topography in the
laboratory,6–10 numerical simulations,11–23 and field
observations.2,24–27 In the nonrotating 2D case, oscillating
flow past idealized topography such as a cylinder results
in four wavebeams that satisfy the following dispersion
relation:

�

N
= sin � , �1�

where � is the angle of the group velocity vector, measured
from the horizontal, � is the tidal frequency, and N is
the buoyancy frequency, defined as N=�−�g /�o��d� /dz�
with d� /dz being the density gradient and �o a constant ref-
erence density. The four wavebeams comprise the familiar
St. Andrew’s cross pattern first observed by Mowbray and
Rarity.28

While the 2D case offers some insight into internal wave
generation in the ocean, most bottom topography is three
dimensional �3D�, and even quasi-2D features such as ridges

have end effects and 3D roughness. For this reason, it is
important to examine waves generated in a 3D system. Two
recent experiments have examined the 3D internal wave
fields generated by vertically oscillating spheres. Flynn and
Sutherland29 studied this case and developed a viscous
theory based on the procedure of Hurley and Keady,6 and
Weidman and Peacock30 studied the problem with rotation
included. In contrast to the 2D cases where the wave char-
acteristics form a cross, in 3D the characteristics are conical
surfaces along which the dispersion relation �1� allows waves
to propagate �Fig. 1�.

The case of a horizontally oscillating sphere, which we
consider here, is more relevant to the oceans than the case of
vertically oscillating spheres. Horizontal tidal flows over
complex 3D topography generate complicated internal wave
patterns that are studied by oceanographers in experiments
and simulations. Holloway and Merrifield31 examined a hori-
zontally oscillating flow and found that for topography with
a long aspect ratio �defined for a 3D Gaussian mountain as
the ratio of the longest horizontal dimension to the shortest
horizontal dimension�, flow incident perpendicular to the
long direction of the topography generates internal waves
more efficiently than when the topography has low aspect
ratio. This is reasonable since the flow must go over long
�quasi-2D� topography, resulting in larger vertical velocities
and stronger internal waves. In another study, Munroe and
Lamb32 looked at internal wave energy flux as a function of
topographic height and slope. They found that the directional
dependence of the energy flux depends on both the height
and horizontal aspect ratio of the topography. Another rel-
evant study is the linear theory analysis of Baines,33 who
modeled tidal flow over a pillbox, and obtained an internal
wave field similar to that reported in this work. Baines com-
mented briefly on the azimuthal dependence of the internal
wave field, which we discuss in detail later.

The only analysis of the horizontally oscillating sphere
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was that of Appleby and Crighton,34 who solved the linear,
inviscid problem for ��N and then used analytic continua-
tion to obtain near- and far-field solutions for the ��N case,
in which internal waves can propagate.

We examine the generation of internal waves by 3D to-
pography for a system that shares qualitative features with
supercritical topography on the ocean floor: a horizontally
oscillating flow over a half sphere �Fig. 1�. The half sphere is
taken to be centered at the origin; z is in the vertical direction
�antiparallel to the gravity vector�, x is in the forcing direc-
tion, and y is the remaining coordinate in the right-handed
triad. The azimuthal angle � is measured from the x-axis.
The polar angle � �as in Eq. �1�� is measured from the ver-
tical. Internal waves are generated most intensely when the
slope of wavebeam propagation is near the slope of the to-
pography. As in recent work, we define a near-critical region
to be where the topographic slope differs from cot � by no
more than 0.09.18

Our experiments and numerical simulations yield inter-
nal waves that are more intense in the forcing direction
��=0� than in other directions, which is not surprising. How-
ever, it was surprising to find, perpendicular to the forcing
direction, a strong nonlinear flow that arises from higher har-
monic oscillations in the boundary layer around the half
sphere. This flow is absent in unstratified flows, as well as in
stratified flows where ��N and internal waves do not
propagate.

This paper is organized as follows: Sec. II discusses the
numerical simulations and laboratory experiments, Sec. III
presents the internal wave structure and asymmetry between

the wavebeams, Sec. IV describes the out-of-forcing plane
nonlinear flow, and Sec. V summarizes the results and dis-
cusses their relevance to ocean flows.

II. METHODS

A. Numerical simulations

All numerical simulations are performed using CDP 2.4,
a large eddy simulation code developed by Ham35 at the
Center for Integrated Turbulence Simulations at Stanford
University. We turn off all subgrid-scale modeling, making it
a direct numerical simulation. CDP is a parallel, unstructured
finite-volume-based solver modeled on the algorithm pre-
sented in Ref. 36 with some modifications.35 The code uti-
lizes a fractional step time marching scheme and several im-
plicit schemes for the spatial operators37 to obtain second-
order accuracy in space and time. CDP solves the following
system of equations for the velocity field components
�u ,v ,w� in the �x ,y ,z� directions �see Fig. 1�:
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Equations �2�–�4� are the Navier–Stokes equations written in
the Boussinesq approximation, Eq. �5� is the continuity equa-
tion, and Eq. �6� is the density advection-diffusion equation.
The density of the fluid is � and �o is a reference density,
taken to be 1 g /cm3. For the dynamic viscosity �, we use
the value for water, �=0.01 g cm−1 s−1. The density diffu-
sion coefficient D, taken to be 10−9 cm2 s−1 for all simula-
tions discussed in this study, is so small as to make the dif-
fusion time scale many orders of magnitude longer than a
typical simulation. This is an accurate representation of our
experiments, where the molecular diffusion time scale of the
salt �and hence the density diffusion time scale� is on the
order of months.

To utilize CDP, a grid must be generated for the compu-
tational domain. POINTWISE GRIDGEN �Pointwise, Inc.,
www.pointwise.com� is used to generate all of the grids. The
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FIG. 1. �Color online� �a� Horizontally oscillating tidal flow �in the x direc-
tion� impinges on a half sphere. The azimuthal angle � is measured from the
x-axis and the polar angle � from the vertical. The dark band denotes the
near-critical region where the internal wave generation is most intense �see
text�. �b� Internal waves are allowed by the dispersion relation �Eq. �1�� to
propagate along two nested cones, the upper one corresponding to waves
propagating upward from the near-critical region and the lower cone corre-
sponding to waves that propagate downward from the near-critical region
and are reflected from the horizontal plane �z=0�.
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half sphere is situated with its center at the origin in a com-
putational domain that is 100 cm long	100 cm wide
	45 cm high. The conical wave propagation region is mod-
eled with a rectangular structured grid rotated about the ver-
tical axis, and the generation region surrounding the sphere
is modeled with an unstructured tetrahedral grid �Fig. 2�. The
remaining volume, which consists mainly of the background
barotropic flow, is also made up of unstructured tetrahedra
with a characteristic size of up to 2 cm. The control volumes
can be made very large in this region because the flow is
uniform and large scale. The structured grid in the wave

propagation region enables very fine control over the cross-
and along-beam resolution. Since the wavebeam flow veloc-
ity varies much more rapidly in the cross-beam direction
than in the along-beam direction, we can use different spatial
resolutions in the two directions to maximize accuracy and
minimize computational time. The unstructured grid in the
generation region adapts the grid from the structured beam
propagation zone to the curved boundary of the sphere. De-
spite all flows being laminar, high resolution is needed to
accurately capture the flow field, where velocity can change
markedly over a distance of a few percent of the sphere
radius. The grids used for most of the results presented in
this study contain roughly 5	106 control volumes. For all
results presented here, the cross-beam resolution is 0.2 cm
and the along-beam resolution varies from 0.3 cm near the
generation region to 1 cm in the far field. The unstructured
grid in the generation region is more difficult to characterize
but there is a typical separation of 0.2 cm between compu-
tational nodes. We also used a more resolved grid in the
boundary layer of the sphere, obtaining up to 0.015 cm res-
olution normal to the sphere, as described in the Appendix.

The stratification is such that the density at the top of the
computational domain �z=45 cm� is equal to that of water,
1 g /cm3. The density increases linearly with increasing
depth, reaching a maximum value of 1.1035 g /cm3 at the
bottom �z=0�. This gives a buoyancy frequency N
=1.50 rad /s. An oscillating tidal flow u�t�=A� sin��t� �with
�=0.942 rad /s, which by Eq. �1� yields �=38.9°� is en-
forced at the left and right boundaries of the computational
domain. For simplicity in the simulations and experiments,
the flow oscillates back and forth in a single direction, which
is slightly different from the oceanographic forcing, where
the barotropic flow follows an elliptical path due to the Co-
riolis force. The half sphere is a no-slip boundary, and the
top, bottom, front, and back boundaries are free-slip walls.
As will be discussed later, the bottom boundary is effectively
a symmetry plane for the purposes of comparison with
experiment.

Simulations are performed on the Lonestar cluster at the
Texas Advanced Computing Center, typically using blocks of
128 processors. All simulations are run for at least seven
forcing periods to ensure that steady state is reached. By the
seventh period, the internal wave fields are within 1.3% of
their asymptotic values; this is determined by examining the
time series of velocity at points in the internal wave field.
Consequently, all of the analyses were done on the seventh
through tenth periods. At these times, reflections from
boundaries have not had time to set up and interfere with the
results. The shape and extent of the computational domain
was chosen such that unwanted wave reflections would be in
the regions below the conical wave characteristics, where
they would not interfere with the analysis presented here. In
addition, wave reflections are much weaker than in similar
2D studies because there is a 1 /r geometrical spreading fac-
tor associated with 3D internal waves emanating from a lo-
calized source. This spreading factor, in addition to normal
viscous dissipation and a suitably chosen domain, ensures
that reflections do not interfere with the internal wave field.

While the simulations are conducted for a half sphere on

FIG. 2. A 2D slice through the 3D computational domain, where the shading
corresponds to a 3D rendering of the computational tetrahedra nearest the
vertical midplane. �a� A 2D cross section through the vertical midplane
y=0. Only the left half of the domain �x�0� is shown; the right half is
essentially a reflection about the vertical axis. The entire computational
domain is 100 cm long	100 cm wide	45 cm high. The region with rect-
angular cells wraps around the vertical axis to create a conical region similar
to those in Fig. 1. �b� A close-up of the region surrounding the half sphere.
Grid size is 0.2 cm near the sphere �radius R=3.25 cm� and increases to
2 cm far from the generation region and wavebeams.
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a plane, the experiments are conducted �for practical reasons�
for a whole sphere. To test for differences between the flows
in the upper half domain for the two geometries we did simu-
lations for both a whole sphere and for a half sphere on a
free-slip plane. We found that in the upper half plane the
wave velocity amplitude at �=0 differed by no more than
1% between the two simulations, verifying that the free-slip
bottom boundary in the simulations effectively acts as a sym-
metry plane. This result justifies our comparison of observa-
tions of laboratory flow generated by a whole sphere with
simulations for a half sphere.

B. Experiments

Experiments are performed in a glass tank 90 cm long
	45 cm wide	60 cm high. The tank is filled with a lin-
early stratified salt solution using the double-bucket
technique.38 The fluid at the top is pure water and at the
bottom is a salt solution with density 1.15 g /cm3, which is
larger than that at the bottom of the domain in the simula-
tions �1.1035 g /cm3� because the experimental vertical do-
main is larger; in both cases N=1.50 rad /s.

A nylon sphere with diameter 6.5 cm is mounted on a
threaded rod and oscillated horizontally with a traverse
mechanism mounted above the tank. The oscillation ampli-
tude is 0.3 cm, giving a nondimensionalized forcing ampli-
tude A /R=0.092, where R=3.25 cm is the radius of the half
sphere.

Particle image velocimetry is used to obtain 2D velocity

fields in a vertical plane passing through the center of the
sphere. The fluid is seeded with titanium dioxide particles
with size of 1–10 �m. These tracer particles are illuminated
with a 1 W green laser beam spread into a 5 mm thick ver-
tical light sheet. Images of the light sheet plane are obtained
with a 10-bit digital camera with resolution 1004	997 and
analyzed with the correlation image velocimetry software of
Fincham and Delerce.39 From the raw data, we obtain vector
velocity fields on a 50	50 grid, corresponding to a spatial
resolution of 0.28 cm. The experimental system is similar to
our computational domain, except that the results are in the
tide’s reference frame rather than the half sphere’s reference
frame; a reference frame transformation allows direct com-
parison between the simulations and experiments.

III. LINEAR INTERNAL WAVES

A. Flow in the forcing direction

Figure 3 shows an example of the good agreement found
between the experimental and numerical flow fields. The
waves are bimodal near the sphere and are �in the plane
defined by the forcing direction and the vertical axis through
the center of the half sphere� similar to the internal wave
field generated by a horizontally oscillating cylinder.7 In
Figs. 3�c� and 3�d�, the 
-axis is defined to be perpendicular
to the wave propagation direction, with positive sigma to-

FIG. 3. �Color online� Instantaneous velocity field �arrows� and vorticity field �color� in the vertical midplane y=0 from �a� simulation and �b� experiment.
These fields are displayed when the flow is moving to the right, 5% of a period after the velocity maximum. The lower graphs compare simulation �solid lines�
and experiment �dots� at r /R=2 for instantaneous profiles of �c� velocity and �d� vorticity, along the black diagonal lines in �a� and �b�. 
 is the cross-beam
coordinate, defined to be zero between the two wavebeams, and becoming positive toward the upper right. The forcing frequency is �=0.942 rad /s, which
remains fixed for this study, and the forcing amplitude A /R=0.092. Profiles are only displayed for a single phase, but a similar quality of comparison between
simulation and experiment is obtained at all phases and at other distances along the wavebeams.
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ward the upper right. The origin of the 
 coordinate is along
a line extending from the center of the half sphere along the
wave propagation angle.

B. Wave structure

Figure 4 is an example of a flow field visualized in three
dimensions, on a conical surface so that wave strength can be
seen at all azimuthal angles for a given distance from the
center of the half sphere. These results are obtained by fitting
a sine wave with frequency � to the time series of the along-
beam velocity component at every point on each surface. As
expected, the internal waves are radiated most strongly in the
forcing direction, with the waves becoming less intense with
increasing azimuthal angle. Near the sphere the wavebeam is
bimodal; the top beam propagates directly outward from the
half sphere, while the bottom beam is reflected from the
bottom boundary. Further from the sphere, viscous effects
begin to smear these two distinct waves. By r=5R the waves
already have significant overlap and at large r the structure
becomes unimodal.

To characterize the azimuthal dependence of the internal
wave field, we plot the maximum along-beam velocity am-
plitude of the upper beam as a function of azimuthal angle
for three forcing amplitudes �Fig. 5�. For the smallest forc-
ing, the wave amplitude is described well by a cosine depen-
dence, as predicted by the linear inviscid analysis of Appleby
and Crighton.34 For higher forcing, the behavior departs from
linear theory: A higher proportion of the wave energy is ra-

diated in the forcing direction. To quantify the energy radia-
tion as a function of azimuthal angle, we evaluate energy
flux associated with the internal waves in the far field. For
low wave amplitude, we use the linear energy flux term p�u��,
where u�� is the baroclinic velocity and p� is the baroclinic
component of the pressure perturbation. Near the half sphere,
it is unclear how to distinguish between the barotropic and
baroclinic components of the velocity and pressure fields.
However, in the far field �r�R�, we use the fact that the
barotropic tidal flow is, to first order, unperturbed by the
presence of the half sphere. For a spatially uniform oscilla-
tory background flow, u�t�=A� sin��t�, it can be shown us-
ing the Navier–Stokes equation that the barotropic compo-
nent of the pressure perturbation is a function only of x
and t,

pbt� �x� = �− A�2 cos �t�x . �7�

This barotropic pressure is subtracted from the pressure
perturbation from the simulations to obtain the baroclinic
pressure perturbation associated with the internal waves.
When multiplied by the baroclinic velocity, this gives the
energy flux at a point in the internal wave. Energy flux is
summed in the cross-beam direction and averaged over
a single period to obtain the average energy radiation as
a function of the azimuthal angle �. At low amplitude
�A /R=0.1� the �-dependence of the radiated energy is de-
scribed well by a cos2 � function, as would be expected
since the beam velocity and barotropic pressure perturbation
should both scale as cos �; 50% of the radiated energy is
within 23° of the forcing direction. At higher amplitudes, a
greater fraction of the total radiated energy is closer to the
forcing direction �cf. Fig. 5�.

FIG. 4. �Color online� �a� A 2D cross section of conical surfaces where the
wave amplitude is visualized at �1� r=2R, �2� 3.5R, and �3� 5R from the
center of the half sphere, for forcing amplitude A /R=0.092. �b� The velocity
amplitude on the three conical surfaces �displaced vertically for visualiza-
tion� is denoted by shading, which is different for each surface to enhance
the visibility of the wave structure at each distance.
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FIG. 5. �Color online� The azimuthal dependence of the wave field at
r=2R simulated at low forcing amplitude �A /R=0.092� follows the cos �
prediction of inviscid theory �solid curve�. For higher forcing, the wave-
beams become stronger in the forcing direction ��=0� and there is large
deviation from the linear inviscid theory.
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C. Asymmetry between the upper
and lower wavebeams

Simulations and experiments both show an asymmetry
between the upper and lower wavebeams generated by
the sphere �Fig. 6�, as can be seen in Fig. 8�a� of the paper
on experiments by Flynn et al.29 The asymmetry appears to
be a 3D effect because no 2D studies have reported any
asymmetry.

The asymmetry in the velocity amplitudes of the two
wave beams follows from a geometrical argument. A half
sphere �or any supercritical topography� generates internal
wave beams along two nested conical characteristics, as in
Fig. 1�b�. Waves along the inner characteristic cone propa-
gate upward from the near-critical regions on the half sphere,
and waves along the outer characteristic also propagate up-
ward after being reflected from the bottom boundary. By
symmetry, equal amounts of energy go into each wavebeam.

A cross section such as those in Fig. 4 intersects each
characteristic surface in a circle. Viewed from the side, the
circles of intersection are the horizontal lines in Fig. 7. In the

inviscid limit �with attenuation neglected�, the energy flux in
each wavebeam should be inversely proportional to the cir-
cumference of the circle of intersection of the cross section
and the characteristics. This is a consequence of the wave-
beam spreading out in three dimensions, similar to the geo-
metrical focusing discussed in Ref. 40. This relationship be-
tween energy fluxes F1 and F2 in the two wavebeams can be
written as

F1

F2
=

a2

a1
, �8�

where the radii a1 and a2 are defined in Fig. 7. Geometrical
considerations allow us to rewrite this as

F1

F2
=

r/R + tan �

r/R − tan �
, �9�

where � is defined in Eq. �1�. This function has the expected
qualitative behavior: The ratio of energy fluxes approaches 1
for large r /R and diverges as r /R approaches tan �. To make
a quantitative comparison to simulation data, we use the re-
sult that wavebeam energy flux is related to energy density
by the expression41

F� = cg�E , �10�

where cg� is the group velocity and E is the energy density of
the wave. In general, wavebeams are comprised of a spec-
trum of wavenumbers with different group velocities, but in
both simulations and experiments, we observe a distinct
wave front propagating outward from the half sphere after
the onset of oscillation, implying a sharply peaked wave-
number spectrum around a dominant wavenumber, which de-
termines the group and phase velocities of the waves. It is
assumed that the two wavebeams under consideration have
the same dominant wavenumber, and therefore the same
group velocity cg�. The wavebeam energy density is propor-
tional to the wave amplitude squared, and Eq. �10� is used in
the second equality to show that the ratio of beam amplitudes
is then

A1

A2
=�E1

E2
=�r/R + tan �

r/R − tan �
. �11�

To compare Eq. �11� to numerical results, we compute
the ratio of beam strengths using the maximum beam ampli-
tudes of the upper and lower wave beams at several distances
from the center of the half sphere. The error bars are based
on the standard error associated with fitting a sine function at
the forcing frequency to a time series of beam velocities at
an output of 20 points per period. We find that Eq. �11�
predicts the asymmetry well for large r /R �Fig. 8�, where
linear inviscid theory applies, but the measurements depart
from the prediction for small r /R where beam-beam and
beam-boundary layer interactions can be important. As dis-
cussed in Ref. 29 the interactions between the generated in-
ternal waves and the viscous boundary layer around the half
sphere are not well understood, and we show in Sec. IV the
importance of nonlinear effects near the half sphere. In the
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FIG. 6. Cross-beam profiles of the along-beam velocity component at
r /R=2, 3, 4, 5, and 6, where R is the radius of the half sphere. These profiles
are taken in the forcing direction ��=0� at a forcing amplitude of
A /R=0.092. At distance 2R from the center of the half sphere, the ratio of
velocity amplitudes in the two beams is 1.23, but this ratio drops with
distance along the beam, and the beams are equal in amplitude by r=5R.
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FIG. 7. �Color online� A 2D cross section illustrating the observed wave-
beam asymmetry. For a given cross section distance, the energy in the top
beam is concentrated in a smaller area �a circle with radius a1� than the
energy in the lower beam �a circle with radius a2�. The upper wavebeam
therefore has a higher energy density and, consequently, a higher amplitude
than the lower beam. As r becomes larger, the ratio of a1 to a2 approaches 1,
and the asymmetry decreases correspondingly.
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near field, both of the above complicating factors reduce the
validity of the symmetry assumptions used to derive the geo-
metrical argument �11�.

IV. NONLINEAR OUT-OF-FORCING-PLANE FLOW

The experiments and simulations both reveal a strong
flow perpendicular to the forcing direction �i.e., in the y
direction�; we refer to this as the nonlinear flow. Fluid im-
mediately above the sphere is pushed downward along the
�=90° directions in narrow boundary layers. This flow de-
parts near �=� �as defined in Eq. �1�� from the boundary
layer and propagates outward in the y direction. Snapshots
from experiment and simulation show the same out-of-
forcing-plane flow �Fig. 9�. The speed of the downward flow
in the boundary layer �at �=90°� is roughly equal to the
maximum forcing speed, A�.

We verify that the flow perpendicular to the forcing di-
rection is unique to internal waves by performing experi-
ments with a forcing frequency higher than the buoyancy

frequency, so internal waves do not propagate. Then the flow
simply deforms around the oscillating sphere. The out-of-
forcing-plane flow arises from wavefronts that travel in the
y=0 plane and collide near the top of the sphere, generating
a flow that is predominately at twice the forcing frequency
�Fig. 10�; the y-component of velocity is always positive,
meaning that the flow is moving down the side of the sphere
at all times.

In this study, we have intentionally made 2��N so that
second harmonic waves are not allowed to propagate. How-
ever, as can be seen in Fig. 10, strong motion at twice the
forcing frequency is still present near the half sphere. Thus a
large amount of energy cannot propagate away from the half
sphere, resulting in trapped energy that may contribute to
local mixing near the sides of the topography. The trapped
energy can be estimated using the wave saturation data
�circles� in Fig. 11. The internal wave field begins to saturate
at A /R=0.3 so the wave energy remains roughly fixed at
higher forcing amplitudes even though more energy is being
supplied by the forcing. At A /R=0.6, the maximum wave
amplitude is 0.32 cm/s, which is only 70% of the value ex-
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FIG. 8. Comparison of measurements �solid dots� of the wavebeam
asymmetry �ratio of the upper to lower wavebeam amplitudes� from a simu-
lation with prediction �11� from a geometrical argument �solid curve�.
�A /R=0.4�.

FIG. 9. �Color online� An intense boundary layer current and an outflow perpendicular to the forcing direction is revealed by these snapshots, where the
forcing is normal to the page �R=5 cm and amplitude A /R=0.2�. The shading represents the y component of velocity relative to the maximum forcing
velocity, A�.
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FIG. 10. The flow perpendicular to the forcing direction varies in strength
periodically at frequency 2�. The y component of velocity is plotted here
for a position 0.2 cm above a half sphere of radius R=3.25 cm at �=90°
and �=38.9°; this is the center of the near-critical region, where the motion
perpendicular to the forcing direction is strongest. Note that the average of
the y component of velocity �given by the dotted line� is nonzero.
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trapolated from lower forcing amplitudes in the linear regime
�see Fig. 11�. Since kinetic energy is proportional to the
square of velocity, roughly 50% of the energy extracted from
the tide is not propagating away in the form of internal
waves.

The zero frequency component of the flow perpendicular
to the forcing direction is plotted as a function of forcing
amplitude in Fig. 11. For small forcing amplitude �A /R
�0.2�, the velocity amplitude is proportional to the square of
the forcing amplitude, as would be expected for a nonlinear
process. For comparison, the figure also shows the internal
wave amplitude in the forcing plane; this velocity depends
linearly on the forcing amplitude �for low forcing�.

The average nonlinear flow in both the vertical forcing
plane through the sphere center and through a horizontal
plane above the sphere center is shown in Fig. 12. Strong
flow down the sides of the sphere in the direction perpen-
dicular to the forcing is evident in Fig. 12�a�; the velocity
amplitude is comparable to the forcing velocity amplitude,
A�. Most of the boundary flow splits off and moves in the y
direction. This outward flow, viewed from above in Fig.
12�b�, recirculates in the horizontal plane, impinging on the
half sphere from the �=0 direction. This circulation is not
entirely within the horizontal plane but the vertical length
scale of the circulation is very small compared to the hori-
zontal length scale �roughly 0.5 and 10 cm, respectively�.
This is expected due to the suppression of vertical motion by
the stratification.

V. DISCUSSION

We have studied the internal wave generation process in
numerical simulations and experiments for a model for tidal
flow over 3D seamounts. Our model is a horizontally oscil-
lating stratified flow past a half sphere on a plane.

In the forcing plane ��=0�, we find that the internal
wave field is qualitatively similar to the 2D internal wave

field generated by an oscillating cylinder. For flow over a
half sphere, the wave amplitude decreases with increasing
angle � away from the forcing direction and becomes zero
perpendicular to the forcing direction. For low forcing am-
plitude, the wave field follows the angular dependence of the
linear inviscid theory of Applyby and Crighton.34 However,
for A /R�0.2 there are large deviations from that theory, and
a larger fraction of the radiated energy is in the forcing di-
rection. This is consistent with the previous work of Munroe
and Lamb32 and Holloway and Merrified,31 who found that
despite the three dimensionality of the topography, most
of the internal wave energy is radiated in the tidal forcing
direction.

Wave radiation at large angles to the forcing direction is
weak, but we have discovered that the 3D topography pro-
duces, surprisingly, a strong flow in the plane perpendicular
to the oscillating tidal flow. This perpendicular flow is a
prominent effect, producing flow speeds comparable to the
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FIG. 11. At low forcing amplitude, the flow velocity perpendicular to the
forcing direction �triangles� varies as the forcing amplitude squared, indicat-
ing this flow arises from nonlinear interactions. In contrast, the internal
wave velocity amplitude �circles� in the forcing plane increases linearly with
forcing amplitude, as expected from linear inviscid theory, while for higher
forcing �A /R
0.3�, the velocity amplitude saturates �at 0.32 cm/s�. The
mean flow is computed 0.2 cm above the surface of the half sphere at
azimuthal angle �=90° and polar angle �=�. The wave amplitudes are the
maximum along-beam velocity amplitudes of the top wave beams at r /R
=5 �R=3.25 cm�. The uncertainties �less than 3%� are small compared to
the size of the data points.

FIG. 12. �Color online� �a� Flow perpendicular to the vertical forcing plane
is revealed by this plot of the average velocity field in the plane through the
sphere center �x=0�. There is a strong flow outward along the y-axis. �In this
figure, in-plane velocities are denoted by vectors and in-plane speeds by
shading.� �b� In the horizontal plane at z=4.25 cm, one can see that the flow
forms a closed circulation, returning to the sphere in the forcing direction
�R=5 cm�.
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tidal flow speed. For low forcing, the perpendicular flow
speed is proportional to the square of the forcing amplitude,
indicating that this flow is a result of nonlinear interactions,
probably between the internal waves being generated or be-
tween internal waves and the viscous boundary layer. In the
ocean, strong flow perpendicular to a tidal flow could en-
hance material transport and mixing near bottom topography.
Since the perpendicular flow is proportional to the square of
the forcing amplitude, this flow will be especially strong near
topography with small features �where the excursion param-
eter A /R will be large�. In addition to a nonzero mean com-
ponent, the nonlinear flow has a large component that oscil-
lates at twice the forcing frequency, leading to the possibility
of strong out-of-forcing-plane second harmonics when 2�
�N. This suggests that a significant fraction of the energy
converted from the barotropic tide by bottom topography
could be radiated in the direction perpendicular to the
forcing.

Although linear theory and 2D simulations are good pre-
dictors of linear internal wave generation, we find that strong
flows arise due to the three dimensionality of bottom topog-
raphy. Our results should apply widely because even
quasi-2D topographic features such as ridges have 3D rough-
ness and ends where 3D effects can be significant. These
effects manifest themselves across the entire excursion pa-
rameter range examined in this work, 0.05�A /R�0.6,
with the lower end of the range applying to large bottom
topography, and the higher end being more relevant to small
topography or to 3D roughness on large topography.
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APPENDIX: VERIFICATION OF NUMERICAL CODE

CDP has been verified and validated in different
contexts.42,43 In our work we validated the code by compari-
son to experiment in Sec. III. In addition, we undertook a
grid convergence study on the simulations. This is not easy
with an unstructured grid where the grid spacing is nonuni-
form. We were particularly concerned whether the half
sphere’s boundary flow was fully resolved. The thickness
of the Stokes boundary layer on the half sphere is
�=��2� /���0.15 cm. To ensure full resolution of this
boundary layer, we covered the half sphere surface with tri-
angles with 0.05 cm characteristic nodal separation instead
of the 0.2 cm nodal separation used in the calculations in the
rest of the paper. We then extruded the 0.05 cm mesh out-
ward in the sphere-normal direction at intervals of 0.015 cm,
resulting in about ten control volumes within the boundary
layer. An example of the boundary layer flow computed with
this mesh is shown in Fig. 13.

Additional grids were generated with the boundary layer
resolution getting progressively coarser: The grids had
sphere-normal resolutions of 0.015, 0.030, and 0.060 cm
�0.5%, 1%, and 2% of R, respectively�. Other than the dif-
fering resolutions in the sphere boundary layer, the three
grids were nearly identical. In particular, the structured grid
in the wave propagation region remained unchanged. Simu-
lations were run on all three grids at a relatively high forcing
amplitude �A=0.4, R=1.3 cm� at the same frequency used
in the rest of this study ��=0.942 rad /s�. To ensure numeri-
cal stability, a time step of �t=T /2000 was used for all three
simulations, where T= �2� /�� is the forcing period.

We use a single scalar quantity to compare between
grids, the along-beam velocity amplitude integrated over
conical surfaces such as those in Fig. 4. The integrated scalar
quantity corresponds to a total material flux amplitude per
period associated with the wave motion. For the cases of the
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FIG. 13. �a� Instantaneous velocity field in the y=0 plane, when the sphere was at its rightmost position at zero velocity. There are about ten vectors in the
boundary layer; the grid used in computing this flow is shown in �b�. The vortex discernible in �a� is a short-lived structure that forms when the flow in the
generation region changes direction. The vectors are not regularly spaced since the data have not been interpolated to a regular grid.
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three grids, integrating over the velocity amplitude at dis-
tance r=4R yields the following results:

Grid Coarse Medium Fine
Value 92.117 94.214 95.620

Although the integrated velocity amplitude is converging
with increased resolution, the convergence is not rapid
enough to be second order in space. This is not surprising,
however, since we only refined the grid in the region imme-
diately surrounding the sphere, rather than refining the grid
by progressive factors of 2 at all locations in the domain.

To check the numerical results obtained using the less
refined grid shown in Fig. 2, we compare cross sections of
the internal wave beams in this grid and with the grids
with highly refined boundary layers. At forcing amplitude
A /R=0.4, the internal wave velocity amplitudes differ by at
most 4%. We conclude that fully resolving the boundary
layer around the sphere is not critical to understand the gen-
erated internal waves. In conclusion, we have high confi-
dence in our simulation results, based on the good compari-
son with experiments �Fig. 3� and the results obtained for
boundary layers with different mesh sizes.
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