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Abstract. We use a generalized scaling invariance of the dispersion-managed nonlin-
ear Schrödinger equation to derive an approximate function for strongly dispersion-
managed solitons. We then analyze the regime in which the approximation is valid.
Finally, we present a method for extracting the underlying soliton part from a noisy
pulse, using the resulting approximate formula.
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1 Introduction

The technique of dispersion-management (DM), developed to improve the performance
of the fiber-optic transmission lines in 1990s, has become an essential component of mod-
ern optical fiber communication systems [1, 2]. Technically speaking, DM is realized
by concatenating fiber sections with different chromatic dispersion to build the trans-
mission line. Mathematically, dispersion-managed systems are described by the non-
linear Schrödinger equation (NLS) equation with periodically varying dispersion (see,
e.g., [3, 4]):

i
∂u

∂t
+

1

2
D(t/ta)

∂2u

∂x2
+|u|2u=0, (1.1)

where all quantities are expressed in dimensionless units, and where, t stands for the
propagation distance and x stands for time. The function D(t/ta) represents the local
value of fiber dispersion. The quantity ta appearing in Eq. (1.1) is the characteristic (di-
mensionless) distance between amplifiers, which we assume to be small compared to the
nonlinear distance and the dispersion distance; that is, ta≪1. For example, with a typical
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amplifier spacing of about 50 km and typical nonlinear distance of about 400∼1000 km,
it is ta =0.05∼0.125. Eq. (1.1) contains both large and rapidly varying terms and thus is
not useful for studying the long term behavior of solutions. By employing appropriate
multiple-scale expansions on Eq. (1.1), one obtains an integro-differential equation, called
dispersion-managed nonlinear Schrödinger equation (DMNLS) equation, governing the
long-term dynamics of such systems [4, 5]:

i
∂u

∂t
+ 1

2 d̄
∂2u

∂x2
+

∫ ∫

u(x+x′)u(x+x′′)u
∗
(x+x′+x′′)R(x′,x′′) dx′dx′′ =0, (1.2)

where d̄ is the average dispersion, and where the integral kernels R(x′,x′′) and r(y) are
respectively,

R(x′,x′′)=ci(x′x′′/s)/(2π|s|), r(y)=sin(sy)/(4π2sy).

Here the parameter s, called the reduced mapstrength, is defined by

s=
1

4

∫ 1

0
|∆D(ζ)|dζ,

where ∆D(·) is the zero-mean variation [4] in d(·):

d(t/ta)= d̄+∆D(t/ta).

By performing an appropriate nondimensionalization, the average dispersion can be nor-
malized to be d̄=1 in the abnormal regime [14]. In what follows, we will assume this has
been done. Moreover, Eq. (1.2) reduces to the standard NLS equation when s = 0. The
DMNLS equation has been extensively studied in the literature of fiber optics [6–14].
More interestingly, certain types of mode-locked lasers are also dispersion-managed [15],
where Eq. (1.1) is again the appropriate model for the pulse dynamics [16, 17]. And
it has been suggested recently that Eq. (1.2) describes the asymptotic behavior of the
pulses in these mode-locked laser systems as well. Because of the limitation of space, a
lot of physical details are left out here for both the fiber-optic communication systems
and the lasers, and interested readers are encouraged to consult the cited works and the
references therein. In many applications, the lasers are required to produce ultrashort
pulses (e.g., fetosecond) [18], which are stable and soliton-like, and hence are usually re-
ferred to as the DM solitons (DMS). From a mathematical point of view, the DMS can be
associated to either a solution of Eq. (1.1), which is localized in x and periodically varying
in t, or a traveling-wave solution of the DMNLS equation (1.2), which preserves its shape
during propagation [10].

Considerable efforts have been dedicated to approximations of the periodic solution
of Eq. (1.1) [19, 21, 22]. On the other hand, it should also be beneficial to have an ap-
proximate function of the DMS as traveling-wave solutions of the DMNLS equation†.

†To avoid confusion, we only refer to the traveling-wave solutions of Eq. (1.2) as the DMS hereafter.
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In [20], Ablowitz et.al. gave a Gaussian approximation of the DMS, where the amplitude
and pulse width parameters have to be determined by matching the pulse with the exact
DMS. An explicit approximate function of the DMS is, to the best of our knowledge, yet
to be available. The main scope of this work is to derive such a formula. We do so by
taking advantage of a generalized scaling invariance of the DMNLS equation. The rest
of this paper is organized as follows. In Section 2, we introduce a generalized scaling
invariance of the DMNLS equation and apply it to approximating the DMS. In Section 3,
we derive an approximate function for the DMS based upon the Gaussian ansatz, and
analyze the region where the resulting approximate function is valid. Section 4 provides
a numerical example: using the approximate formula to extract the “clean” soliton from
a noisy pulse. Finally, Section 5 concludes the work.

2 A generalized scaling invariance

It is known that a specific soliton solution of Eq. (1.2) takes the form of [4, 10, 14],

u(x,t;s)= f (x;s)e−
i
2 t . (2.1)

Note that for the usual NLS equation, f (x)= sech(x) is the conventional soliton, and by
using the scaling invariance of the NLS equation, one obtains a pulse with any desired
energy: u(x,t) = λ f (λx,λ2t). Though this invariance is destroyed in Eq. (1.2), a similar
scaling property of the DMNLS equation is available: if u(x,t) solves a DMNLS equation
with mapstrength s, then λu(λx,λ2t) solves another DMNLS equation with mapstrength
s/a2. This scaling property is not of direct use, as it changes the equation as well. In [14],
however, we have found a generalized scaling invariance for the DMNLS equation (1.2),
which also involves the transformation of parameter s: namely, if u(x,t;s) solves Eq. (1.2),
so does au(a2x,at,a2s). Therefore, provided that the solution (2.1) is known, using this
generalized scaling invariance, we can generate a family of solutions:

u(x,t;s)=λe−iλ2 t/2 f (λx;λ2s), (2.2)

where parameter λ represents (or more precisely, is proportional to) the pulse energy. Re-
markably, even the exact DMS is not known explicitly, the generalized scaling invariance
can also be of help in approximating it. Namely, suppose f ′(x;s) is a good approximation
of f (x;s), in the sense that the relative error is uniformly bounded by a small positive
quantity ǫ for s∈ [a,b]:

‖ f (x;s)− f ′(x;s)‖2

‖ f (x;s)‖2
<ǫ, (2.3)

where ‖·‖2 is the L2-norm, and it is easy to verify that, if λs remains in [a,b],

‖λ f (λx;λ2s)−λ f ′(λx;λ2s)‖2

‖λ f (λx;λ2s)‖2
<ǫ, (2.4)
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Figure 1: Top: A and a plotted as a function of s, and the polynomial fittings for them. Bottom: the difference
between the numerical results and the polynomial fittings.

i.e., λ f ′(λx;λ2s) well approximates λ f (λx;λ2s). Hence, to construct a generic approx-
imate formula for the DMS, one only needs to do that for Eq. (2.1), and then scale the
obtained approximation to any desired energy by choosing λ appropriately.

3 Gaussian ansatz

Numerical simulations suggest that the strongly dispersion-managed solitons are well
approximated by Gaussian pulses [4, 5] (while the weakly DMS are more close to hyper-
secant). Therefore, we here adopt the Gaussian ansatz for Eq. (2.1) (i.e., λ=1), letting

fGauss(x)= A(s)exp
(

−
x2

2a(s)2

)

. (3.1)

For current applications in fiber optics and mode-locked lasers, it is sufficient to only
consider s∈ [0.5,15]. We take a certain number (e.g., 100) of linearly spaced points s from
0.5 to 15, and numerically solve Eq. (1.2) to obtain the DMS f (x) in Eq. (2.1) for every grid
point. Then, for each s, we find the pair of a and A that minimizes ‖ f (x)− fGauss(x)‖2 .
In Fig. 1, we plot a and A each as a function of s, and by performing a curve fitting, we
find that the function a(s) and A(s) are well approximated by a linear and a quadratic
functions respectively:

a(s)≈0.106s+1.16, (3.2a)

A(s)≈0.00032s2−0.0159s+0.955. (3.2b)
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Using the generalized scaling invariance, we obtain the approximate function of Eq. (2.2):

uGauss(x)=λA(λ2s)exp
(

−
(λx)2

2a(λ2s)2

)

exp
( i

2
λ2t

)

. (3.3)

In Fig. 2, we demonstrate good agreement between the DMS and its Gaussian approxi-
mation (3.3) for two examples: one (on the left) is of energy E = 2.253, corresponding to
λ=1, and the other (on the right) is of energy E=4.909, corresponding to λ=3, both with
s=4. The relative errors ‖ f − fGauss‖2/‖ f‖2 are 0.012 and 0.021 respectively. It is natural
to ask here: what is the range of s and λ where Eq. (3.3) remains a good approximation
of Eq. (2.2)? We answer this question by plotting the relative approximation error against
s and λ in Fig. 3. The figure indicates that the region where the approximation appears
good (in the sense that the relative error is less than 0.1) covers the practical regime of s
and λ largely.
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Figure 2: A comparison of the DMS and the Gaussian approximation. Left: s=4, λ=1; Right: s=4, λ=2.

Moreover, applying some invariances [14] to Eq. (3.1) yields the approximate function
of the traveling-wave solution of the DMNLS equation:

uGauss(x,t;s)=λA(λ2s)exp

[

−
λ2(x−ωt−xo)2

2a2(λ2s)
+i

(

ωx+
(λ2−ω2)t

2
+φo

)

]

, (3.4)

where ω, xo and φo are arbitrary real parameters. As an example, in Fig. 4, we compare
the actual soliton

u(x,t;4)= f (x;4)exp

[

i
(

2x−
3

2
t
)

]

(that is, λ=1, ω=2, xo =0, φo =0 and s=4), obtained by numerically solving the DMNLS
equation, with the approximation obtained from Eq. (3.4), at three locations: t=0, t=10
and t=20. The approximation (3.4) will be used in extracting “clean” solitons from noise
in Section 4.
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Figure 3: (color online) A pseudo-color plot of the relative error of the approximate function (3.3) against s and
λ. The region where the error is larger than 0.1 is left blank. A color bar is also shown at the right.
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Figure 4: (color online) Solid line (blue) is the traveling wave obtained by solving the DMNLS equation, and
dashed line (red) is the Gaussian approximation.

The approximation accuracy of Eq. (2.1) is inherently limited by the Gaussian ansatz
which is completely characterized by two parameters, A and a. Thus, if higher accuracy
is desired, one must extend the ansatz to allow more “degrees of freedom”, i.e., to use an
ansatz characterized by more parameters. In principle, increasing the number of parame-
ters allows one to get a better approximation, but on the other hand, doing so complicates
the minimization problem and the curve-fitting problem as well. Nevertheless, the gen-
eralized scaling invariance can be used along with any ansatz to obtain approximations
of the DMS.
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Figure 5: (color online) The noisy pulse (dotted, black), the underlying soliton part (dashed, blue) of it obtained
by solving Eq. (4.1), and the Gaussian approximation (solid,red) obtained by the method provided in Section 4.

4 Extracting DMS from noise

The performance of lightwave systems suffers from random noise (e.g, the ASE noise
induced by amplifiers). When investigating the impairment of the noise on the system
performance, one often needs to extract the underlying soliton part from a noisy signal.
For example, in the importance-sampled Monte-Carlo simulations performed in [14, 23,
24], the underlying soliton is needed for detecting the most likely error at each amplifier.
In [14], we used a method to extract the underlying DMS from noise, which is consist of
the following: first filter the noisy signal and then use the filtered pulse as the initial data
to solve the non-local equation,

f̂ (ω)=
2

λ2+ d̄ω2

∫ ∫

f̂ (ω+ω′) f̂ (ω+ω′′) f̂ ∗(ω+ω′+ω′′)r(ω′ω′′)dω′dω′′ , (4.1)

where f̂ (ω) is the Fourier transform of f (x). Details of the method can be found in Ap-
pendix 3 in [14]. This method, unless modified, can not give the phase and position
parameters directly. Another drawback is that it is a bit expensive computationally, es-
pecially when the extraction has to be performed many times. For example, when doing
a IS-MC simulation of 50,000 soliton trials for a system with 200 amplifiers, one has to
extract the DMS, i.e., to solve Eq. (4.1), ten million times. Here we provide an alterna-
tive method, extracting the DMS by a combination of the approximate function (2.2) and
the perturbation theory for DMS developed in [14]. The new method does not require
to solve Eq. (4.1) numerically, and hence improves the efficiency considerably (the trade-
off is that the resulting soliton is only an approximation of course). Moreover, the new
method is also able to obtain all the four soliton parameters simultaneously. The basic
idea of the new method is to separate the noisy signal u(x,t) into a clean soliton

us(x,t)=uo(x,t)eiΘ ,
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with
uo(x,t)=λ f (λ(x−X)), Θ=Ω(x−X)+Φ(t),

and a purely dispersive field ∆u(x,t)= u(x,t)−us(x,t), which do not interact with each
other at the first order. Then using the soliton perturbation theory (SPT), we turn such a
requirement into the following equations:

∆λ=Re
∫

e−iΘ uo ∆udx=0, (4.2a)

∆X =Re
∫

e−iΘ
(

−
1

λ
(x−X)uo

)

∆udx=0. (4.2b)

It should be noted that, in order for ∆u to be purely dispersive, we shall also require
that ∆Ω = 0 and ∆Φ = 0. However, because the perturbation equations for Ω and Φ

involve the derivatives of the soliton with respect to x, which are not well approximated
by differentiating Eq. (2.2) with respect to x, it is not feasible to calculate Ω and Φ this
way. The extraction proceeds as follows:

Algorithm 4.1:

1. Obtain a first approximation to the soliton frequency by computing the mean frequency of the
noisy pulse

Ωo =
∫

ω|û|2 dω
/

∫

|û|2 dω, (4.3)

where as before û is the Fourier transform of u.

2. Use a low-pass Gaussian filer centered at Ωo to filter the noisy pulse (see Appendix 3 in [14] for
details) and denote the filtered pulse by u f .

3. Use Eq. (4.3) with the filtered pulse u f to compute the pulse frequency Ω.

4. Compute Eo =
∫

|u|2 dx and Xo =
∫

x|u|2 dx/Eo. Then calculate the corresponding λo from

Eo =
∫

[λA(λ2
os)]2e−λ2

o x2/a(λ2
o)dx .

5. Let n=0; choose an error tolerance T.

6. Let uo(x,t)=λn fGauss(λn(x−Xn)), and find Φn by minimizing ‖u−uo ei(Ωx+Φn)‖2 .

7. Let us(x,t)=uoexp[i(Ωx+Φn)]. Compute ∆λn and ∆Xn from Eq. (4.2). Let

λn+1 =λn +∆λn , Xn+1 =Xn+∆Xn .

8. Stop if ‖∆λn +∆Xn‖2 <T; otherwise, let n=n+1 and goto step 6.

A few remarks: first, the frequency parameter Ω is calculated using the same way
as [14]; second, steps 7 and 8 are actually the fixed-point iteration for solving Eqs. (4.2);
third, the pulse phase is obtained by minimizing the L2-norm of the dispersive field ∆u.
Finally, as is shown in Fig. 5, the approximation obtained by using the proposed method
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is fairly close to the soliton obtained by using the method in [14], while the new method
is significantly faster.

5 Conclusions

In conclusion, we have obtained an explicit approximate function for the DMS, based
upon the Gaussian ansatz and the generalized scaling invariance of the DMNLS equa-
tion. It should be noted that, the approximation is invalid when the DM is weak (s≪1),
because the weakly dispersion-managed solitons are not close to the shape of Gaussian.
We emphasize that the approximate function is explicit, and the use of it does not require
any information of the soliton, such as the pulse energy, width, and so forth. Finally we
provide a method to approximately extract the DMS from noise by using the approximate
function, which is more efficient than the method used in [14].
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