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Abstract. As an approximation of the optimal stochastic filter, particle filter

is a widely used tool for numerical prediction of complex systems when ob-
servation data are available. In this paper, we conduct an error analysis from

a numerical analysis perspective. That is, we investigate the numerical error,

which is defined as the difference between the numerical implementation of
particle filter and its continuous counterpart, and demonstrate that the error

consists of discretization errors for solving the dynamic equations numerically

and sampling errors for generating the random particles. We then establish
convergence of the numerical particle filter to the continuous optimal filter and

provide bounds for the convergence rate. Remarkably, our analysis suggests

that more frequent data assimilation may lead to larger numerical errors of
the particle filter. Numerical examples are provided to verify the theoretical

findings.

1. Introduction. Assimilation of data into mathematical models is an essential
task in almost all the areas of geophysics and beyond. Simply speaking, data
assimilation is to estimate the optimal prediction that combines the output of the
mathematical model, which is only an approximation of the real-world system, and
the observations with measurement noise. Most of the traditional techniques of data
assimilation, such as the Kalman filter [20, 4], are based on linear control theory
and optimization, and their applications to highly nonlinear systems are usually
challenging (which often require some linearization processes), and sometimes they
can even fail [11, 16].
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Particle filter (PF), also known as the sequential Monte Carlo (SMC) method, can
deal with problems where strong nonlinearity is present, without any linearization.
The basic idea of PF is the following. Suppose that the mathematical model is a
nonlinear stochastic dynamical system, and our goal is to estimate the hidden states
of the system by combining model predictions and noisy partial observations of the
system. One can do this with the so-called Bayes filter (or the optimal filter), where
the posterior probability density function (pdf) of the hidden states is estimated by
the Bayes’ rule recursively [7]. A difficulty here is that, in general, the posterior dis-
tribution does not admit an analytical form. Many approximation approaches have
been proposed to address this problem, such as the extended Kalman filter [10]. As
is mentioned earlier, this kind of approaches often become problematic when the sys-
tem is highly nonlinear or the posterior distribution is strongly non-Gaussian. The
PF method, on the contrast, approximates the posterior distribution with Monte
Carlo sampling (hence its name SMC), without making assumptions of linearity
on the dynamic model or of Gaussianity on the noise. Specifically, PF employs a
number of independent random realizations called particles, sampled directly from
the state space, to represent the posterior probability, and update the posterior by
involving the new observations. The particle system is properly located, weighted,
and propagated recursively by the Bayesian formula. Since its introduction, PF
has been found profound applications in many areas, such as signal processing [1],
economics [3], robotics [18], geophysics [19, 17], just to name a few. For detailed
discussions on particle filter, see [14, 6, 2] and the references therein.

Considerable efforts have been devoted to analyzing the statistical error of PF
and its convergence properties in that sense. In particular, weak convergence of the
state estimates by particle filter to the estimates by optimal filter was established
with a convergence rate of O(1/

√
M), where M is the number of particles ([6, 9]).

Moreover, the convergence is uniform if the number of particles increases over time
or the kernel of the particle filter is weakly dependent on the past. Such conditions
require all particles lie in a compact support subset of the space ([5]) and can not
always be satisfied in practice. In such cases, the error due to the inaccuracy of the
particle-based approximation may grow quickly ([12]).

To the best of our knowledge, however, little attention has been paid to analyzing
the errors of PF due to its numerical implementation. In fact, the state equations
in almost all the systems must be solved numerically in practice, which introduce
errors into the filtering process inevitably. In what follows we will refer to the
implementation of PF with numerical schemes as the numerical particle filter (NPF).
To better design and implement PF, it is helpful to not only understand the sampling
errors but also the numerical ones.

In this paper, we conduct error analysis of NPF from a numerical analysis per-
spective. That is, we incorporate the numerical discretization errors, resulted from
the numerical solution procedure for the state equations, into the analysis. We first
establish the convergence of particle filter to the optimal filter by extending the ear-
lier studies and explicitly incorporating the discretization errors. We then conduct
analysis on the error bounds for the convergence rate. The numerical errors are
analyzed in two types: local error, which is the error induced by one-step particle
filter procedure; and global error, which is the cumulative effects of the local errors.
The error bounds clearly establish the convergence of particle filter, in the presence
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of both discretization errors and Monte Carlo sampling errors, and reveal an inter-
esting result in that more frequent data assimilation may lead to larger numerical
errors. Similar results have been found for the ensemble Kalman filter in [13].

The rest of the paper is arranged as follows. The Bayesian filter and PF are
introduced in Section 2. The convergence of PF to the optimal filter in the weak
sense is shown in Section 3, and the convergence rate is analyzed in in Section 4.
Finally numerical examples are provided in Section 5 to examine the theoretical
results.

2. Formulations of PF. In this section we briefly review the formulation of par-
ticle filter for stochastic filtering problems.

2.1. State-space models. Let us consider the following stochastic filtering prob-
lem in a dynamic state-space form:

du

dt
= f(t,u; z), u(0, z) = u0(z) (1a)

v = g(t,u; ε), (1b)

where u ∈ Rnu denotes the state vector, v ∈ Rnv denotes the measurement vector,
z ∈ Rnz is a random vector representing the uncertainties in the model, and ε ∈ Rnε

denotes the measurement error, which is mutually independent with z. Often the
problem can be formulated in a discrete manner as follows.

un+1 = fn(un, zn), u0 = u0(z), (2)

vn = gn(un, εn), (3)

where the subscript n denotes the functions evaluated at discrete time levels tn,
n = 0, 1, . . . , with t0 < t1 < · · · . In many applications, the noises are assumed to
be additive and (2) and (3) are often written in the special case

un+1 = fn(un) + zn, u0 = u0(z), (4)

vn = gn(un) + εn, (5)

with zn and εn are mutually independent.
In this paper we adopt the general model (1a)-(1b). In data assimilation, the

observation v arrives sequentially in time and the goal is to estimate the true state,
denoted as ut, which is not predicted perfectly by (1a), based on the prediction by
(1a) and the measurement (1b).

2.2. Bayesian optimal filter. Let {Un}n≥0 be the state process and {Vn}n≥1 be
the measurement process and consider two general probabilistic state space models:
dynamic model Un ∼ K(un|un−1) and measurement model Vn ∼ ρ(vn|un). The
dynamical model is Markovian such that any future un is independent of the past
given the present un−1:

p(un|u1:n−1,v1:n−1) = K(un|un−1), (6)

and the measurements are conditionally independent given un

p(vn|u1:n,v1:n−1) = ρ(vn|un). (7)

Given prior distribution p(u0) and the data v1:n, Bayesian optimal filter is to con-
struct the distribution p(un|v1:n) recursively in two stages: prediction and update.
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Assume that the required pdf p(un−1|v1:n−1) of previous time n− 1 is available.
The Chapman-Kolmogorov equation gives the prediction step of

p(un|v1:n−1) =

∫
Rnu

K(un|un−1) · p(un−1|v1:n−1)dun−1. (8)

At time n, as measurement vn becomes available, the prior distribution from (8)
can then be updated via Bayes’ rule

p(un|v1:n) =
1

Zn
ρ(vn|un)p(un|v1:n−1), (9)

where the normalization constant Zn = p(vn|v1:n−1) is given by

Zn =

∫
Rnu

ρ(vn|un)p(un|v1:n−1)dun.

2.3. Particle filter. Particle filter is a numerical approximation to the optimal
Bayesian filter and uses an empirical distribution of a set of random samples, called
particles, to approximate the conditional distribution p(un|v1:n). Throughout this
paper we will use uf to denote the solution of (1a), where the superscript indicates
this is the so-called forecast state variables that are obtained by solving the governing
equation (1a), and ua to denote the analyzed state variables that are obtained by
applying the Bayes’ rule for update. We will also use M ≥ 1 to denote the number
of particles.

Let 0 = t0 < t1 < · · · < tn < · · · be a sequence of discrete time levels where
observation data are available and Bayesian update are made. Let {(ua

n)i}Mi=1 denote
a set of updated particles at tn with the empirical distribution πM (ua

n|v1:n),

p(ua
n|v1:n) ≈ πM (ua

n|v1:n) ,
1

M

M∑
i=1

δ(ua
n − (ua

n)i), (10)

where δ(·) denotes the Dirac delta function satisfying δ(x− a) = 1 at x = a and 0
otherwise. The particle filter algorithm is recursive in time and can be summarized
as:

• Initialization: At t0, sample {(ua
0)i}Mi=1 ∼ p(ua

0) as the initial set of particles.
• Prediction: At tn−1, n ≥ 1, let {(ua

n−1)i}Mi=1 be a set of particles distributed

approximately according to πM (ua
n−1|v1:n−1). We then forward each particle

individually from tn−1 with initial condition (ua
n−1)i till tn by solving the

dynamic model (1a) in time, i.e., drawing independent samples according to

(uf
n)i ∼ K(un|(ua

n−1)i), i = 1, . . . ,M. (11)

Forecast particles {(uf
n)i}Mi=1 are obtained with an empirical distribution

πM (uf
n|v1:n−1) ,

1

M

M∑
i=1

δ(uf
n − (uf

n)i). (12)

• Update: At tn, n ≥ 1, where new measurements vn are available, the Bayes’
formula (9) is applied and results in the following approximation of p(un|v1:n)

π̂M (uf
n|v1:n) ,

ρ(vn|uf
n)πM (uf

n|v1:n−1)∫
Rnu

ρ(vn|uf
n)p(uf

n|v1:n−1)duf
n

=

M∑
i=1

wi
nδ(u

f
n − (un)fi ),

where

wi
n =

ρ(vn|(uf
n)i)∑M

i=1 ρ(vn|(uf
n)i)

, 1 ≤ i ≤M, (13)
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are the so-called importance weights. A resampling step is performed to
obtain a set of equally weighted particles {(ua

n)i}Mi=1 from the distribution
π̂M (uf

n|v1:n) such that

p(ua
n|v1:n) ≈ πM (ua

n|v1:n) =
1

M

M∑
i=1

δ(ua
n − (un)ai ). (14)

3. Numerical formulation of PF and weak convergence. As is mentioned
in Section 1, the convergence of particle filter to the optimal stochastic filter has
been well established in terms of the sampling errors [5]. In practice, however,
the governing state equation (1) is often too complicated to solve analytically. In
this case, one usually employs numerical methods to solve the equation. Thus, to
analyze the convergence of PF more accurately, one must take the errors due to
numerical implementation into account as well. In this section, we introduce the
numerical formulation of PF and show the week convergence of it to the ideal Bayes
filter.

3.1. Numerical formulation of PF. Without loss of generality, we assume {tn},
the time levels when data assimilation is conducted, are equally distributed with

∆T = tn+1 − tn, ∀n ≥ 0. (15)

We further partition the time interval [tn, tn+1] into m equal sized sub-intervals,

tn,j = tn + j ·∆t, j = 0, . . . ,m, n = 0, 1, . . . ,

where tn,0 = tn, tn,m = tn+1, and ∆t > 0 is the step size with which a stable and
accurate numerical scheme is employed to solve the (1a). The numerical scheme is
forwarded in time on the stencil tn,j , 0 ≤ j ≤ m,n ≥ 0. For simplicity, we assume
the scheme is a one-step method in the following form,

ũf
n,j+1 = ũf

n,j + ∆t · Φ(tn,j , ũ
f
n,j ; ∆t), 0 ≤ j < m, n ≥ 0, (16)

where ũf is the numerical solution of (1a) and Φ(·) is an increment function satis-
fying the consistency condition

lim
∆t→0

Φ(tn,j ,u
f
n,j ; ∆t) = f(tn,j ,u

f
n,j). (17)

Subsequently, if we define ξ∆t = maxn |ũfn − ufn|, then

lim
∆t→0

ξ∆t = 0. (18)

The numerical scheme is said to have an order of q if ξ∆t ∼ O(∆tq).
The complete numerical implementation of particle filter, in which the set of

the analyzed particles are denoted as {(ũa
n)i}Mi=1 with empirical distribution

π̃M (ũa
n|v1:n), is obtained via the following recurrent procedure from tn−1 to tn:

• At tn−1, use a set of the particles {(ũa
n−1)i}Mi=1 as initial conditions. When

n = 0, {(ũa
0)i}Mi=1 are drawn from p(u0). The empirical distribution at tn−1

is

π̃M (ũa
n−1|v1:n−1) =

1

M

M∑
i=1

δ(ũa
n−1 − (ũa

n−1)i) (19)
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• For each particle i = 1, . . . ,M , solve the forecast model (1a) via the numerical
scheme (16) forward in time till tn, i.e.,

(ũf
n)i = (ũf

n−1)i + ∆t

m−1∑
j=0

Φ(tn−1,j , (ũ
f
n−1,j)i; ∆t), (ũf

n−1,0)i = (ũa
n−1)i. (20)

Then the weighted empirical distribution at tn is

ˆ̃πM (ũf
n|v1:n) =

M∑
i=1

wi
nδ(ũ

f
n − (ũn)fi ), (21)

in which the importance weights {wi
n}Mi=1 are evaluated using (13).

• A new set of equally weighted particles {(ũa
n)i}Mi=1 are sampled from ˆ̃πM , and

result in an empirical distribution at tn

π̃M (ũa
n|v1:n) =

1

M

M∑
i=1

δ(ũa
n − (ũn)ai ). (22)

The procedure is repeated till a desired final time level T > 0 is reached. The

notation ˆ̃π
M

is chosen in such a way that the ˜ indicates numerical discretization
errors for solving the forecast model (1a) via (16) are involved, the ˆ indicates a
distribution is sampled by weighted particles.

3.2. Weak convergence theory. In general, given a measure µ and a function
ϕ, we define

〈µ(·), ϕ〉 =

∫
ϕ(y)µ(·)dy. (23)

The convergence of πM (ua
n|v1:n) to p(ua

n|v1:n) has been well studied in the literature
(e.g. [5]) in the sense that

〈πM (ua
n|v1:n), ϕ〉 M→∞−→ 〈p(ua

n|v1:n), ϕ〉. (24)

Throughout the remainder of this article we will study the convergence of
〈π̃M (ũa

n|v1:n), ϕ〉 to 〈p(ua
n|v1:n), ϕ〉.

First of all, to guarantee that the Bayes’ formula in (9) is well defined and can
be fulfilled in PF algorithm, we assume the normalization constant Zn satisfies

(A0) For given v1:s, s = 1, · · · , n,

Zs > λ > 0, s = 1, · · · , n.
We shall also assume that the conditional densities K and ρ are continuous,

bounded and strictly positive:

(A1) 0 < K(us|us−1) <∞, 0 < ρ(vs|us) <∞, , for given v1:s, s = 1, · · · , n.
For general function ϕ, we assume that

(A2) ϕ is continuous and satisfies

sup
us

{
ϕ2(us) · ρ(vs|us)

}
< Cs,

for given v1:s, s = 1, · · · , n, where Cs is a finite constant independent of u1:s.

Note that (A1) and (A2) imply the conditional second moment of ϕ is bounded,
i.e. ∫

ϕ2(ua
n)p(ua

n|v1:n)dua
n =

∫
ϕ2(uf

n)ρ(vn|uf
n)p(uf

n|v1:n)duf
n

Zn
<∞. (25)
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Following the work of [9], we denote the class of ϕ satisfies (A2) by L2
n(ρ) and

define

‖ϕ‖ , max
s=1,··· ,n

{
1,

(∫
ϕ2(us)p(us|v1:s)dus

) 1
2

}
.

Let P(Rnu) be the space of all probability measures over the nu-dimensional
Euclidean space Rnu . We define bn : P(Rnu)→ P(Rnu) to be the mapping

bn(µ)(un) ,
∫
Rnu

K(un|un−1)µ(un−1)dun−1 (26)

for any µ ∈ P(Rnu). It is natural to assume that bn is continuous, since in the
context of filtering two realizations of the signal that start from “close” positions
will remain “close” at subsequent times. By definition, we have p(un|v1:n−1) =
bn(p(un−1|v1:n−1)) and for ϕ ∈ L2

n(ρ)

〈bn(µ), ϕ〉 =

∫
Rnu

∫
Rnu

ϕ(un)K(un|un−1)µ(un−1)dun−1dun. (27)

Suppose µM is the empirical distribution of a set of particles {ui}Mi=1 and µ̃M is
the empirical distribution of {ũi}Mi=1, which are the particles obtained by forwarding

{ui}Mi=1 via the numerical scheme (16). Define b̃n : P(Rnu) → P(Rnu) to be the
mapping

b̃n(µM ) = µ̃M , (28)

we then have b̃n(πM (un−1|v1:n−1)) = π̃M (ũn|v1:n−1).

Lemma 3.1. Let µM and µ̃M be the empirical distributions defined as above. Then

lim
∆t→0

〈̃bn(µM ), ϕ〉 = 〈bn(µM ), ϕ〉, ∀ϕ ∈ L2
n(ρ). (29)

Proof. Let {ua
i }Mi=1 be a set of particles with the empirical distribution µM . Let

{uf
i }Mi=1 be the particles obtained by forwarding {ua

i }Mi=1 exactly via Eq. (1a) and

{ũf
i }Mi=1 be the particles obtained by forwarding {ui}Mi=1 numerically. We then have

〈bn(µM ), ϕ〉 =

∫
ϕ(uf )

(
1

M

M∑
i=1

δ(uf − uf
i )

)
duf =

1

M

M∑
i=1

ϕ(uf
i )

and

〈̃bn(µM ), ϕ〉 =

∫
ϕ(ũf )

(
1

M

M∑
i=1

δ(ũf − ũf
i )

)
dũf =

1

M

M∑
i=1

ϕ(ũf
i ).

Subsequently,∣∣∣〈bn(µM ), ϕ〉 − 〈̃bn(µM ), ϕ〉
∣∣∣ ≤ 1

M

M∑
i=1

∣∣∣ϕ(uf
i )− ϕ(ũf

i )
∣∣∣ . (30)

Because of (18), lim∆t→0 ũi = ui, for i = 1, · · · ,M . And since ϕ is continuous,
then given ∀ ε > 0, ∃ ∆t, such that when |ui − ũi| is small enough, one has
|ϕ(ui)− ϕ(ũi)| < ε, for i = 1, · · · ,M . Denote ε∆t to be the ε which can be reached
with numerical time step ∆t. Then (30) becomes∣∣∣〈bn(µM ), ϕ〉 − 〈̃bn(µM ), ϕ〉

∣∣∣ ≤ ε∆t, (31)

which completes the proof.



1344 XIAOYING HAN, JINGLAI LI AND DONGBIN XIU

Next we define an : P(Rnu)→ P(Rnu) to be the mapping

an(µ)(uf
n) =

ρ(vn|uf
n)µ(uf

n)∫
ρ(vn|uf

n)µ(uf
n)duf

n

, µ ∈ P(Rnu). (32)

It is also natural to assume that an is continuous, which means that a slight variation
in two distributions will not result in a large variation in the distributions when the
observations are taken into account. Note that for ϕ ∈ L2

n(ρ), we have p(un|v1:n) =
an(p(un|v1:n−1)) and

〈an(µ), ϕ〉 = 〈µ, ρ〉−1〈µ, ϕρ〉. (33)

At last, we define cM to a the resampling operator. The output of cM (µ) is
the empirical distribution of a sample of size M from a distribution µ. Let cM,ω,
M > 0, ω ∈ Ω be a realization of such a sampling such that

cM,ω(µ) =
1

M

M∑
i=1

δ{Γi(ω)} ∀ µ ∈ P(Rnu), (34)

where Γi : Ω → Rnu are i.i.d random variables with a common distribution µ. By
Lemma 2 in [5], for almost all ω ∈ Ω, cM,ω converges uniformly to the identity
function.

Let us now consider πM (ua
n|v1:n) and π̃M (ua

n|v1:n). It is easy to see that after
the resampling step of PF, one has

πM (ua
n|v1:n) = cM ◦ an ◦ bn

(
πM (ua

n−1|v1:n−1)
)

and

π̃M (ũa
n|v1:n) = cM ◦ an ◦ b̃n

(
πM (ua

n−1|v1:n−1)
)
.

Therefore by Lemma 3.1, Theorem 1 of [5], and properties of composition of con-
tinuous functions, we obtain

lim
M→∞,∆t→0

π̃M (ũa
n|v1:n) = lim

M→∞
πM (ua

n|v1:n) = p(ua
n|v1:n). (35)

This implies that the convergence of numerical PF to optimal filter can be realized
by increasing the number of particles and decreasing the size of the time step of the
numerical scheme, as expected.

4. Numerical convergence rate. In this section we estimate the convergence
rate of the NPF to the optimal filter. Similar to traditional numerical analysis
on ordinary differential equations, we break down the errors into two parts: local
error and global error. Also instead of using weak convergence, we use the following
convergence criterion:

Definition 4.1. let {µω
M}∞M=1 be a sequence of random probability measures, we

say µω
M converges to µ ∈ P(Rn), if

lim
M→∞

E[(〈µω
M , ϕ〉 − 〈µ, ϕ〉)

2
] = 0, ∀ϕ ∈ P(Rn), (36)

where the expectation is taken over all the realizations of the random sampling.

For notation convenience, we denote the compositions of an, bn, b̃n and cM as
the following three operators

rn , an ◦ bn, rMn , cM ◦ an ◦ bn, and r̃Mn , cM ◦ an ◦ b̃n, (37)

for n = 0, 1, 2, . . ., and a0 ≡ b0 ≡ b̃0 are set to be the identity mapping.
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4.1. Local error. Let us consider the time interval [tn−1, tn], n ≥ 1. Let pn−1|n−1 ,
p(un−1|v1:n−1) be the exact distribution of the state vector at tn−1, produced by
the optimal Bayesian filter. Using the definitions in (37), the exact distribution of
state at tn is

pn|n = an ◦ bn(pn−1|n−1) = rn(pn−1|n−1). (38)

Let {(ua
n−1)i}Mi=1 denote the particles drawn from the exact distribution of the state

pn−1|n−1 with empirical distribution πM
n−1|n−1 , πM (ua

n−1|v1:n−1) = cM (pn−1|n−1).

In one-step PF, they are used as initial condition of (1a).
Forwarding exactly, we obtain forecast particles {(uf

n)i}Mi=1 with empirical dis-
tribution

bMn|n−1 , πM (uf
n|v1:n−1) = bn(πM

n−1|n−1), (39)

and then after Bayes’ formula the new set of particle {(ua
n)i}Mi=1 are represented as

νMn|n = rMn (πM
n−1|n−1).

Forwarding {(ua
n−1)i}Mi=1 numerically by the numerical scheme (20) to obtain

empirical distribution of {(ũf
n)i}Mi=1

b̃Mn|n−1 , b̃n(πM
n−1|n−1)

and assimilating the measurement by the Bayes’ rule, the empirical distribution of
the state vectors at tn, denoted as ν̃Mn|n, can be represented as

ν̃Mn|n = r̃Mn (πM
n−1|n−1). (40)

Definition 4.2. The local error of theoretical PF is the L2-norm of the difference
between νMn|n and pn|n

ēn = (E[(〈νMn|n, ϕ〉 − 〈pn|n, ϕ〉)
2])

1
2 , ϕ ∈ L2

n(ρ). (41)

Define the local error of numerical PF to be the L2-norm of the difference between
ν̃Mn|n and pn|n

en = (E[(〈ν̃Mn|n, ϕ〉 − 〈pn|n, ϕ〉)
2])

1
2 , ϕ ∈ L2

n(ρ). (42)

Denote by dn the local difference between νMn|n and ν̃Mn|n, i.e.,

dn = (E[(〈ν̃Mn|n, ϕ〉 − 〈ν
M
n|n, ϕ〉)

2])
1
2 , ϕ ∈ L2

n(ρ). (43)

Lemma 4.3. [Local difference] Under assumptions (A0) - (A2), there exists a con-
stant C independent of M such that the local difference defined in (43) is bounded
by

dn ≤
(
‖ϕ‖+ 1

λ

)
ε∆t +

2C1/2‖ϕ‖√
M

. (44)

Proof. For later use, define the following intermediate distributions:

• r̂n|n = an ◦ bn(πM
n−1|n−1) is the empirical distribution of {(uf

n)i}Mi=1 associated

with {(wi
n)i}Mi=1;

• ˆ̃rn|n = an ◦ b̃n(πM
n−1|n−1) is the empirical distribution of {(ũf

n)i}Mi=1 associated

with {(wi
n)i}Mi=1;

• bMn|n−1 = bn(πM
n−1|n−1) is the empirical distribution of {(uf

n)i}Mi=1 before up-

date;
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• b̃Mn|n−1 = b̃n(πM
n−1|n−1) is the empirical distribution of {(ũf

n)i}Mi=1 before up-

date.

By splitting the local error, we have

〈ν̃Mn|n, ϕ〉−〈ν
M
n|n, ϕ〉 = 〈ν̃Mn|n, ϕ〉−〈ˆ̃rn|n, ϕ〉+〈ˆ̃rn|n, ϕ〉−〈r̂n|n, ϕ〉+〈r̂n|n, ϕ〉−〈ν

M
n|n, ϕ〉.

(45)
Then the Minkowski’s inequality gives

dn ≤(E[(〈ν̃Mn|n, ϕ〉 − 〈ˆ̃rn|n, ϕ〉)
2])

1
2 + (E[(〈ˆ̃rn|n, ϕ〉 − 〈r̂n|n, ϕ〉)2])

1
2

+ (E[(〈r̂n|n, ϕ〉 − 〈νMn|n, ϕ〉)
2])

1
2 .

Note that the resampling procedure r̂n|n → νMn|n and ˆ̃rn|n → ν̃Mn|n satisfy

E[〈νMn|n, ϕ〉] = 〈r̂n|n, ϕ〉 and E[〈ν̃Mn|n, ϕ〉] = 〈ˆ̃rn|n, ϕ〉. (46)

therefore there exists a constant C such that(
E[(〈νMn|n, ϕ〉 − 〈r̂

M
n|n, ϕ〉)

2]
) 1

2 ≤ C1/2‖ϕ‖√
M

, (47)

and (
E[(〈̃bMn|n, ϕ〉 − 〈ˆ̃r

M

n|n, ϕ〉)2]
) 1

2

≤ C1/2‖ϕ‖√
M

, (48)

It then remains to consider 〈ˆ̃rn|n, ϕ〉 − 〈r̂n|n, ϕ〉. Recall definition of an,

〈ˆ̃rn|n, ϕ〉 − 〈r̂n|n, ϕ〉 =
〈̃bMn|n−1, ρϕ〉

〈̃bMn|n−1, ρ〉
−
〈̃bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

+
〈̃bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

−
〈bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

where∣∣∣∣∣ 〈̃b
M
n|n−1, ρϕ〉

〈̃bMn|n−1, ρ〉
−
〈̃bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

∣∣∣∣∣ =
〈̃bMn|n−1, ρϕ〉

∣∣∣〈bMn|n−1, ρ〉 − 〈̃b
M
n|n−1, ρ〉

∣∣∣
〈̃bMn|n−1, ρ〉〈b

M
n|n−1, ρ〉

≤ ‖ϕ‖
〈bMn|n−1, ρ〉

∣∣∣〈bMn|n−1, ρ〉 − 〈̃b
M
n|n−1, ρ〉

∣∣∣ .
By using Minkowski’s inequality again, we obtain(

E[(〈ˆ̃b
M

n|n, ϕ〉 − 〈bMn|n, ϕ〉)
2]

) 1
2

≤

(
E[(
〈̃bMn|n−1, ρϕ〉

〈̃bMn|n−1, ρ〉
−
〈̃bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

)2]

) 1
2

+

(
E[(
〈̃bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

−
〈bMn|n−1, ρϕ〉
〈bMn|n−1, ρ〉

)2]

) 1
2

≤‖ϕ‖
λ

(
E[(〈bMn|n−1, ρ〉 − 〈̃b

M
n|n−1, ρ〉)

2]
) 1

2

+
1

λ

(
E[(〈bMn|n−1, ρϕ〉 − 〈̃b

M
n|n−1, ρϕ〉)

2]
) 1

2

From Lemma 3.1, we have∣∣∣〈bMn|n−1, ρ〉 − 〈̃b
M
n|n−1, ρ〉

∣∣∣ ≤ ε∆t,∣∣∣〈bMn|n−1, ρϕ〉 − 〈̃b
M
n|n−1, ρϕ〉

∣∣∣ ≤ ε∆t.

So

(E[(〈ˆ̃rn|n, ϕ〉 − 〈r̂n|n, ϕ〉)2])
1
2 ≤

(
‖ϕ‖+ 1

λ

)
ε∆t. (49)



NUMERICAL PARTICLE FILTER 1347

The proof is then established combining (47) , (48) and (49).

It is obvious that the local error consists of two contributions: the numerical
discretization error and the resampling error. If one further assumes the convergence
of the numerical scheme (16) has order q ≥ 1, and the resampling procedure is of
order O(M−1/2), then

en ∼ O(∆tq,M−1/2), ∆t→ 0, M →∞. (50)

Theorem 4.4. [Local error] Under assumptions (A0) - (A2), there exists a constant
CL independent of M such that the local error defined in (41) is bounded by

en ≤
(
‖ϕ‖+ 1

λ

)
ε∆t +

CL‖ϕ‖√
M

. (51)

Proof. By definitions of en, ēn and dn, it is obvious that

en ≤ ēn + dn.

According to Theorem 2 of [5], there exists cn|n independent of M such that

ēn ≤
√
cn|n
‖ϕ‖√
M
.

Let CL =
√
cn|n + 2C1/2, it then follows immediately from Lemma 4.3 that

en ≤
(
‖ϕ‖+ 1

λ

)
ε∆t +

CL‖ϕ‖√
M

.

4.2. Global error. Consider the time interval [t0, tn], n ≥ 0. Let pn|n be the
exact distribution at time tn produced by optimal Bayesian filter and denote by
π̃M
n|n , π̃M (ũa

n|v1:n) the empirical distribution at tn approximated by NPF. The

global error at t = tn is defined as

En =
(
E[(〈π̃M

n|n, ϕ〉 − 〈pn|n, ϕ〉)
2]
) 1

2

, ϕ ∈ L2
n(ρ). (52)

To study the global error, extra assumptions are required for an, bn and b̃n.

(A3) Assume that an, bn and b̃n are uniformly Lipschitz continuous with Lipschitz

constants Λa
n, Λb

n and Λ̃b
n respectively, in the sense that for any µ1, µ2 ∈

P(Rnu),

|〈an(µ1), ϕ〉 − 〈an(µ2), ϕ〉| ≤ Λa
n |〈µ1, ϕ〉 − 〈µ2, ϕ〉| ;

|〈bn(µ1), ϕ〉 − 〈bn(µ2), ϕ〉| ≤ Λb
n |〈µ1, ϕ〉 − 〈µ2, ϕ〉| ;∣∣∣〈̃bn(µ1), ϕ〉 − 〈̃bn(µ2), ϕ〉

∣∣∣ ≤ Λ̃b
n |〈µ1, ϕ〉 − 〈µ2, ϕ〉| .

It is straightforward to see that under assumption (A3), rn = an ◦bn is uniformly
Lipschitz continuous with constant Λn = Λa

n · Λb
n, and r̃n is uniformly Lipschitz

continuous with constant Λ̃n = Λa
n · Λ̃b

n, i.e. ∀µ1, µ2 ∈ P(Rnu), rn and r̃n satisfy
respectively

|〈rn(µ1), ϕ〉 − 〈rn〈µ2), ϕ〉| ≤ Λn · |〈µ1, ϕ〉 − 〈µ2, ϕ〉| (53)

and

|〈r̃n(µ1), ϕ〉 − 〈r̃n(µ2), ϕ〉| ≤ Λ̃n · |〈µ1, ϕ〉 − 〈µ2, ϕ〉| (54)



1348 XIAOYING HAN, JINGLAI LI AND DONGBIN XIU

The global error is the cumulative effect of all the local errors from the initial time
to the final time tn and is expected to grow as time increases. In what follows we
will derive error bounds of the global error in two similar and yet different forms.

Theorem 4.5. [Global error: first bound] The global error defined in (52) can be
bounded by

En ≤
Λn − 1

Λ− 1
e, (55)

where Λ = max1≤s≤n Λs and e = max1≤s≤n es.

Proof. We first split the global error.

〈π̃M
n|n, ϕ〉 − 〈pn|n, ϕ〉 = 〈π̃M

n|n, ϕ〉 − 〈rn(pn−1|n−1), ϕ〉

=〈r̃Mn (π̃M
n−1|n−1), ϕ〉 − 〈rn(π̃M

n−1|n−1), ϕ〉+ 〈rn(π̃M
n−1|n−1), ϕ〉 − 〈rn(pn−1|n−1), ϕ〉.

By using the Minkowski’s inequality, we have

En ≤
(
E[(〈r̃Mn (π̃M

n−1|n−1), ϕ〉 − 〈rn(π̃M
n−1|n−1), ϕ〉)2]

) 1
2

+
(
E[(〈rn(π̃M

n−1|n−1), ϕ〉 − 〈rn(pn−1|n−1), ϕ〉)2]
) 1

2

. (56)

The first term in (56) is the local error with the measure π̃M
n−1|n−1. Since Theorem

4.3 demonstrates that the local error is independent of the measure, we obtain(
E[(〈r̃Mn (π̃M

n−1|n−1), ϕ〉 − 〈rn(π̃M
n−1|n−1), ϕ〉)2]

) 1
2 ≤ en

and

En ≤ en +
(
E[(〈rn(π̃M

n−1|n−1), ϕ〉 − 〈rn(pn−1|n−1), ϕ〉)2]
) 1

2

.

Using the Lipschitz continuity of rn recursively, we obtain

En ≤ en + Λn

(
E[(〈π̃M

n−1|n−1, ϕ〉 − 〈pn−1|n−1, ϕ〉)]
) 1

2

≤ en + Λn · en−1 + Λn · Λn−1

(
E[(〈π̃M

n−2|n−2, ϕ〉 − 〈pn−2|n−2, ϕ〉)2]
) 1

2

≤ · · · ≤
n∑

s=1

Λn−ses ≤

(
n∑

s=1

Λn−s

)
e =

Λn − 1

Λ− 1
e.

Alternatively, we define a one-step global increment function Ψ for the particle
filter via

Ψ(µ)(tn−1, ϕ, ρ,K; ∆t,∆T ) =
1

∆T

(
〈r̃Mn (µ), ϕ〉 − 〈µ, ϕ〉

)
, n = 1, 2, · · · . (57)

Lemma 4.6. Assume (A0) - (A3) hold, then for any µ1, µ2 ∈ P(Rnu), the global
increment function Ψ satisfies

(
E
[
(Ψ(µ1)−Ψ(µ2))2

]) 1
2 ≤ Λ̃n + 1

∆T
·
(
E[((µ1, ϕ)− (µ2, ϕ))2]

) 1
2 +

2
√
C

∆T
· ‖ϕ‖√

M
. (58)
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Proof. From the definition in (57), we have

Ψ(µ1)−Ψ(µ2) =
1

∆T

(
〈r̃Mn (µ1), ϕ〉 − 〈r̃n(µ1), ϕ〉

)
+

1

∆T
(〈r̃n(µ1), ϕ〉 − 〈r̃n(µ2), ϕ〉)

+
1

∆T

(
〈r̃n(µ2), ϕ〉 − 〈r̃Mn (µ2), ϕ〉

)
+

1

∆T
(〈µ2, ϕ〉 − 〈µ1, ϕ〉) ,

and therefore

E[(Ψ(µ1)−Ψ(µ2)2)]
1
2 ≤ 1

∆T
E[(〈r̃Mn (µ1), ϕ〉 − 〈r̃n(µ1), ϕ〉)2]

1
2

+
1

∆T
E[(〈r̃n(µ1), ϕ〉 − 〈r̃n(µ2), ϕ〉)2]

1
2

+
1

∆T
E[(〈r̃n(µ2), ϕ〉 − 〈r̃Mn (µ2), ϕ〉)2]

1
2

+
1

∆T
E[(〈µ2, ϕ〉 − 〈µ1, ϕ〉)2]

1
2 . (59)

By convergence of r̃Mn to r̃n, we have that

E[(〈r̃Mn (µ1), ϕ〉 − 〈r̃n(µ1), ϕ〉)2]
1
2 ≤
√
C
‖ϕ‖
M

, (60)

and

E[(〈r̃n(µ2), ϕ〉 − 〈r̃Mn (µ2), ϕ〉)2]
1
2 ≤
√
C
‖ϕ‖
M

. (61)

By (54) we have that

E[(〈r̃n(µ1), ϕ〉 − 〈r̃n(µ2), ϕ〉)2]
1
2 ≤ Λ̃nE[(〈µ2, ϕ〉 − 〈µ1, ϕ〉)2]

1
2 . (62)

The statement then follows immediately by collecting (59) through (62).

Theorem 4.7. [Global error: second bound] Assume (A0) - (A3) hold, then the
global error can be bounded by

En ≤

(
E0 +

n∑
s=1

e′s

)
· exp

{
CG · tn

}
(63)

where e′s = es+
√
C · ‖ϕ‖/

√
M for s = 1, . . . , n, and CG = max1≤s≤n

{
(Λ̃s + 1)/∆T

}
.

Proof. By (57), on any interval [tn−1, tn], the numerical particle filter satisfies

〈π̃M
n|n, ϕ〉 = 〈π̃M

n−1|n−1, ϕ〉+ ∆T ·Ψ(π̃M
n−1|n−1), n ≥ 1. (64)

On the other hand, the exact solution of particle filter satisfies

〈pn|n, ϕ〉 = 〈pn−1|n−1, ϕ〉+ ∆T ·Ψ(pn−1|n−1) + en, n ≥ 0. (65)

By subtracting (64) from (65), we obtain

〈pn|n, ϕ〉 − 〈π̃M
n|n, ϕ〉

=(〈pn−1|n−1, ϕ〉 − 〈π̃M
n−1|n−1, ϕ〉) + ∆T · [Ψ(pn−1|n−1)−Ψ(π̃M

n−1|n−1)] + en

Again by using the Minkowski’s inequality, we obtain

En ≤ (E[(〈pn−1|n−1, ϕ〉 − 〈π̃M
n−1|n−1, ϕ〉)

2])
1
2

+∆T · (E[(Ψ(pn−1|n−1)−Ψ(π̃M
n−1|n−1))2])

1
2 + en

= En−1 + ∆T ·
(
E[(Ψ(pn−1|n−1)−Ψ(π̃M

n−1|n−1))2]
) 1

2

+ en. (66)
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By applying the formula recursively, we obtain

En ≤ E0 +

n∑
s=1

es + ∆T ·
n∑

s=1

(
E[(Ψ(ps−1|s−1)−Ψ(π̃M

s−1|s−1))2]
) 1

2

≤ E0 +

n∑
s=1

e′s + ∆T · CG
n∑

s=1

(
E[(〈ps−1|s−1, ϕ〉 − 〈π̃M

s−1|s−1, ϕ〉)
2]
) 1

2

≤ E0 +

n∑
s=1

e′s + ∆T · CG
n∑

s=1

Es.

After applying the discrete Gronwall (see [15]), the statement (63) follows.

Note that the constant CG in Th. 4.5 is inversely proportional to ∆T , which,
after being substituted into Eq. (63), implies that the bound depends exponentially
on n. Although the two bounds are in different form, they both indicate that as
the number of grid points n increases, the global numerical error grows. In other
words, the more frequent data assimilation via smaller ∆T will result in larger global
error. It is intuitively desirable to use more frequent data assimilation, provided
that sufficient observation data are available, in the hope that the assimilated results
will be closer to the “true state”. However, the numerical analysis here suggests
that such an action will incur larger numerical errors. Therefore, the proper choice
of the size of assimilation step should be a balanced choice.

5. Numerical examples. In this section, we present numerical tests to examine
the theoretical results. Since the purpose is to verify the error analysis, we employ
two simple benchmark problems whose “exact” optimal filtering solutions can be
obtained. We then compare the numerical particle filter solutions against the exact
solutions and examine the error convergence with respect to various parameter set-
tings. In both examples we use the first four moments of the solutions and examine
the numerical errors in them. Note that whether particle filter is the “best” filter
for these benchmark problems is a different topic that is not a concern of this paper.
Also, particle filter has been widely applied to many complex systems, where its
performance and applicability have been examined extensively. We refer the inter-
ested readers to the large amount of available literature for applications of complex
systems. Finally, since numerical error associated with solving the dynamic equa-
tions is usually well understood, we solve all the dynamic equations with sufficient
accuracy so that the time discretization error is subdominant.

5.1. Linear Gaussian model. We first consider a linear dynamic equation with
initial values following a Gaussian distribution:

duf

dt
= auf + b, uf (0) ∼ N (0, σ2). (67)

For simplicity, we fix a = 0, b = 1, and σ = 1. We construct a true state ut, which
is unavailable to the simulation, by adding an error following N (0, 1) to the mean
solution of (67). Measurements are then made on ut at every ∆T = 0.1 time unit
with error following N (0, 1). For this simple linear system with Gaussian noise,
analytical solution of the optimal stochastic filter can be obtained. (In fact the
optimal filter in this case becomes the well known Kalman filter, which can also
be computed analytically.) We define error as the difference between the results
obtained by the numerical particle filter and the exact solutions of the optimal
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filter. (Note this is not the difference between the numerical particle filter solutions
and the true states.)

In Fig. 1 the time evolution of the errors in the first four moments of the assimi-
lated solutions are shown. It is clear that the numerical errors accumulate in time,
consist with the error analysis on global error.
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Figure 1. Time evolution of numerical errors in the first four moments.

Next we examine the error dependence on various parameters. In Fig. 2, the error
convergence of the first four moments of the analyzed solution is shown against the
size of the particle ensemble (M). The rate of convergence is approximately 1/2,
which is the rate of convergence of the resampling procedure and consistent with
the analysis. In Fig. 3, we examine the error dependence against the size of the
assimilation step (∆T ). Despite some oscillations due to the random sampling
nature of the method, it is clear that the errors in the first four moments depend
on the size of ∆T inversely. That is, smaller assimilation step ∆T results in larger
numerical errors. This is consistent with the estimate in Theorem 4.7, where the
Lipschitz constant becomes larger with smaller ∆T according to Lemma 4.6.

5.2. Nonlinear population equation. Here we consider the following population
equation

duf

dt
= −r(1− uf

A
)uf , uf (0) ∼ N (a, 1), (68)

where r and A are positive real parameters. The solution of (68) is sensitive to the
initial condition. If uf (0) > A, the solution will grow exponentially; if 0 < uf (0) <
A, the solution will converge to 0.

We fix r = 1, A = 2, a = 2.1, and use the deterministic solution in time interval
[0, 1] of (68) with initial condition uf (0) = a as the “true state” (but unknown to
the simulations). Measurements are made at every ∆T = 0.1 time unit by adding
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Figure 2. Error convergence of particle filter solutions with in-
creased particle size M .
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Figure 3. Error dependence on the assimilation time step ∆T
(M = 105).

measurement errors following N (0, 0.32) on top of ut. For this relatively simple but
nonlinear problem, no explicit formulas exist for the optimal filter. We thus employ
the numerical estimates by particle filter with very large ensemble size of M = 106

as the (numerically) “exact” solution and compare the errors obtained by particle
filter at smaller sample size.

Again we examine the errors in the first four moments of the numerical particle
filter solutions. Fig. 4 (a) illustrates the convergence property of the errors as the
size of particles increases (at T = 1), where the 1/2 convergence rate is visible.
Fig. 4 (b) shows the dependence of the errors on the size of the assimilation step
∆T at T = 3. Again the inverse error dependence on ∆T is obvious.

6. Conclusion. In this paper, we have conducted a rigorous analysis on the nu-
merical errors of PF. After establishing convergence of the NPF to the optimal
stochastic filter, we provided estimate on the convergence rate. The results indicate
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Figure 4. (a) Error convergence of particle filter with respect to
increased number of particles M , (b)Error dependence on the as-
similation time step ∆T (M = 104).

that the errors grow over time and consist of the discretization errors of solving
the state equations the (re)sampling errors for particle generation. Though more
accurate numerical procedure for the state equations and larger sample size can
reduce the errors, more frequent data assimilation will, however, result in larger nu-
merical errors. This finding implies that in practical simulations even though it is
preferred to use more frequent data assimilation whenever (reliable) measurements
are available to track the true states more closely, one needs to be mindful of the
accumulation of numerical errors in this case. Therefore, choice of assimilation step
size should be a balanced issue.
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