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Many engineering applications require optimization of the system performance subject to reliability constraints, which

are commonly referred to as the reliability based design and optimization (RBDO) problems. In this work we propose a

derivative-free algorithm to solve the RBDO problems. In particular, we focus on the type of RBDO problems where the

objective function is deterministic and easy to evaluate, whereas the reliability constraints involve very small failure

probabilities. The algorithm consists of solving a set of subproblems, in which simple surrogate models of the reliability

constraints are constructed and used in solving the subproblems. Moreover, we employ a cross-entropy (CE) method

with sample reweighting to evaluate the rare failure probabilities, which constructs the surrogate for the reliability

constraints by performing only a single full CE simulation in each iteration. Finally we demonstrate the performance

of the proposed method with both academic and practical examples.

KEY WORDS: uncertainty quantification, stochastic optimization, stochastic sensitivity analysis, Monte
Carlo methods, computational design

1. INTRODUCTION

Real-world engineering systems are inevitably subject to various uncertainties such as material properties, geomet-
ric parameters, manufacturing tolerances, and applied loadings. Optimization of the system performance under the
influence of those uncertainties is an essential task of manypractical engineering design problems. A particularly
important problem in this setting, known as the reliabilitybased design and optimization (RBDO), is to optimize
the system performance subject to the constraint that the system reliability satisfies a prescribed requirement. Such
problems have wide applications in many fields, especially structural, mechanical, and aerospace engineering [1, 2].
Developing efficient and accurate methods to solve the RBDO problems has been an active research topic in the past
decades (see the reviews [1–5] and the references therein).

In a standard RBDO problem, the reliability constraint is typically formulated as that the failure probability of the
system is lower than a threshold value. Existing methods forsolving RBDO problems can be largely organized into
three groups [4, 5]: the double loop, the single loop, and thedecoupling methods. The double loop methods resemble
the most natural formulation of the RBDO problems: the innerloop which estimates the failure probability is nested
in the outer loop which solves the optimization problem. Thesingle loop methods, first proposed in [6], replace
the probabilistic constraint with an approximate, deterministic constraint, so that standard numerical optimization
techniques directly apply. Another way to avoid the double loop computation is to separate the reliability analysis
procedure and the optimization procedure, and informationfrom the reliability analysis step is used at the optimization
step when it is needed. As a result, the method does not perform full reliability analysis for each time the optimization
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procedure arrives at a new point in the design space. Methodsof this kind are referred to as the decoupling approaches,
including [7, 8].

In this work we focus on the double loop approaches where the reliability constraints are estimated by simulating
the underlying system, and so methods based on approximating the reliability constraints (see, e.g., [9]), are not in
our scope. When applicable, the simulation based double loop methods can usually produce more accurate and reli-
able results than the other aforementioned techniques, as they do not make any simplification or approximation of the
problem. More importantly, such methods only require the ability to evaluate the limit state function of the underlying
system, which makes it particularly convenient for problems with black-box models. On the other hand, the major
disadvantage of the simulation based double loop approach is the high computational cost associated with it. The
computational burden arises from both the inner and the outer loops. Namely, the total computational cost depends
on the number of reliability (failure probability) evaluations required by the optimization algorithm and the cost for
performing each single failure probability evaluation. Inthe inner loop, the failure probability is typically computed
with Monte Carlo (MC) simulations, which requires a rather large number of samples, and each sample involves a full
scale simulation of the underlying system. Considerable efforts have been devoted to studies of methods to efficiently
simulate the failure probability, which typically employ either of the following two strategies. The first is to develop
advanced sampling methods (see, e.g., [10] for an overview)to obtain reliability estimates of the failure probability
with a limited number of samples. The other one is to construct a computationally inexpensive surrogate for the un-
derlying system model, and replace the true model with the surrogate in the MC simulation, e.g., [11–14]. The two
types of methods can also be employed together to achieve better results [15, 16]. In this work we choose to use an
advanced sampling method to accelerate the computation of failure probability, and also, we use an efficient optimiza-
tion method that can solve the RBDO problems with a small number of reliability evaluations. A difficulty here is
that, due to the use of MC simulations, it is very difficult to obtain the analytical expressions of the derivatives of the
reliability constraints. Several works (e.g., [17–19]) alleviate the difficulty by performing stochastic sensitivity analy-
sis with the so-called score functions (SF) [20]. Once the gradients are computed, the problem can be readily solved
with a standard numerical constrained optimization technique. As will be illustrated later, a major issue of the method
is that it requires a very large number of MC samples, and otherwise the gradients estimated may not be reliable.

On the other hand, a very attractive class of optimization techniques, known as the derivative-free (DF) trust-region
(TR) methods [21, 22], have been developed to solve problemswhose derivatives are difficult to obtain. Most DF-TR
algorithms are designed to solve unconstrained optimization problems, while some constrained DF-TR algorithms
have been developed as well (see, e.g., [22]). In particular, a recent work [23] proposes a DF-TR algorithm with
provable convergence for noisy objective and/or constraint functions. Loosely speaking, the DF-TR methods consist
of solving a set of TR subproblems in which surrogate models of the objective and/or the constraint functions are
constructed and used in solving the subproblems. In particular, the surrogates are often constructed with regression
or interpolation, namely, without using the derivatives ofthe functions. In a short note [24], we outline a DF-TR
scheme for RBDO problems, and in this work we discuss the implementation details, especially when the failure
probability is small. In particular, we consider the situation that the objective function is deterministic and in a simple
form, and so one only needs to construct surrogate models forthe reliability constraints. However, the computational
cost poses a major challenge for using the DF-TR methods in RBDO problems, as constructing a surrogate model
with regression or interpolation requires repeated evaluation of the reliability constraints, which is computationally
intensive. Thus our algorithm employs a special adaptive importance sampling scheme known as the cross-entropy
(CE) method, with sample reweighting, which only uses asingle full reliability evaluationto construct the surrogates
of the constraints in each TR iteration. With numerical examples, we demonstrate that the DF-TR methods can be
more robust and efficient than the score-function based methods in certain problems. Finally we note that, from an
alternative perspective, the proposed DF-TR method can be viewed as an extension of the works [25, 26], where the
failure probability is approximated with an exponential function. An advantage of the present work is that the TR
formulation provides an effective and rigorous framework to handle the surrogates of the reliability constraints.

The paper is organized as follows. We present our DF-TR algorithm for RBDO problems in Section 2. We describe
the evaluation of reliability constraints in Section 3. We provide both mathematical and practical bench-mark examples
to demonstrate the performance of the proposed algorithm inSection 4. Finally we offer some concluding remarks in
Section 5.
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2. THE DF-TR ALGORITHM FOR RBDO PROBLEMS

There are several different formulations of the RBDO problems. Among them, a very common form is to minimize a
deterministic cost function subject to the constraint thatthe failure probability is lower than a threshold value, which
is mathematically given as

min
x∈D

f(x),

s.t. c(x) := lnP (x)− ln θ ≤ 0,
(1)

wherex is the design parameter,D is the design space,f(·) is the cost function,P (·) is the failure probability, andθ
is the failure probability threshold. In many applied problems, the cost function is deterministic and easy to evaluate,
while computing the probabilistic constraint is much more costly as it requires large scale MC simulations. We will
discuss how to compute the failure probability in the next section, and here we simply regard it as a computationally
intensive function.

Due to the high computational cost ofP (x) or equivalentlyc(x), a natural idea to solve the problem is to construct
a computationally efficient surrogate for the constraintc(x), and then solve the optimization problem subject to the
surrogate constraint. The trust-region methods provide a rigorous formulation of the surrogate based optimization. In
what follows we present our TR based RBDO algorithm in detail.

Algorithm 1. The derivative-free trust-region RBDO algorithm

Require: f(x), c(x), ρ0, ρmin, ǫ∗, ω, α∗, K, M , δ, x0.
Ensure: Solutionxopt;

1: Outer := 1;k := 0;
2: while Outer = 1do
3: Inner := 1;
4: while Inner = 1do
5: [sk(x), ρk] := SurrogConstruct(xk, ρk, ǫ

∗,ω,M,α∗)
6: xk+1 := argminx∈O(xk,ρk) f(x), s.t.sk(x) ≤ 0;
7: if c(xk+1) < 0 then
8: Inner := 0;
9: ρk = ω+ρk;

10: else
11: ρk := ω−ρk;
12: end if
13: end while
14: if ||xk+1 − xk|| < ρk or ‖f(xk+1)− f(xk)‖ ≤ δ or ρk < ρmin then
15: Outer := 0;
16: else
17: ρk+1 := ρk;
18: k := k + 1;
19: end if
20: end while
21: xopt := xk;

The TR methods are originally developed to solve unconstrained optimization problems, but have been gradually
applied to constrained problems as well. The TR methods start from an initial pointx0 and find a critical point by
computing a series of intermediate points{xk}k∈N. Specifically, suppose the current point isxk; to compute the next
point, the algorithms solve a TR subproblem in which surrogates of the objective function and the constraints are
constructed and used in a neighborhood ofxk. This neighborhood ofxk is known as the trust-region and the size of
it is adjusted in a way that the surrogate models are sufficiently accurate in it. In our problem, as has been mentioned,
the objective function is of simple form, and we only need to construct the surrogate for the constraint function. As a
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result, in our RBDO problems, the TR subproblem at iterationk becomes

min
x∈D

f(x),

s.t. sk(x) ≤ 0, and ‖x− xk‖ ≤ ρk, (2)

wheresk(x) is the surrogate model ofc(x), andρk is the radius of the TR ofxk. In what follows we use the notation
O(xc, ρ

∗) = {x|‖x− xc‖ ≤ ρ∗}.
In the standard TR algorithms, the surrogate models are determined from the derivatives of the constraint function,

which are not available in our problems. Here in the derivative-free framework, one first writes the surrogate model
as a linear combination of a set of basis functions and then determines the coefficients with either regression or
interpolation. There are many different choices for the surrogate models, including polynomial response surfaces,
radial basis functions, etc. [22]. Here we write the surrogate in a rather generic form:

s(x) =

L
∑

l=1

albl(x), (3)

where{bl(x)}Ll=1 are a set of basis functions anda = (a1, ..., aL)
T is the vector collecting all the coefficients.

Before discussing the construction of the surrogate models, we first present our DF-TR based method for solving
the RBDO problems. We describe the complete procedure in Algorithm 1. A key step in a TR algorithm is to adjust
the radius of the trust-region in each step. In this respect our algorithm follows the procedure given in [23], with
certain modifications. The first modification is that the original algorithm adjusts the TR radius based on the quality
of surrogates for both the objective and the constraint functions, while in our algorithm, the radius is only adjusted
according to the constraint function. The trust-region subproblem Eq. (2) can be solved with any usual constrained
optimization technique, and in this work we choose to use thesequential quadratic programming (SQP) method. The
algorithm terminates when either of the following two conditions are satisfied:xk+1 is an inner point ofO(xk, ρk), or
the difference betweenf(xk) andf(xk+1) is sufficiently small. We note that a key step of the algorithmis to evaluate
the failure probabilites and contruct a surrogate for it in each TR, which will be discussed in the next section.

3. FAILURE PROBABILITY ESTIMATION

In this section, we discuss how to evaluate the reliability constraint functionc(x). Recall that we consider the con-
straint in the form ofc(x) = lnP (x) − ln θ ≤ 0, and thus the key in evaluatingc(x) is to estimate the failure proba-
bility P (x). As is mentioned in Section 1, estimating the failure probability is computationally intensive and requires
advanced sampling techniques. Among many such efficient sampling techniques, we adopt the cross-entropy (CE)
method [27, 28], an adaptive importance sampling (IS) scheme, to estimate the failure probability. The CE method is
a quite general IS strategy and has been under intense development since its introduction. It has been applied to many
practical problems, including structural safety [29], communication systems [30, 31], etc.

3.1 MC Estimation and Importance Sampling

Here we describe the failure probability estimation problem in a general setting. We consider a probabilistic model
wherez is a dz-dimensional random variable that represents the uncertainty in the model and the system failure is
defined with a real-valued functiong(z;x) of both the random variablez and the design variablex, which is known
as thelimit state function. Without causing any ambiguity, we omit the argumentx in g for conciseness. The event of
failure is defined asg(z) < 0 and as a result the failure probability is

P(g(z) < 0) =

∫

{z∈Rdz |g(z)<0}

q(z)dz =

∫

z∈Rdz

I{g<0}q(z)dz, (4)

whereI{g<γ}(z) is an indicator function:

I{g<γ} =

{

1 if g(z) < γ

0 if g(z) ≥ γ
,
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andq(z) is the probability density function (PDF) ofz. In what follows we shall omit the integration domain when it
is simplyRdz. This is a general definition for failure probability, whichis used widely in many disciplines involving
reliability analysis and risk management.P can be computed with the standard Monte Carlo estimation:

P̂MC =
1

N

N
∑

n=1

I{g<0}(z
(n)), (5)

where samplesz(1), ..., z(N) are drawn from distributionq(z).
In practice, however, many engineering systems require high reliability, namely, the failure probabilityP ≪ 1. In

this case, MC requires a large number of samples to produce a reliable estimate ofP . For example, forP ≈ 10−6, MC
simulation requires108 samples to obtain an estimate with10% coefficient of variation. On the other hand, in almost
all practical cases, the limit state functiong(z) does not admit analytical expression and has to be evaluatedthrough
expensive computer simulations, which renders the crucialMC estimation of the failure probability prohibitive.

The technique of IS is an effective way to accelerate the standard MC simulation. The idea of IS is that, instead of
sampling directly from the densityq(z) directly, one introduces a biasing distributionp(z) and rewrites Eq. (4) as

Pf =

∫

I{g<0}(z)
q(z)

p(z)
p(z)dz =

∫

I{g<0}(z)W (z)p(z)dz, (6)

whereW (z) = q(z)/p(z) is the likelihood ratio. One then has the IS estimator forP :

PIS =
1

N

N
∑

n=1

I{g<0}(z
(n))W (z(n)), (7)

where samples{z(n)} are drawn from the biasing distributionp(z). The key in designing an effective IS method
is to construct a “good” biasing distributionp(z) so that more samples will land in the failure domain, while the
contributions of the samples will be adjusted by the likelihood ratio. The successful design of the biasing distribution
is, however, not a trivial task, and considerable efforts have been devoted to this issue.

3.2 The Cross-Entropy Method

There exist several different approaches for IS, some of which are problem dependent. Here we employ the cross-
entropy (CE) method, which adaptively searches for a good biasing distribution without requiring any specific in-
formation of the underlying problem. For detailed overviews of the method, see [27, 28]. Here we provide a brief
introduction to the CE method for our specific purposes.

It is well know that the “optimal” biasing distribution exists:

p∗(z) =
1

P
I{g<0}(z)q(z). (8)

It will result in zero variance in Eq. (6) and therefore require only a single sample to evaluate the integral. The
problem is that it depends on the unknownPf and thus cannot be of direct use. Nevertheless, one can find a good
biasing distribution by requiring that it is “close” to the optimal one. The key ingredient of the CE method is the use
of cross-entropy, also known as Kullback-Leibler divergence (KLD) [27], between two probability distributions to
optimally determine the biasing distribution in Eq. (6). For two distributionsp1 andp2, the CE, or KLD, takes the
following form:

D(p1, p2) = Ep1

[

ln
p1(z)

p2(z)

]

=

∫

p1(z) ln
p1(z)

p2(z)
dz. (9)

It is easy to verify thatD(p1, p2) ≥ 0, where equality is achieved whenp1 = p2 a.e.
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To be specific, in the CE method, the biasing distributionp(z) in Eq. (6) is determined by requiringp(z) to be
“close” top∗(z), in terms of the CE distance.The CE distance fromp∗ to p can be written in two parts:

D(p∗, p) =

∫

p∗(z) ln p∗(z)dz−

∫

p∗(z) ln p(z) dz. (10)

Minimizing Eq. (10) is equivalent to maximizing the second integral on the right-hand side. In practice, one often
searches for the biasing distribution from a parametrized family of distribution{p(z;v)}v∈V , whereV is the space
of the parameterv. By using Eq. (8), the optimization problem Eq. (10) becomessolving for

max
v

∫

I{g<0}(z) ln(p(z;v))q(z)dz.

However, the same difficulty caused by the rareness of{g < 0} in term of the distributionq(z) persists. To circumvent
the difficulty, the idea of IS is again utilized. By adopting another biasing distributionp(z;w) we obtain the following
optimization problem:

max
v

∫

I{g<0}(z)W (z;w) ln(p(z;v))p(z;w)dz, (11)

whereW (z;w) = q(z)/p(z;w) is the likelihood ratio. In practice, the stochastic counterpart of Eq. (11) is usually
employed. Let{z(i)}Mi=1 be samples drawn from the distributionp(z;w); we solve

v̂ = argmaxv∈V

1

N

N
∑

n=1

I{g<0}(z
(n))W (z(n);w) ln(p(z(n);v)). (12)

The stochastic optimization problem Eq. (12) can be solved by a multilevel algorithm, which generates a sequence of
reference parametersvk and a sequence of decreasing levelsγk > 0 with k = 0, 1, 2, . . . These sequences are then
used to define intermediate failure domains{g(z) < γk} under distributionp(z;vk), instead ofp(z;w) as in Eq. (11),
whose probability is not rare. The iteration terminates when the levelγk reaches zero, resulting in the original failure
domain, and the convergedvk defines the biasing distributionp(z;v) in the IS integral Eq. (6). The complete multilevel
algorithm and the convergence analysis can be found in [27].We note that a major issue in the implementation of the
CE method is to choose an appropriate parametrized family for the biasing distribution. Here we follow the work of
Wang and Zhou [32], using Gaussian mixtures to represent thebiasing distributions, mainly because they have high
flexibility and the optimal parameter values can be efficiently computed. The detailed algorithm to update the biasing
distributions is well documented in [32] and we shall not repeat it here.

3.3 Recycling the Limit State Function Evaluations

Recall that in Algorithm 1, we need to evaluate the failure probability at a number of design points in the TR to
construct the surrogate function. Since each evaluation requires a full CE sampling procedure, the total computational
cost can be very high. To improve the efficiency, we present a reweighting approach, which allows one to obtain the
failure probability values at all design points with one full CE based reliability analysis. Following the formulations in
[17], we assume that the design parametersx only affect the reliability via the distribution of the random parameters
x, while the limit state function is independent of the designparameters, namely,

P (x) =

∫

I{g<0}(z)q(z;x)dz, (13)

whereq(z;x) is the PDF ofz depending on the design parameterx. Suppose we have performed a CE estimation of
the failure probability at the center of the TR,xc, obtaining a biasing distributionp(z) and a set of samples from it:
{(zi, g(z

(n)),W (z(n)))}, whereW (z) = q(z;xc)/p(z). For any pointx in the TR, we can rewrite Eq. (13) as

P (x) =

∫

I{g<0}(z)
q(z;x)

q(z;xc)
q(z;xc)dz =

∫

I{g<0}(x)W (z)r(z)p(z)dz,
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wherer(z) = q(z;x)/q(z;xc). It follows immediately thatP (x) can be estimated as

P̂ (x) =

N
∑

n=1

I{g<0}(z
(n))W (z(n))r(z(n)), (14)

i.e., by simply assigning new weightsr(z) to the samples generated in the evaluation ofP (xc). In this method,
only the computation ofP (xc) involves the evaluations of the limit state functiong(·), which is referred to asa full
reliability evaluation. Note that, if the TR region is large, it is possible that the biasing distribution obtained atxc

is not good for other locations. Thus we need to introduce step size restrictions on the TR to ensure thatp(z) is a
good biasing distribution for any pointx in the TR. This step is included in our algorithm to constructthe constraint
surrogates, which is discussed in the next section.

3.4 Construction of the Surrogate Models

We now discuss the construction of the surrogates, which is acritical step in the optimization algorithm. The general
form of the surrogate has been given by Eq. (3), while the basis functions are not specified. Now we choose to use the
popularquadratic polynomialsurrogates, while noting that the proposed algorithm does not depend on any particular
type of surrogates. As has been mentioned, the coefficientsa in Eq. (3) can be determined by either interpolation or
regression.

The surrogate construction procedure highlights a difference between our algorithm and the standard DF-TR
methods. In the standard DF-TR algorithms, the surrogate models are required to be fully linear or fully quadratic [22].
Imposing such conditions is very difficult in RBDO problems as the failure probability is evaluated with sampling
methods. Thus here we simply require that the error between the surrogate and the true constraint function is bounded
in the TR: for a givenǫ > 0 and a TRO(xc, ρ), |s(x)− c(x)| ≤ ǫ for anyx ∈ O(xc, ρ).

Now, we propose a scheme to construct the TR surrogate with a bounded error, which is described in Algorithm 2.
Simply speaking, the algorithm constructs the quadratic regression and examines whether the resulting surrogate
satisfies the error bound condition, and if not, the algorithm contracts the TR and repeats. Some remarks regarding the
implementation details are listed in order:

1. The number of sampling pointsM is determined as [22]

M =
√

dx(dx + 1)(dx + 2)/2,

wheredx is the dimension ofx.

2. In Line 12, we estimate the approximation error with the leave-one-out cross validation method. Namely, let
X = {x1, ...,xM} andY = {y1, ..., yM} andym = c(xm) for m = 1...M . Let Xm

− = {x1, ...,xm−1,
xm+1, ...,xM} andY m

− = {y1, ..., ym−1, ym+1, ..., yM}. Let sm(x) be the surrogate model based on data
(Xm

− , Y m
− ) and the approximation errorǫ is estimated by

ǫ = max{|c(xm)− sm(xm)|}Mm=1.

3. As is discussed in the previous section, we need to reduce the TR size when the biasing distributionp(z)
obtained atxc is not good for some points in the TR. In particular, we compute the coefficient of variation (CV)
for the failure probability computed at each pointx drawn in the TR:

α =

(

∑N
n=1 Ig<0(z

(n))W 2(z(n))r2(z(n))− P̂ 2
)1/2

P̂
, (15)

whereP̂ is computed with Eq. (14). We then reduce the TR radius if the largest CV exceeds a threshold value.
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Algorithm 2. [s(·), ρ] = SurrogConstruct(xc, ρmax, ǫ
∗,ω,M,α∗)

1: let ρ := ρmax; LOOP := 1;
2: perform CE simulation atxc, obtaining the biasing distributionp(z) and the set{g(z(1)), ..., g(z(N))} where

x1, ..., xN are drawn fromp(z);
3: while LOOP= 1 do
4: randomly generateM − 1 points inO(x, ρ): {xm ∈ O(x, ρ)}M−1

m=1 ;
5: let xM = xc;
6: compute the CV of the failure probability estimated at eachxm for m = 1...M − 1 with Eq. (15), and denote

the results as{α1, ...,αM−1};
7: if max{α1, ...,αM−1} > α∗ then
8: ρ := ωρ;
9: else

10: let ym = c(xm) for m = 1...M ;
11: compute the surrogates(x) using data set{(xm, ym)}Mm=1;
12: estimate the approximation error boundǫ of s(·) with leave-one-out cross validation;
13: if ǫ < ǫ∗ then
14: LOOP:= 0;
15: else
16: ρ := ωρ;
17: end if
18: end if
19: end while
20: return s(·) andρ.

4. NUMERICAL EXAMPLES

In this section, we provide one mathematical and three practical examples to illustrate the performance of the proposed
DF-TR algorithm.

4.1 A Two-Dimensional Example

We first consider a two-dimensional mathematical example:

min
(x∈R+, r∈R+)

f(x, r) = ax2 +
b

r
,

s.t. P[(z1 − zx)
2 + (z2 − zx)

2 ≤ zr] ≤ Pmax,

(16)

wherez1, z2, zx, andzr are four independent Gaussian random variables. In particular, we takez1, z2 ∼ N(0, 1),
zx ∼ N(x,σ2

x), andzr ∼ N(r,σ2
r). The geometric interpretation of the problem is that the event of failure is defined

as the random variable(z1, z2) falls inside the disk{(z1− zx)
2 +(z2− zx)

2 ≤ zr}, and by increasing the “cost,” one
can reduce the failure probability by either moving the center of the disk apart from the means of random variables
(z1, z2), or reducing the radius of the disk. In our numerical tests, we choosea = 2, b = 1, σx = 10−2, and
σr = 10−3.

We test two different cases:Pmax = 0.1 andPmax = 10−6. We solve the problem with our DF-TR algorithm,
where the failure probability is with the CE method. The algorithm parameter values are given in Table 1, and are
used in all the numerical examples. In the CE method, we use the multilevel algorithm, where the biasing distribution
is chosen to be Gaussian,104 samples are generated in each iteration, and the10% samples with the lowest limit
state function values are used to evaluate the parameter values for the next iteration. As a comparison, we also solved
the problem with a standard active set method [33] for constrained optimizations, where the gradients are computed
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TABLE 1: The parameter values of the DF-TR algorithm

Parameter ρ0 ǫ∗ ω− ω+
M δ

Value 0.1 0.1θ 0.9 1.1 20 10−4

with the score function (SF) method (see Appendix A). We notethat, in the estimation of the gradients with the
score function method, we also employ the multilevel CE method with 105 samples in each iteration, which renders
the gradient estimation more expensive than the failure probability evaluation. Since both methods employ sampling
procedure subject to random errors, to take that into account, we repeatedly solve the problem with both methods 100
times and summarize the results of both methods in Table 2. Specifically, we compare the feasibility rate, defined as the
percentage of the feasible solutions obtained,∗ the average (over all feasible solutions) minimal cost, andthe average
number of function evaluations.† The results indicate that our DF-TR method is more robust (higher feasibility rate)
and more efficient (fewer function evaluations) than the SF based optimization. Finally we note that, to valid the CE
method, we have also performed the DF-TR optimization with standard MC (105 samples) for the caseP < 0.1, and
the results are very similar to those of the CE based DF-TR andso are omitted here.

4.2 Cantilever Beam

We now consider a cantilever beam problem as illustrated in Fig. 1, with widthW , heightT , lengthL, and subject
to transverse loadY and horizontal loadX . This is a well adopted bench-mark problem in engineering, where the
system failure is defined as the maximum deflection exceedinga threshold value:

g = Do −
4L3

EWT

√

(

Y

T 2

)2

+

(

X

W 2

)2

,

whereDo is the deflection threshold andE is the Young’s modulus. In this example we assume the beam lengthL is
fixed to be 100 andDo = 6. The random variables are as follows: the elastic moduleE ∼ N (29×106, (1.45×106)2),
external loadsX ∼ N (500, 252), andY ∼ N (500, 252), and the actual beam widthW ∼ N(w,σ2) and height
T ∼ N(t,σ2), respectively. The mean widthw and the mean heightt are design variables, and our goal is to minimize
the construction cost:

f(w, t) = wt, (17)

subject to the associated failure probability being smaller than10−6. To test how the algorithm is sensitive to the value
of the varianceσ2, we solve the problem withσ = 10−2 andσ = 10−3.

We solve the problem with the DF-TR method, where the algorithm parameter values are also given in Table 1, and
in the CE procedure we use the same configurations as those in example 1. To illustrate the behavior of the algorithm,
we plot the path from the initial guess to the converged solution for σ = 10−3 in Fig. 2(a), and the function value
against the number of iterations in Fig. 2(b). The figures demonstrate two main properties of the DF-TR method:

TABLE 2: Comparison of the performance of DF-TR and SF for example 1

Feasible Rate Minimal Cost Full Evaluations
P < 0.1 SF 88% 2.10 137

DF-TR 100% 2.15 13
P < 10−6 SF 79% 24.97 152

DF-TR 100% 24.94 50

∗Throughout this work, we call a solution feasible if the resulting failure probability is smaller than1.1Pmax, i.e., 10% error being
allowed.

†In the DR-TR method, a function evaluation is referred to as afull evaluation of the reliability constraint, and in the SFbased
method, it is referred to as an evaluation of the constraint or the gradient of it.
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FIG. 1: The schematic diagram of the cantilever beam.
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FIG. 2: (a) the path from the initial guess to the final solution (the solid line is the boundary of the feasible region,
also computed with the CE method). (b) the function value plotted against the number of iterations and the dashed
line shows the cost associated with the exact solution.

during the iterations, it does not violate the reliability constraint or increase the cost function value. In the SF based
method, we also use105 samples in each iteration to compute the gradients. We solvethe problem with each method
100 times and compare their performance in Table 3. The results indicate that, forσ = 10−2, both methods perform
very well and are able to find feasible solutions in all trials. However, forσ = 10−3, the two methods perform very
differently: the DF-TR method still finds feasible solutions in all the trials, while the SF based method fails in all of
them. The SF based method does not perform well in our test, because with a limited number of samples, the gradient
estimates are not reliable. We note that the performance of the SF method can be improved by increasing the number
of samples, which certainly results in much higher computational cost.

4.3 Vehicle Side Impact

Our third example is the vehicle side impact problem used as abench-mark example in several works [2, 8, 18].
For side impact protection, the vehicle design must satisfycertain safety requirements which can be expressed as
the reliability constraints. The goal of the problem is thento minimize the total weight, subject to 10 such reliabil-
ity constraints of four types: head injury criterion (HIC) constraint, abdomen load, pubic symphysis force, viscous
criteria (VC), and rib deflections (including upper, middle, and lower). In our test, we assume that the problem has
11 random parameters denoted asz = (z1, ..., z11), which are independent and follow Gaussian distributions.The

TABLE 3: Comparison of the performance of DF-TR and SF for example 2

Feasible Rate Minimal Cost Full Evaluations
σ = 10−2 SF 100% 4.73 143

DF-TR 100% 4.71 46
σ = 10−3 SF 0% - -

DF-TR 100% 4.71 48
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means ofz1, ..., z7 are the design parameters and those ofz8, ..., z11 are fixed. The meaning and the specifications
of the random and design parameters are given in Table 4. The mathematical formulation of this RBDO problem is
described as

min
xL≤x≤xU

Weight(x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7

s.t. P[abdomen load> 1.0 kN] ≤ Pmax

P[upper/middle/lower VC> 0.32 mls] ≤ Pmax

P[upper/middle/lower rib deflection> 32 mm] ≤ Pmax

P[pubic symphysis force F> 4.0 kN] ≤ Pmax

P[velocity of B-pillar at middle point> 9.9 mm/ms] ≤ Pmax

P[velocity of front door at B-pillar> 15.7 mm/ms] ≤ Pmax.

(18)

The specific forms of the limit state functions are

Load abdomen= 1.16− 0.3717z2z4 − 0.00931z2z10 − 0.484z3z9 + 0.01343z6z10,

Deflection ribu = 28.98 + 3.818z3 − 4.2z1z2 + 0.0207z5z10 + 6.63z6z9 − 7.73z7z8 + 0.32z9z10,

Deflection ribm = 33.86 + 2.95z3 + 0.1792z10 − 5.057z1z2 − 11z2z8 − 0.0215z5z10 − 9.98z7z8

+ 22z8z9,

Deflection ribl = 46.36− 9.9z2 − 12.9z1z8 + 0.1107z3z10,

VC upper= 0.261− 0.0159z1z2 − 0.188z1z8 − 0.019z2z7 + 0.0144z3z5 + 0.0008757z5z10

+ 0.08045z6z9 + 0.00139z8z11 + 0.00001575z10z11,

VC middle= 0.0214 + 0.00817z5 − 0.131z1z8 − 0.0704z1z9 + 0.03099z2z6 − 0.018z2z7

+ 0.0208z3z8 + 0.121z3z9 − 0.00364z5z6 + 0.0007715z5z10 − 0.0005354z6z10

+ 0.00121z8z11,

VC lower= 0.74− 0.61z2 − 0.163z3z8 + 0.001232z3z10 − 0.166z7z9 + 0.0227z22,

Force pubic= 4.72− 0.5z4 − 0.19z2z3 − 0.0122z4z10 + 0.009325z6z10 + 0.00019z211,

Velocity B-Pillar= 10.55− 0.674z1z2 − 1.95z2z8 + 0.02054z3z10 − 0.0198z4z10 + 0.028z6z10,

Velocity Door= 16.45− 0.489z3z7 − 0.843z5z6 + 0.0432z9z10 − 0.0556z9z11 − 0.000786z211.

(19)

TABLE 4: Random parameters in the vehicle side impact problem.
The 8th to 11th random variables are not regarded as design variables

Random Variable Std. Dev Mean x
L

x
U

z1(B-pillar inner) 0.030 x1 0.500 1.500
z2(B-pillar reinforce) 0.030 x2 0.500 1.500
z3(Floor side inner) 0.030 x3 0.500 1.500
z4(Cross member) 0.030 x4 0.500 1.500
z5(Door beam) 0.030 x5 0.500 1.500

z6(Door belt line) 0.030 x6 0.500 1.500
z7(Roof rail) 0.030 x7 0.500 1.500

z8(Mat. B-pillar inner) 10−3 0.345 - -
z9(Mat. floor side inner) 10−3 0.192 - -

z10(Barrier height) 10−3 0 - -
z11(Barrier hitting) 10−3 0 - -
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Here we setPmax = 10−3 and solve the problem with the proposed DF-TR method (with104 samples in CE).
The initial condition is chosen to be(0.5, 1.5, 0.5, 1.5, 1.5, 1.5, 1.5), and the algorithm terminates in 11 iterations,
obtaining a solution:(0.50, 1.33, 0.50, 1.34, 1.38, 1.37, 1.41). We present more results in Table 5. In particular, in
the table, we show the weight and the maximum failure probability associated with the design parameter values at the
1st, 5th, and 11th iterations, respectively. We also show the numbers of full reliability evaluations performed in the
table. The results indicate that the proposed method can apply to this real-world RBDO problem, even for a rather
small failure probability requirement (<10−3). We have also applied the SF based optimization with105 samples
to this example, and the algorithm fails to converge to a feasible solution, which suggests that the SF based method
requires significantly more computational efforts to compute a solution.

5. CONCLUSIONS

In summary, we have proposed a derivative-free trust-region double loop algorithm to solve the reliability based
optimization problems. An important feature of the algorithm is that we employ a sample reweighting method so
that the TR surrogate can be obtained by performing a single full reliability evaluation. With both mathematical and
practical examples, we show that the method is more robust and efficient than the popular SF based method. We
believe the proposed DF-TR algorithm can be useful in a wide range of practical engineering design problems.

We want to reinstate that the main purpose of this work is to present an optimization scheme that can solve the
RBDO problem with a small number of full reliability evaluations. On the other hand, there are a number of methods
that can efficiently evaluate the failure probability by constructing surrogates for the limit state functions, and these
methods can be readily incorporated in the proposed DF-TR algorithm, to improve the overall efficiency. Developing
such surrogate based DF-TR algorithm is not in the scope of the present work, but is an interesting problem that we
plan to study in the future. Finally note that we are not able to provide a convergence analysis of the proposed method
in this work, and we also hope to address this issue in a futurework.

TABLE 5: The optimization results for the vehicle side impact example

Iterations Weight Max Failure Probability Total Full Evaluations
1 30.7 3.4× 10−4 0
5 29.0 7.6× 10−4 5
11 28.4 9.0× 10−4 27
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APPENDIX. THE SCORE FUNCTION METHOD

Here we provide a brief description of the score function method to compute the gradient of the reliability constraints.
Under certain conditions [17, 20], the gradient of the failure probability with respect to the design parameters can be
written as

∂P

∂xi
=

∂

∂xi

∫

I{g>0}(z)q(z;x)dz =

∫

I{g>0}(z)
∂

∂xi
q(z;x)dz

=

∫

I{g>0}(z)
∂

∂xi
ln[q(z;x)]q(z;x)dz = Eq[I{g>0}(z)s(z;x)],

(A.1)

where

s(z;x) =
∂

∂xi
ln(q(z;x)),

is known as the score function. It should be clear that the partial derivatives Eq. (A.1) then can be estimated with a
MC simulation or the CE method, just like the failure probability itself. More details of the score function method,
including how to derive the score functions(z;x) for various distributions can be found in [17, 20] and the references
therein, and shall not be repeated in this paper.
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