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Many engineering applications require optimization of the system performance subject to reliability constraints, which
are commonly referred to as the reliability based design and optimization (RBDO) problems. In this work we propose a
derivative-free algorithm to solve the RBDO problems. In particular, we focus on the type of RBDO problems where the
objective function is deterministic and easy to evaluate, whereas the reliability constraints involve very small failure
probabilities. The algorithm consists of solving a set of subproblems, in which simple surrogate models of the reliability
constraints are constructed and used in solving the subproblems. Moreover, we employ a cross-entropy (CE) method
with sample reweighting to evaluate the rare failure probabilities, which constructs the surrogate for the reliability
constraints by performing only a single full CE simulation in each iteration. Finally we demonstrate the performance
of the proposed method with both academic and practical examples.

KEY WORDS: uncertainty quantification, stochastic optimization, stochastic sensitivity analysis, Monte
Carlo methods, computational design

1. INTRODUCTION

Real-world engineering systems are inevitably subjectatous uncertainties such as material properties, geomet-
ric parameters, manufacturing tolerances, and applietiiga. Optimization of the system performance under the
influence of those uncertainties is an essential task of mpaagtical engineering design problems. A particularly
important problem in this setting, known as the reliabiligsed design and optimization (RBDO), is to optimize
the system performance subject to the constraint that thiersyreliability satisfies a prescribed requirement. Such
problems have wide applications in many fields, especiallyctural, mechanical, and aerospace engineering [1, 2].
Developing efficient and accurate methods to solve the RBRXBlpms has been an active research topic in the past
decades (see the reviews [1-5] and the references therein).

In a standard RBDO problem, the reliability constraint igitally formulated as that the failure probability of the
system is lower than a threshold value. Existing methodsdtring RBDO problems can be largely organized into
three groups [4, 5]: the double loop, the single loop, andigeoupling methods. The double loop methods resemble
the most natural formulation of the RBDO problems: the inonep which estimates the failure probability is nested
in the outer loop which solves the optimization problem. Biegle loop methods, first proposed in [6], replace
the probabilistic constraint with an approximate, det@istic constraint, so that standard numerical optimizatio
techniques directly apply. Another way to avoid the doublgpl computation is to separate the reliability analysis
procedure and the optimization procedure, and informditaom the reliability analysis step is used at the optimizatti
step when it is needed. As a result, the method does not peftdirreliability analysis for each time the optimization
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procedure arrives at a new pointin the design space. Metifalds kind are referred to as the decoupling approaches,
including [7, 8].

In this work we focus on the double loop approaches wherediiegility constraints are estimated by simulating
the underlying system, and so methods based on approxgrthtnreliability constraints (see, e.g., [9]), are not in
our scope. When applicable, the simulation based doubferdoethods can usually produce more accurate and reli-
able results than the other aforementioned techniquelegsip not make any simplification or approximation of the
problem. More importantly, such methods only require thétalbo evaluate the limit state function of the underlying
system, which makes it particularly convenient for prokdenith black-box models. On the other hand, the major
disadvantage of the simulation based double loop appraatiei high computational cost associated with it. The
computational burden arises from both the inner and ther tad@s. Namely, the total computational cost depends
on the number of reliability (failure probability) evalimts required by the optimization algorithm and the cost for
performing each single failure probability evaluationtte inner loop, the failure probability is typically compat
with Monte Carlo (MC) simulations, which requires a rattegle number of samples, and each sample involves a full
scale simulation of the underlying system. Considerabitatsthave been devoted to studies of methods to efficiently
simulate the failure probability, which typically emploitreer of the following two strategies. The first is to develop
advanced sampling methods (see, e.g., [10] for an overt@mwhtain reliability estimates of the failure probability
with a limited number of samples. The other one is to constuwomputationally inexpensive surrogate for the un-
derlying system model, and replace the true model with theogate in the MC simulation, e.g., [11-14]. The two
types of methods can also be employed together to achieter besults [15, 16]. In this work we choose to use an
advanced sampling method to accelerate the computatiailafd probability, and also, we use an efficient optimiza-
tion method that can solve the RBDO problems with a small remalb reliability evaluations. A difficulty here is
that, due to the use of MC simulations, it is very difficult totain the analytical expressions of the derivatives of the
reliability constraints. Several works (e.qg., [17-19]palate the difficulty by performing stochastic sensithétnaly-
sis with the so-called score functions (SF) [20]. Once traeligmts are computed, the problem can be readily solved
with a standard numerical constrained optimization tegh@i As will be illustrated later, a major issue of the method
is that it requires a very large number of MC samples, andrafilse the gradients estimated may not be reliable.

On the other hand, a very attractive class of optimizatiohiiéggues, known as the derivative-free (DF) trust-region
(TR) methods [21, 22], have been developed to solve probldmse derivatives are difficult to obtain. Most DF-TR
algorithms are designed to solve unconstrained optinsizgiroblems, while some constrained DF-TR algorithms
have been developed as well (see, e.g., [22]). In particalaecent work [23] proposes a DF-TR algorithm with
provable convergence for noisy objective and/or condtfaimctions. Loosely speaking, the DF-TR methods consist
of solving a set of TR subproblems in which surrogate modéth@ objective and/or the constraint functions are
constructed and used in solving the subproblems. In péaticilne surrogates are often constructed with regression
or interpolation, namely, without using the derivativestioé functions. In a short note [24], we outline a DF-TR
scheme for RBDO problems, and in this work we discuss theemphtation details, especially when the failure
probability is small. In particular, we consider the sitoatthat the objective function is deterministic and in aslien
form, and so one only needs to construct surrogate modetkdaeliability constraints. However, the computational
cost poses a major challenge for using the DF-TR methods D@RPBroblems, as constructing a surrogate model
with regression or interpolation requires repeated evimnaf the reliability constraints, which is computatidiga
intensive. Thus our algorithm employs a special adaptiygoirance sampling scheme known as the cross-entropy
(CE) method, with sample reweighting, which only usessrgle full reliability evaluatiorto construct the surrogates
of the constraints in each TR iteration. With humerical eplrs, we demonstrate that the DF-TR methods can be
more robust and efficient than the score-function basedadstin certain problems. Finally we note that, from an
alternative perspective, the proposed DF-TR method candweed as an extension of the works [25, 26], where the
failure probability is approximated with an exponentiahétion. An advantage of the present work is that the TR
formulation provides an effective and rigorous framewarkandle the surrogates of the reliability constraints.

The paper is organized as follows. We present our DF-TR dlgoifor RBDO problems in Section 2. We describe
the evaluation of reliability constraints in Section 3. Weyide both mathematical and practical bench-mark exasnple
to demonstrate the performance of the proposed algoritt®eation 4. Finally we offer some concluding remarks in
Section 5.
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2. THE DF-TR ALGORITHM FOR RBDO PROBLEMS

There are several different formulations of the RBDO protdeAmong them, a very common form is to minimize a
deterministic cost function subject to the constraint thatfailure probability is lower than a threshold value, i
is mathematically given as
min f(x),
xeD (1)
st. c¢(x):=InP(x)—1nd <0,

wherex is the design parametdb, is the design spacg-) is the cost functionP(-) is the failure probability, an@
is the failure probability threshold. In many applied prk, the cost function is deterministic and easy to evaluate
while computing the probabilistic constraint is much moostty as it requires large scale MC simulations. We will
discuss how to compute the failure probability in the nextisa, and here we simply regard it as a computationally
intensive function.

Due to the high computational cost Bfx) or equivalently:(x), a natural idea to solve the problem is to construct
a computationally efficient surrogate for the constra{nt), and then solve the optimization problem subject to the
surrogate constraint. The trust-region methods providgaaus formulation of the surrogate based optimizatian. |
what follows we present our TR based RBDO algorithm in detail

Algorithm 1. The derivative-free trust-region RBDO algorithm

Require: f(x), ¢(x), Po, Pmin, €%, W, &*, K, M, 8, xq.
Ensure: Solutionx,pt;

1: Outer :=1;k :=0;

2: while Outer = 1do

3: Inner :=1;

4 while Inner = 1do

5 [sk(x), px] := SurrogConstruct(xy, p, €*, w, M, oc*)
6: X1 1= arg Milyeo(xy,pp) J(X), S.tosx(x) < 0;

7 if ¢(xg41) < 0then

8 Inner :=0;

o: Pr = W pg;

10: else

11 Pk 1= W Pg;

12: end if

13: end while

14: if [|xpgr — xk|] < pr OF || f(%k+1) — f(xk)|| < 8 0rpg. < pmin then
15: Outer ;= 0;

16: else

17: Pk+1 = Pk,

18: k=k+1;

19: end if

20: end while

21 Xopt = Xk,

The TR methods are originally developed to solve unconmgtthoptimization problems, but have been gradually
applied to constrained problems as well. The TR methods fstan an initial pointx, and find a critical point by
computing a series of intermediate poifits, } .en. Specifically, suppose the current poinkis to compute the next
point, the algorithms solve a TR subproblem in which surteg®f the objective function and the constraints are
constructed and used in a neighborhooapf This neighborhood o%;, is known as the trust-region and the size of
it is adjusted in a way that the surrogate models are suffigiancurate in it. In our problem, as has been mentioned,
the objective function is of simple form, and we only needdastruct the surrogate for the constraint function. As a
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result, in our RBDO problems, the TR subproblem at iteratidmecomes
2y 69
st sg(x) <0, and ||x—xk| < px, (2)

wheresy(x) is the surrogate model efx), andpy, is the radius of the TR af. In what follows we use the notation
0(xc,p%) = {x[|x — x| < p*}.

In the standard TR algorithms, the surrogate models arerdeted from the derivatives of the constraint function,
which are not available in our problems. Here in the denafree framework, one first writes the surrogate model
as a linear combination of a set of basis functions and théermiénes the coefficients with either regression or
interpolation. There are many different choices for theayate models, including polynomial response surfaces,
radial basis functions, etc. [22]. Here we write the surtegaa rather generic form:

L
s(x) = Z arb(x), 3)
=1

where{b;(x)}£_, are a set of basis functions aad= (a1, ...,az)” is the vector collecting all the coefficients.

Before discussing the construction of the surrogate modedirst present our DF-TR based method for solving
the RBDO problems. We describe the complete procedure iorilgn 1. A key step in a TR algorithm is to adjust
the radius of the trust-region in each step. In this respectatgorithm follows the procedure given in [23], with
certain modifications. The first modification is that the ové algorithm adjusts the TR radius based on the quality
of surrogates for both the objective and the constrainttfans, while in our algorithm, the radius is only adjusted
according to the constraint function. The trust-regionpsoblem Eg. (2) can be solved with any usual constrained
optimization technique, and in this work we choose to usesé#itgiential quadratic programming (SQP) method. The
algorithm terminates when either of the following two cdiatis are satisfiedk,.1 is an inner point oD(xx, px), Or
the difference betweefi(x;) and f (xx+1) is sufficiently small. We note that a key step of the algoritaito evaluate
the failure probabilites and contruct a surrogate for itacle TR, which will be discussed in the next section.

3. FAILURE PROBABILITY ESTIMATION

In this section, we discuss how to evaluate the reliabildpstraint functiore(x). Recall that we consider the con-
straint in the form of(x) = In P(x) — In © < 0, and thus the key in evaluatingx) is to estimate the failure proba-
bility P(x). As is mentioned in Section 1, estimating the failure pralitslis computationally intensive and requires
advanced sampling techniques. Among many such efficienplézgntechniques, we adopt the cross-entropy (CE)
method [27, 28], an adaptive importance sampling (IS) seheémestimate the failure probability. The CE method is
a quite general IS strategy and has been under intense gewed since its introduction. It has been applied to many
practical problems, including structural safety [29], commication systems [30, 31], etc.

3.1 MC Estimation and Importance Sampling

Here we describe the failure probability estimation prabia a general setting. We consider a probabilistic model
wherez is ad.-dimensional random variable that represents the unogytai the model and the system failure is
defined with a real-valued functigy(z; x) of both the random variableand the design variable, which is known

as thdimit state functionWithout causing any ambiguity, we omit the argumeiih g for conciseness. The event of
failure is defined ag(z) < 0 and as a result the failure probability is

P(g(z) <0) = / q(z)dz = / L{g<oyq(2)dz, @)
{z€ Rz [g(2) <0} ZER?=
wherely, ., (z) is an indicator function:

I 1 if g(z) <vy
=10 ifgm) >y
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andq(z) is the probability density function (PDF) af In what follows we shall omit the integration domain when it
is simply R?-. This is a general definition for failure probability, whighused widely in many disciplines involving
reliability analysis and risk managememtcan be computed with the standard Monte Carlo estimation:

N
~ 1 n
Pyc = N ;H{,«Ko} (z™), )

where samples("), ..., z() are drawn from distribution(z).

In practice, however, many engineering systems requitte ttaligbility, namely, the failure probabilith < 1. In
this case, MC requires a large number of samples to prodwdible estimate oP. For example, foP ~ 10—, MC
simulation require30® samples to obtain an estimate with% coefficient of variation. On the other hand, in almost
all practical cases, the limit state functig(e) does not admit analytical expression and has to be evaltiatedgh
expensive computer simulations, which renders the criwt@estimation of the failure probability prohibitive.

The technique of IS is an effective way to accelerate thedstahMC simulation. The idea of IS is that, instead of
sampling directly from the densiiy(z) directly, one introduces a biasing distributipfx) and rewrites Eq. (4) as

VA
Pr = [ 1o @ LS pta)in = [ 1iyco@W (lp(a)ia ©)
whereW (z) = ¢(z)/p(z) is the likelihood ratio. One then has the IS estimatorFor
1 N
Pis = + ;H{M} (M)W (z(™), @)

where samplegz(™)} are drawn from the biasing distributigr{z). The key in designing an effective IS method
is to construct a “good” biasing distributigi(z) so that more samples will land in the failure domain, while th
contributions of the samples will be adjusted by the liketidl ratio. The successful design of the biasing distriloutio
is, however, not a trivial task, and considerable efforiseHzeen devoted to this issue.

3.2 The Cross-Entropy Method

There exist several different approaches for IS, some othvhre problem dependent. Here we employ the cross-
entropy (CE) method, which adaptively searches for a goadifg distribution without requiring any specific in-
formation of the underlying problem. For detailed oversesf the method, see [27, 28]. Here we provide a brief
introduction to the CE method for our specific purposes.

It is well know that the “optimal” biasing distribution exss

p(7) = Slige0) (2)a(2). ®)

It will result in zero variance in Eq. (6) and therefore raguonly a single sample to evaluate the integral. The
problem is that it depends on the unknowp and thus cannot be of direct use. Nevertheless, one can fiodé g
biasing distribution by requiring that it is “close” to th@timal one. The key ingredient of the CE method is the use
of cross-entropy, also known as Kullback-Leibler divergge(KLD) [27], between two probability distributions to
optimally determine the biasing distribution in Eq. (6).rfao distributionsp; andp,, the CE, or KLD, takes the
following form:

D(p1,p2) = Ep, [ln i;gﬂ = /p1 (z) In i;g; dz. 9)

It is easy to verify thatb(p1, p2) > 0, where equality is achieved when = p, a.e.
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To be specific, in the CE method, the biasing distributi¢n) in Eq. (6) is determined by requiringz) to be
“close” to p*(z), in terms of the CE distance.The CE distance fronto p can be written in two parts:

D(p*,p) = / p*(z)Inp*(z)dz — / p*(2z) Inp(z) dz. (10)

Minimizing Eq. (10) is equivalent to maximizing the secomtiegral on the right-hand side. In practice, one often
searches for the biasing distribution from a parametriaadilf of distribution{p(z; v)}vcv, whereV is the space
of the parametev. By using Eq. (8), the optimization problem Eqg. (10) becoswmsing for

ma [ Tiyco)(2) In(p(zi ) )a(2)dz

However, the same difficulty caused by the rareneggof 0} in term of the distributiorg(z) persists. To circumvent
the difficulty, the idea of IS is again utilized. By adoptingogher biasing distributiop(z; w) we obtain the following
optimization problem:

[ Ly oy (20 (25) In o) s )i, a1

whereW (z; w) = ¢(z)/p(z; w) is the likelihood ratio. In practice, the stochastic coupdet of Eq. (11) is usually
employed. Lef{z("}, be samples drawn from the distributip(e; w); we solve

N
. 1 n n n
v =argmaxey o Y Tigeoy (2™)W (2" w) In(p(z™); v)). 12)

n=1

The stochastic optimization problem Eg. (12) can be solyed imultilevel algorithm, which generates a sequence of
reference parameterg and a sequence of decreasing levels> 0 with £ = 0,1,2,... These sequences are then
used to define intermediate failure domafp$éz) < v} under distributiorp(z; vi,), instead op(z; w) asin Eq. (11),
whose probability is not rare. The iteration terminates mthe levely, reaches zero, resulting in the original failure
domain, and the converged defines the biasing distributigriz; v) in the IS integral Eq. (6). The complete multilevel
algorithm and the convergence analysis can be found in J2&]note that a major issue in the implementation of the
CE method is to choose an appropriate parametrized familthéobiasing distribution. Here we follow the work of
Wang and Zhou [32], using Gaussian mixtures to represerittséng distributions, mainly because they have high
flexibility and the optimal parameter values can be effitiecdmputed. The detailed algorithm to update the biasing
distributions is well documented in [32] and we shall notaafit here.

3.3 Recycling the Limit State Function Evaluations

Recall that in Algorithm 1, we need to evaluate the failureljability at a number of design points in the TR to
construct the surrogate function. Since each evaluatiguires a full CE sampling procedure, the total computationa
cost can be very high. To improve the efficiency, we preseeteighting approach, which allows one to obtain the
failure probability values at all design points with ond fOE based reliability analysis. Following the formulatsin
[17], we assume that the design parameteosily affect the reliability via the distribution of the raoich parameters
x, while the limit state function is independent of the degigmameters, namely,

P(x) = / Iy<o) (2)a(z; %)dz, (13)

whereq(z; x) is the PDF ofz depending on the design parameteSuppose we have performed a CE estimation of
the failure probability at the center of the TR,, obtaining a biasing distributiop(z) and a set of samples from it:
{(zi, g(z"™), W (2(™))}, whereW (z) = q(z; x.)/p(z). For any pointk in the TR, we can rewrite Eq. (13) as

P(x) = / Iy <o) (2) j((zf;;))q<z;xc>dz - / Iy <o) (W (2)r(@)p(2)dz,

International Journal for Uncertainty Quantification



A CE Accelerated Derivative-Free RBDO Algorithm 493

wherer(z) = q(z;x)/q(z; x.). It follows immediately tha?(x) can be estimated as

N
Px) = Lgeoy (2™ )W (&™)r(z™), (14)
n=1

i.e., by simply assigning new weight$z) to the samples generated in the evaluationP¢k.). In this method,
only the computation oP(x.) involves the evaluations of the limit state functigf), which is referred to aa full
reliability evaluation Note that, if the TR region is large, it is possible that thi@sng distribution obtained at.
is not good for other locations. Thus we need to introducp siee restrictions on the TR to ensure thét) is a
good biasing distribution for any poirtin the TR. This step is included in our algorithm to constiiiet constraint
surrogates, which is discussed in the next section.

3.4 Construction of the Surrogate Models

We now discuss the construction of the surrogates, whicltigtiaal step in the optimization algorithm. The general
form of the surrogate has been given by Eq. (3), while thestfasictions are not specified. Now we choose to use the
popularquadratic polynomiasurrogates, while noting that the proposed algorithm do¢g@pend on any particular
type of surrogates. As has been mentioned, the coefficiemt€q. (3) can be determined by either interpolation or
regression.

The surrogate construction procedure highlights a diffeeebetween our algorithm and the standard DF-TR
methods. In the standard DF-TR algorithms, the surrogatkete@re required to be fully linear or fully quadratic [22].
Imposing such conditions is very difficult in RBDO problenssthe failure probability is evaluated with sampling
methods. Thus here we simply require that the error betweesurrogate and the true constraint function is bounded
in the TR: for a givere > 0 and a TRO(x,, p), |s(x) — ¢(x)| < e foranyx € 0(x, p).

Now, we propose a scheme to construct the TR surrogate withiiaded error, which is described in Algorithm 2.
Simply speaking, the algorithm constructs the quadratizession and examines whether the resulting surrogate
satisfies the error bound condition, and if not, the algaritontracts the TR and repeats. Some remarks regarding the
implementation details are listed in order:

1. The number of sampling poinid is determined as [22]

M =+/d,(dy +1)(ds +2)/2,
whered,, is the dimension ok.

2. In Line 12, we estimate the approximation error with the/éeone-out cross validation method. Namely, let
X = {x1,..,xp}t andY = {y1,....,ym} andy,, = c(x) form = 1..M. Let X = {x1,...,Xm-1,
Xmt1, - Xpp andY"™ = {y1, ..o, Ym—1,Ym+1, -, Ya - LEL $™(x) be the surrogate model based on data
(X™ Y™) and the approximation erreris estimated by

e = max{|c(Xm) — " (Xm)|} 1.

3. As is discussed in the previous section, we need to reched R size when the biasing distributigiiz)
obtained ak. is not good for some points in the TR. In particular, we corefihe coefficient of variation (CV)
for the failure probability computed at each paintirawn in the TR:

~ 1/2
(25:1 Ly<o(2™)W2(2(™)r? (2(™) — PQ)
o E : (15)

whereP is computed with Eq. (14). We then reduce the TR radius iféingest CV exceeds a threshold value.
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Algorithm 2. [s(-), p] = SurrogConstru€k.., pmax, €*, w, M, o*)

1: letp := pmax; LOOP:=1;
2: perform CE simulation ak.., obtaining the biasing distributiop(z) and the sefg(z("), ..., g(z(™))} where
x1,...,xy are drawn fromp(z);

3: whileLOOP=1do
4 randomly generatd/ — 1 points ino(x, p): {x,, € 0(x, p)}¥=1;
5: letxy = x¢;
6: compute the CV of the failure probability estimated at eaghfor m = 1...M — 1 with Eq. (15), and denote
the results ago, ..., ocpr—1};
7: if max{oay,...,p7—1}+ > o then
8: p = wp;
9: else
10: lety,, = c(x,) form =1..M;
11 compute the surrogatgx) using data sef(x,,, ym )} ;;
12: estimate the approximation error boundf s(-) with leave-one-out cross validation;
13: if e < e*then
14: LOOP=0;
15: else
16: p = wp,
17: end if
18: end if
19: end while

20: return s(-) andp.

4. NUMERICAL EXAMPLES

In this section, we provide one mathematical and three ipa&xamples to illustrate the performance of the proposed
DF-TR algorithm.

4.1 A Two-Dimensional Example

We first consider a two-dimensional mathematical example:

b
min fz,7) = ax® + -,
(x€R*,reRY) T (16)

s.t. P[(Zl — ZI)Q + (22 - 21)2 < ZT‘] < Pmaxa

wherez, 22, 2., andz, are four independent Gaussian random variables. In platjoue takez;, zo ~ N(0, 1),

2y ~ N(z,02), andz, ~ N(r, 02). The geometric interpretation of the problem is that theneweéfailure is defined

as the random variable, z.) falls inside the disK (z; — z,)? + (22 — 2z.)? < 2,-}, and by increasing the “cost,” one
can reduce the failure probability by either moving the eeiwff the disk apart from the means of random variables
(21, 22), or reducing the radius of the disk. In our numerical tests,choosen = 2, b = 1, 0, = 1072, and

o, = 1073,

We test two different case®,,.x = 0.1 and P, = 10~5. We solve the problem with our DF-TR algorithm,
where the failure probability is with the CE method. The aihon parameter values are given in Table 1, and are
used in all the numerical examples. In the CE method, we wsmthitilevel algorithm, where the biasing distribution
is chosen to be Gaussiat)* samples are generated in each iteration, and @5 samples with the lowest limit
state function values are used to evaluate the parameters/dr the next iteration. As a comparison, we also solved
the problem with a standard active set method [33] for caimstd optimizations, where the gradients are computed
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TABLE 1: The parameter values of the DF-TR algorithm

Parameter p, €* w~- wt M §
Value 0.1 010 09 11 20 10°*

with the score function (SF) method (see Appendix A). We ribsg, in the estimation of the gradients with the
score function method, we also employ the multilevel CE meétwith 105 samples in each iteration, which renders
the gradient estimation more expensive than the failurbatidity evaluation. Since both methods employ sampling
procedure subject to random errors, to take that into adcagrepeatedly solve the problem with both methods 100
times and summarize the results of both methods in Tablecifigally, we compare the feasibility rate, defined as the
percentage of the feasible solutions obtaih¢de average (over all feasible solutions) minimal cost, thedaverage
number of function evaluatiorisThe results indicate that our DF-TR method is more robusgthgi feasibility rate)
and more efficient (fewer function evaluations) than the &8ell optimization. Finally we note that, to valid the CE
method, we have also performed the DF-TR optimization wiindard MC (0° samples) for the case < 0.1, and

the results are very similar to those of the CE based DF-TRsarate omitted here.

4.2 Cantilever Beam

We now consider a cantilever beam problem as illustratedgnF, with width 17/, heightT’, length L, and subject
to transverse load” and horizontal loadX. This is a well adopted bench-mark problem in engineerirftgre the
system failure is defined as the maximum deflection exceedthgeshold value:

_p AL v\? X\
="~ mwr\\7=) T\wz )"

whereD, is the deflection threshold arfdis the Young’s modulus. In this example we assume the beagthdnis
fixed to be 100 and,, = 6. The random variables are as follows: the elastic mofide A((29 x 10, (1.45 x 106)?),
external loadsY ~ A((500,25%), andY ~ 2((500,25%), and the actual beam widt ~ N(w,c?) and height

T ~ N(t, 0?), respectively. The mean widthand the mean heightare design variables, and our goal is to minimize
the construction cost:

flw,t) = wt, (17)

subject to the associated failure probability being smétian10—6. To test how the algorithm is sensitive to the value
of the variances?, we solve the problem witlr = 10~2 ando = 1073.

We solve the problem with the DF-TR method, where the algoripparameter values are also given in Table 1, and
in the CE procedure we use the same configurations as thogarimpée 1. To illustrate the behavior of the algorithm,
we plot the path from the initial guess to the converged smiufior o = 103 in Fig. 2(a), and the function value
against the number of iterations in Fig. 2(b). The figures aiestrate two main properties of the DF-TR method:

TABLE 2: Comparison of the performance of DF-TR and SF for example 1

Feasible Rate Minimal Cost Full Evaluations
P<0.1 SF 88% 2.10 137
DF-TR 100% 2.15 13
P <10°¢ SF 79% 24.97 152
DF-TR 100% 24.94 50

*Throughout this work, we call a solution feasible if the féiag failure probability is smaller thab.1 Pyax, i.€., 10% error being
allowed.

fIn the DR-TR method, a function evaluation is referred to dsllaevaluation of the reliability constraint, and in the $&sed
method, it is referred to as an evaluation of the constraitit@gradient of it.
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FIG. 1: The schematic diagram of the cantilever beam.
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FIG. 2: (a) the path from the initial guess to the final solution (tbkdsline is the boundary of the feasible region,
also computed with the CE method). (b) the function valuétptbagainst the number of iterations and the dashed
line shows the cost associated with the exact solution.

during the iterations, it does not violate the reliabilignstraint or increase the cost function value. In the SFdase
method, we also usk)® samples in each iteration to compute the gradients. We siodvproblem with each method
100 times and compare their performance in Table 3. Thetseisulicate that, forr = 10~2, both methods perform
very well and are able to find feasible solutions in all tridd®wever, forc = 103, the two methods perform very
differently: the DF-TR method still finds feasible solutfoim all the trials, while the SF based method fails in all of
them. The SF based method does not perform well in our tesuse with a limited number of samples, the gradient
estimates are not reliable. We note that the performandedSF method can be improved by increasing the number
of samples, which certainly results in much higher comporat cost.

4.3 Vehicle Side Impact

Our third example is the vehicle side impact problem used hsreh-mark example in several works [2, 8, 18].
For side impact protection, the vehicle design must satisfyain safety requirements which can be expressed as
the reliability constraints. The goal of the problem is themminimize the total weight, subject to 10 such reliabil-
ity constraints of four types: head injury criterion (HIQrestraint, abdomen load, pubic symphysis force, viscous
criteria (VC), and rib deflections (including upper, middéad lower). In our test, we assume that the problem has
11 random parameters denotedzas- (z1, ..., z11), which are independent and follow Gaussian distributidme

TABLE 3: Comparison of the performance of DF-TR and SF for example 2

Feasible Rate Minimal Cost Full Evaluations
o=10"2 SF 100% 473 143
DF-TR 100% 4.71 46
oc=10"3 SF 0% - -
DF-TR 100% 4.71 48
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means ofzq, ..., z; are the design parameters and thosesof.., 211 are fixed. The meaning and the specifications
of the random and design parameters are given in Table 4. Htieematical formulation of this RBDO problem is
described as
L<mig Y Weight(x) = 1.98 + 4.90x1 + 6.67x2 + 6.98x3 + 4.01z4 + 1.78x5 + 2.73x7
s.t. Plabdomenload> 1.0 kN| < Ppax
Plupper/middle/lower VC> 0.32 mlg| < Ppax

[
[
Plupper/middle/lower rib deflectior 32 mm| < Pp.x (18)
P[pubic symphysis force B 4.0 kN] < Ppax
P[velocity of B-pillar at middle point> 9.9 mm/ms] < Pax
P[velocity of front door at B-pillar> 15.7 mm/ms] < Ppax.
The specific forms of the limit state functions are
Load abdomenr= 1.16 — 0.37172224 — 0.00931 22219 — 0.484 2329 + 0.0134326210,
Deflection rib, = 28.98 + 3.81823 — 4.22125 4+ 0.020725219 + 6.632629 — 7.732728 + 0.3229210,
Deflection ri,, = 33.86 + 2.9523 + 0.179221¢ — 5.0572129 — 112928 — 0.021525210 — 9.982725
+ 222529,
Deflection rih = 46.36 — 9.920 — 12.921 28 + 0.110723210,
VC upper= 0.261 — 0.0159z122 — 0.188z128 — 0.0192227 + 0.0144 2325 4+ 0.0008757 25210
4 0.080452629 4+ 0.0013928211 + 0.00001575210211, (19)

VC middle= 0.0214 + 0.00817z5 — 0.1312128 — 0.07042129 + 0.03099222¢6 — 0.0182227
+ 0.02082z325 + 0.1212329 — 0.00364 2526 + 0.000771525219 — 0.0005354 26210
10.0012128211,
VC lower= 0.74 — 0.61z2 — 0.1632328 + 0.00123223219 — 0.1662729 + 0.0227,2%,
Force pubic=4.72 — 0.5z4 — 0.192523 — 0.01222421¢ + 0.00932526210 + 0.000192’%1,
Velocity B-Pillar = 10.55 — 0.6742122 — 1.9529258 + 0.0205423219 — 0.01982421¢ + 0.02826210,
Velocity Door= 16.45 — 0.489z327 — 0.8432526 + 0.043229219 — 0.055629211 — 0.0007862%,.

TABLE 4: Random parameters in the vehicle side impact problem.
The 8th to 11th random variables are not regarded as desigbles

Random Variable Std. Dev. Mean  xT xV
z1(B-pillar inner) 0.030 1 0.500 1.500
zo(B-pillar reinforce) 0.030 ) 0.500 1.500
z3(Floor side inner) 0.030 T3 0.500 1.500
z4(Cross member) 0.030 x4 0.500 1.500
z5(Door beam) 0.030 x5 0.500 1.500
zg(Door belt line) 0.030 Zg 0.500 1.500
z7(Roof rail) 0.030 T7 0.500 1.500
zg(Mat. B-pillar inner) 1073 0.345 - -
zo(Mat. floor side inner) 1073 0.192 - -
z10(Barrier height) 1073 0 - -
z11(Barrier hitting) 1073 0 - -
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Here we sefP,,., = 1073 and solve the problem with the proposed DF-TR method (Withsamples in CE).
The initial condition is chosen to K@.5, 1.5, 0.5, 1.5, 1.5, 1.5, 1.5), and the algorithm terminates in 11 iterations,
obtaining a solutionf0.50, 1.33, 0.50, 1.34, 1.38, 1.37, 1.41). We present more results in Table 5. In particular, in
the table, we show the weight and the maximum failure prdihgbssociated with the design parameter values at the
1st, 5th, and 11th iterations, respectively. We also sha@antimbers of full reliability evaluations performed in the
table. The results indicate that the proposed method caly &pthis real-world RBDO problem, even for a rather
small failure probability requirement(@0~%). We have also applied the SF based optimization with samples
to this example, and the algorithm fails to converge to aild@asolution, which suggests that the SF based method
requires significantly more computational efforts to cotepusolution.

5. CONCLUSIONS

In summary, we have proposed a derivative-free trust-regmuble loop algorithm to solve the reliability based
optimization problems. An important feature of the aldamitis that we employ a sample reweighting method so
that the TR surrogate can be obtained by performing a sindjlecliability evaluation. With both mathematical and
practical examples, we show that the method is more robukseéitient than the popular SF based method. We
believe the proposed DF-TR algorithm can be useful in a wathge of practical engineering design problems.

We want to reinstate that the main purpose of this work is &s@nt an optimization scheme that can solve the
RBDO problem with a small number of full reliability evalimns. On the other hand, there are a number of methods
that can efficiently evaluate the failure probability by stncting surrogates for the limit state functions, andséhe
methods can be readily incorporated in the proposed DF-g&ighm, to improve the overall efficiency. Developing
such surrogate based DF-TR algorithm is not in the scopeeoftbsent work, but is an interesting problem that we
plan to study in the future. Finally note that we are not ablprbvide a convergence analysis of the proposed method
in this work, and we also hope to address this issue in a futork.

TABLE 5: The optimization results for the vehicle side impact exampl

Iterations Weight Max FailureProbability Total Full Evaluations
1 30.7 3.4x 1074 0
5 29.0 7.6 x 1074 5
11 28.4 9.0 x 10~4 27
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APPENDIX. THE SCORE FUNCTION METHOD

Here we provide a brief description of the score functiontradtto compute the gradient of the reliability constraints.
Under certain conditions [17, 20], the gradient of the figlprobability with respect to the design parameters can be

written as
oP 0

0
oz, = 8—%/H{g>o}(Z)Q(Z;X)dZ = /H{g>0}(z)8—mq(z;x)dz

— [ 1m0y () W)l ) = 1y (2)5(2:3)

(A1)

where

5(z;x) = 7, In(q(z;x)),

is known as the score function. It should be clear that thégdaterivatives Eq. (A.1) then can be estimated with a
MC simulation or the CE method, just like the failure probi#pitself. More details of the score function method,
including how to derive the score functiefe; x) for various distributions can be found in [17, 20] and therefces
therein, and shall not be repeated in this paper.
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