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Abstract
Many scientific and engineering problems require to perform Bayesian
inferences in function spaces, where the unknowns are of infinite dimension.
In such problems, choosing an appropriate prior distribution is an important
task. In particular, when the function to infer is subject to sharp jumps, the
commonly used Gaussian measures become unsuitable. On the other hand, the
so-called total variation (TV) prior can only be defined in a finite-dimensional
setting, and does not lead to a well-defined posterior measure in function
spaces. In this work we present a TV-Gaussian (TG) prior to address such
problems, where the TV term is used to detect sharp jumps of the function, and
the Gaussian distribution is used as a reference measure so that it results in a
well-defined posterior measure in the function space. We also present an
efficient Markov Chain Monte Carlo (MCMC) algorithm to draw samples
from the posterior distribution of the TG prior. With numerical examples we
demonstrate the performance of the TG prior and the efficiency of the pro-
posed MCMC algorithm.
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1. Introduction

The Bayesian inference methods [12] for solving inverse problems have gained increasing
popularity, largely due to their ability to quantify uncertainties in the estimation results. The
Bayesian inverse problems have been extensively studied in the finite-dimensional setting
[1, 15], and more recently, a rigorous Bayesian framework [24] is developed for the inverse
problems in function spaces where the unknowns are of infinite dimension. In existing works
that perform Bayesian inferences in function spaces, Gaussian measures are widely used as the
prior distributions. Such a choice is in fact well justified as theoretical studies suggest that the
Gaussian measures are well-behaved priors: the resulting posterior depends continuously on the
data and it can be well approximated by finite-dimensional representations. However, in many
practical problems such as image reconstructions, the true functions that one aims to infer are
often subject to sharp jumps or even discontinues, which cannot be well modeled by Gaussian
priors. In the deterministic inverse problem context, such functions are often estimated using the
total variation (TV) regularization [23]. To this end, it is very intriguing to perform Bayesian
inferences of the functions with sharp jumps, with a TV prior, the construction of which is rather
straightforward in the finite-dimensional setting. Thus to use the prior in the infinite-dimensional
setting, one first represents the unknown function with a finite-dimensional parametrization, for
example, by discretizing the function on a pre-determined mesh grid, and then solve the resulting
finite-dimensional inference problem with the TV prior. Such a method has been successfully
applied to a variety of problems [2, 25]. A major issue of the TV prior is that, unlike the finite-
dimensional Gaussian distribution, the posterior distribution of the TV prior may not converge to
a well-defined infinite-dimensional measure as the discretization dimension increases, a property
that is referred to as being discretization variant in [18]. In other word, the inference results
depend on the discretization dimensions, which is certainly undesirable from both practical and
theoretical points of view. A number of non-Gaussian priors therefore have been proposed to
address the issue. For example, the work [17] proposes to use the Besov priors based on wavelet
expansions in such problems and the theoretical properties of which are further investigated in
[9]. In another work [13], a hierarchical Gaussian prior related to the Mumford–Shah regular-
ization in the deterministic setting is developed.

We note that the priors mentioned above differ significantly from the Gaussian measures, in
both theoretical properties and numerical implementations. As a result, many analysis techniques
and numerical methods developed for the Gaussian priors cannot be easily extended to these
non-Gaussian priors. In particular, as will be discussed later, some Markov Chain Monte Carlo
(MCMC) algorithms developed for Gaussian priors may not be applied directly to, for example,
the Besov ones. To this end, efforts have been made to developing particular MCMC algorithms
for those non-Gaussian priors, e.g. [26]. As an alternative solution, in this work we propose a
TV-Gaussian (TG) prior which is motivated by the elastic net regularization for linear regression
problems [28], and the hybrid regularization method in image problems [4]. Namely, the prior
includes a TV term to detect edges, and on the other hand, it uses Gaussian distributions as a
reference measure, so that it leads to a well-defined posterior distribution in the function space.

MCMC simulations are widely used to draw samples from the posterior distribution in
Bayesian inferences. It has been known that many standard MCMC algorithms, such as the
random walk Metropolis–Hastings, can become arbitrarily slow as the discretization mesh of the
unknown is refined [5, 22]. Namely the mixing time of an algorithm can increase to infinity as
the dimension of the discretized parameter approaches to infinity, and in this case the algorithm
is said to be dimension-dependent. A family of dimension-independent MCMC algorithms were
presented in [5] by constructing a preconditioned Crank–Nicolson (pCN) discretization of a
stochastic partial differential equation that preserves the reference measure. There are a number
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of other algorithms for the infinite-dimensional problems that can further improve the sampling
efficiency by incorporating the data information: the stochastic Newton MCMC [21], the
dimension-independent likelihood-informed MCMC [6], and the adaptive independence sampler
algorithm developed in [11], just to name a few. All the aforementioned algorithms are devel-
oped based on Gaussian priors, but thanks to the Gaussian reference measure, many of these
algorithms, most notably the pCN method, can be directly applied to problems with our TG
priors (some gradient based algorithms may require certain modifications). Moreover, by taking
advantage of the special structure of the TG prior, we propose a simple splitting scheme to
accelerate the pCN algorithm. Loosely speaking, the splitting scheme has two stages: in the first
stage the sample is moved (accepted/rejected) several times only according to the TV term, and
in the second stage it is finally accepted or rejected according to the likelihood function. We
prove the detailed balance of the proposed splitting pCN (S-pCN) scheme and with numerical
examples we demonstrate that the method can significantly improve the mixing rate by making
very simple modifications to the standard pCN method.

To summarize, the main contributions of the work are two-fold: we propose a TV-
Gaussian hybrid prior to handle unknowns that cannot be well modeled by standard Gaussian
measures, and we also provide an efficient MCMC algorithm specifically designed for the
proposed prior. The rest of the work is organized as the following. In section 2, we present the
TG priors and provide some results regarding the theoretical properties of it. In section 3, we
describe the S-pCN algorithm to efficiently sample from the proposed TG prior. Numerical
examples are provided in section 4 to demonstrate the performance of the TG prior and the
efficiency of the S-pCN algorithm. Finally section 5 offers some concluding remarks.

2. The TG priors

We describe the TG priors in this section, starting by a general introduction of Bayesian
inverse problems in function spaces.

2.1. Problem setup

We consider a separable Hilbert space X with inner product ⟨· ·⟩, X . Our goal is to estimate the
unknown Îu X from data Îy m. The data y is related to u via a forward model

( ) ( )z= +y G u , 1

where G X: m and ζ is a m-dimensional zero mean Gaussian noise with covariance
matrix Σ. In particular we assume that the data y is generated by applying the operator G to a
truth † Îu X and then adding noise to it. It is easy to see that, under this assumption, the
likelihood function, i.e., the distribution of y conditional on u is

( ∣ ) ( ( ))µ -Fp y u uexp ,y

where

( ) ≔ ( ) ( ( ) ) ( )   F - = S -S
-u G u y G u y

1

2

1

2
, 2y 2 1 2

2
2

is often referred to as the data fidelity term in deterministic inverse problems. In what follows,
without causing any ambiguity, we shall drop the superscript y in Fy for simplicity. In the
Bayesian inference we assume that the prior measure of u is mpr, and the posterior measure of
u is provided by the Radon–Nikodym (R–N) derivative:
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( ) ( ( )) ( )m
m

= -Fu
Z

u
d

d

1
exp , 3

y

pr

where Z is a normalization constant. Equation (3) can be interpreted as the Bayes’ rule in the
infinite-dimensional setting.

As is mentioned in section 1, it is conventionally assumed that the prior m m=pr 0 where
( )m = N C0,0 0 , i.e., a Gaussian measure defined on X with (without loss of generality) zero

mean and covariance operator C0. Note that C0 is symmetric positive and of trace class. The
range of C0

1
2

∣= = Î Ì
⎧⎨⎩

⎫⎬⎭E u C x x X X,0

1
2

which is a Hilbert space equipped with inner product [7]

⟨· ·⟩ ⟨ · · ⟩=
- -

C C, , ,E X0

1
2

0

1
2

is called the Cameron–Martin space of measure m0. For the Gaussian prior, it has been proved
that if G satisfies the following assumptions [24]:

Assumptions A.1.

(i) for every  > 0 there is ( ) = ÎM M such that, for all Îu X ,

( ) ( )    +SG u u Mexp ,X
2

(ii) for every >r 0 there is ( )= >K K r 0 such that, for all Îu u X,1 2 with
{ }    <u u rmax ,X X1 2

( ) ( )   - -SG u G u K u u ,X1 2 1 2

the associated functional Φ satisfies assumptions 2.6 in [24]. As a result, the posterior my is a
well-defined probability measure on X (theorem 4.1 in [24]) and it is Lipschitz in the data y
(theorem 4.2 in [24]). Moreover, under some additional assumptions, the posterior measure
can be well approximated by a finite-dimensional representation (theorem 4.10 in [24]).

We also should note that the definition of the maximum a posteriori (MAP) estimator in
finite-dimensional spaces does not apply here, as the measures my and m0 are not absolutely
continuous with respect to the Lebesgue measure; instead, the MAP estimator in X is defined
as the minimizer of the Onsager–Machlup functional [8, 19]:

( ) ≔ ( ) ( ) F +I u u u
1

2
, 4E

2

over the Cameron–Martin space E of m0. Here the Cameron–Martin norm · E is given by

   =
-

u C u .E X0

1
2

2.2. A general class of the hybrid priors

We present a general class of hybrid priors in this section. The idea is rather straightforward:
instead of simply letting m m=pr 0, we let
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( ) ( ( )) ( )
m

m
µ -u R u

d

d
exp , 5

pr

0

where ( )R u represents additional prior information (or regularization) on u. In what follows
we shall refer to R as the additional regularization term. It follows immediately that the R–N
derivative of my with respect to m0 is

( ) ( ( ) ( )) ( )m
m

µ -F -u u R u
d

d
exp , 6

y

0

which returns to the conventional formulation with Gaussian priors. Next we shall show that
equation (5) is a well-behaved prior under certain assumptions on R:

Assumptions A.2. The function R X: has the following properties.

(i) For all ( )Îu X R u, is bounded from below, and without loss of generality we can simply
assume ( ) R u 0.

(ii) For every >r 0 there is a ( )= >K K r 0 such that, for all Îu X with
  <u rX , ( ) R u K .

(iii) For every >r 0, there is an ( ) >L r 0 such that, for all Îu u X,1 2 with
{ }    <u u rmax ,X X1 2

∣ ( ) ( )∣  - -R u R u L u u .X1 2 1 2

Note that the assumptions above are similar to the assumptions(2.6) in [24], with two
major differences: first in assumption A.1 (i), we require R to be strictly bounded from below;
secondly R is independent of the data y and so we do not have item (iv) in the assumptions in
2.6. The requirement that R is bounded from below is needed in the proof of our results
regarding the finite-dimensional approximation of the posterior. It is easy to show that if Φ
satisfy assumptions 2.6 in and R satisfy assumptions A.1, F + R satisfies the assumptions
in2.6 in [24]. As a result, my is a well-defined measure on X and it is Lipschitz in the data y,
which are stated in the following two theorems.

Theorem 2.1. Let G satisfy assumptions A.1 and R satisfy assumptions A.2. Then my given
by equation (6) is a well-defined probability measure on X .

Theorem 2.2. Let G satisfy the assumption A.1 (i) and R satisfy the assumptions in A.2 (i)
and (ii). Then my given by equation (6) is Lipschitz in the data y, with respect to the Hellinger
distance: if my and m ¢y are two measures corresponding to data y and ¢y the there exists

( )=C C r such that, for all ¢y y, with { }   ¢ <y y rmax ,2 2

( )  m m - ¢¢
Sd C y y, .y y

Hell

Consequently the expectation of any polynomially bounded function f X E: is continuous
in y.

Theorems (2.1) and (2.2) are direct consequences of the fact that F + R satisfies the
assumptions in2.6 in [24] and so we omit the proofs here. Next we shall study the related
issue of approximating the posterior my with a measure defined in a finite-dimensional space,
which is of essential importance for numerical implementations of the Bayesian inferences. In
particular we consider the following approximation:
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( ( ) ( )) ( )
m

m
µ -F -u R u

d

d
exp , 7N N

y

N N
,

0

1 2

1 2

where ( )F uN1
is a N1 dimensional approximation of ( )F u and ( )R uN2

is a N2 dimensional
approximation of ( )R u . The following theorem provides the convergence of mN N

y
,1 2

to my with
respect to Hellinger distance under certain assumptions.

Theorem 2.3. Assume that G and GN1
satisfy assumption A.1 (i) with constants uniform in

N 1, and R and RN2 satisfy the assumptions in A.2 (i) and (ii) with constants uniform in N 2.
Assume also that for " > 0, there exist two positive sequences { ( )}aN1

and { ( )}bN2

converging to zero, such that ( )  m -X 10 for " ÎN N,1 2 , where

{ ∣ ∣ ( ) ( )∣ ( ) ∣ ( ) ( )∣ ( )}   = Î F - F -X u X u u a R u R u b, .N N N N1 1 2 2

Then we have

( )m m   +¥d N N, 0 as , .y
N N
y

Hell , 1 2
1 2

Proof. For every >r 0 there is a ( )= >K K r 01 1 and a ( )= >K K r 02 2 such that, for all
Îu X with   <u rX , ( ) F u K1 and ( ) R u K2. Let  = Sr y and ( ) ( ) ( )= +K r K r K r1 2 ,

and we can show that the normalization constant Z for my satisfies

( ( )) ( ) ( ( )) { }
{ }

 
 

 ò m m- = - < =
<

Z K r u K r u r Cexp d exp .
u r

X0 0
X

Similarly, we can show that Z CN N,1 2 where ZN N1, 2
is the normalization constant for mN N

y
,1 2

.
Since for any >a 0 and ∣ ( ) ( )∣ { ∣ ∣}> - - - -b a b a b0, exp exp min 1, , for any

( ) Î 0, 1

∣ ∣ ∣ ( ( ) ( )) ( ( ) ( ))∣ ( )

( ) ∣ ( ) ( )∣ ( )

∣ ( ) ( )∣ ( )

( ) ( )

⧹

  

 









ò
ò ò

ò

m

m m

m

- -F - - -F -

+ F - F

+ -

+ +

Z Z u R u u R u u

u u u u

R u R u u

a b

exp exp d

d d

d

.

N N
X

N N

X X X
N

X
N

N N

, 0

0 0

0

1 2 1 2

1

2

1 2

From the definition of Hellinger distance, we have

( ) ( )

( ) ( )

( ) ( ) ( )
( )



ò

ò

m m
m
m

m

m
m

m

= -

= - F -

- - F - + +

-

-

⎜ ⎟

⎜ ⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

u

Z u R u

Z u R u u I I I

2d ,
d

d

d

d
d

exp
1

2

1

2

exp
1

2

1

2
d ,

8

y
N N
y

X

y
N N
y

X

N N N N

Hell ,
2

0

,

0

2

0

1
2

,

1
2

2

0 1 2 3

1 2

1 2

1 2 1 2
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where

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

∣ ( ) ∣ ( ( ) ( )) ( )

⧹ 





ò

ò

ò

m

m

m

= - F -

- - F -

= - F - - - F -

= - -F -- -

⎜ ⎟

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠
⎟⎟

⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠⎟

I
Z

u R u

Z
u R u u

I
Z

u R u u R u u

I Z Z u R u u

1
exp

1

2

1

2

1
exp

1

2

1

2
d ,

2
exp

1

2

1

2
exp

1

2

1

2
d ,

2 exp d .

X X

N N
N N

X
N N

N N
X

N N

1

,

2

0

2

2

0

3
1
2 ,

1
2 2

0

1 2

1 2

1 2

1 2 1 2

It is easy to show

( ) ( )

( ( ) ( )) ( ) ( ( ) ( ))

( ( ) )∣ ∣ ( ) ( ( ) ( ))

⧹


   

  







 

 



ò

ò

ò

m

m

m

+ +

 - = + +

-

- -

I C u C

I
C

a b u C a b

I C Z Z Z Z u C a b

2 d ,

2
d ,

d .

X X

X
N N N N

N N N N
X

N N

1
2

0

2
2

0
2

3
3

,
3

,
2

0
2

1
2

1 2 1 2

1 2 1 2 1 2

It follows immediately that

( ) ( ( ( ) ( )) ( ( ) ( )))      m m + + + + +C a b a b2d , ,y
N N
y

N N N NHell
2

,
2 2

1 2 1 2 1 2

where C is a constant independent of N N,1 2. Let N1 and N2 tend to +¥, yielding

( ) ( ) m m +
+¥

Clim 2d , ,
N N

N N
,

Hell ,
2 2

1 2
1 2

for any  > 0. Thus,

( )m m =
+¥

dlim , 0,
N N

y
N N
y

,
Hell ,

1 2
1 2

which completes the proof.

We emphasize that the major difference between theorems 2.3 and 4.10 in [24] is that our
assumption is weaker than that in theorem 4.10. The reason that we can use a weaker
assumption is that we require R to be strictly bounded from below in assumption A.2 (i). This
modification of assumptions is important for our work as that of the key assumption made in
theorem 4.10 may not hold in our setting(see remark 2.5 for details).

In general, the approximation errors arise from two sources: representing u with a finite-
dimensional basis, and solving the forward model G (or equivalently the functional Φ)
approximately. Next we consider a special case where we assume that for a given finite-
dimensional representation uN of u, the functional ( )F uN can be computed exactly; this can be
understood as the idealized formulation of the situation where for any given uN one can
choose a numerical scheme to compute the solution to a desired level of accuracy. In this
setting, we can show that the finite-dimensional approximation mN

y converges to μ without
assuming any additional conditions:
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Corollary 2.4. Let { } =
¥ek k 1 be a complete orthonormal basis of X

⟨ ⟩ ( )å=
=

u u e e, 9N
k

N

k k
1

and

( ( ) ( ))
m

m
= -F -u R u

d
exp .N

y

N N
0

Assume that G satisfies assumptions A.1 and R satisfies assumptions A.2. Then

( )m m   ¥d N, 0, as .y
N
y

Hell

Proof. Set

∣⟨ ⟩∣  å= - =
= +

¥

a u u u e, .N N X
k N

k
2

1

2

Since C0 is in the trace class, a 0N as  ¥N . By Markovʼs inequality, we have that, for
any  > 0

( ) 


 m - > " Î
⎛
⎝
⎜⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠
⎟⎟u u

a
N

2 1

2
, for . 10N X

N
0

For the given ò, there is a rò such that ({ ∣ })  m Î > <u X u r .X0
1

2
It is easy to show

that, for any ÎN

∣    


  m Î - -
⎛
⎝
⎜⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠
⎟⎟u X u r u u

a
,

2
1 .X N X

N
0

For conciseness, we define { ∣ }    
 = Î -

~
X u X u r u u, .X N X

a2 N

Recall that Φ satisfies assumptions 2.6 in [7] and R satisfies assumptions A.2, and so we
know that there are constants   >FL L, 0R , such that for any Î

~
u X

∣ ( ) ( )∣

∣ ( ) ( )∣

 

 





 

 

 

 

F - F -

- -

F Fu u L u u L
a

R u R u L u u L
a

2
,

2
.

N N X
N

N
R

N X
R N

Obviously,    
FL L, 0a R a2 2N N as  ¥N . As

∣ ∣ ( ) ( )∣ ∣ ( ) ( )∣
 

   Ì = Î F - F -
~ F

⎧⎨⎩
⎫⎬⎭X X u X u u L

a
R u R u L

a2
,

2
,N

N
N

R N

we have ( )  m -X 10 , and by theorem 2.3

( )m m   ¥d N, 0, as ,y
N
y

Hell

which completes the proof.

We reinstate that theorem 4.10 in [24] cannot be directly applied to this setting as its
assumption may not necessarily be satisfied. Namely, to apply theorem 4.10, F + R must
satisfy: for any >r 0, there is a ( )= >K K r 0 such that for all u with   <u rX
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∣( ( ) ( )) ( ( ) ( ))∣ ( )fF + - F + <u R u u R u K N ,N N

where ( )f N 0 as  ¥N . In the following remark, we construct a simple counterexample
for such a condition.

Remark 2.5. Let uN be given by equation (9) and let R satisfy ( ) =R 0 0. Let Φ satisfy the
assumption: for any >r 0, there is a ( )= >K K r 0 such that for all u with   <u rX

∣ ( ) ( )∣ ( )fF - F <u u K N ,N

where ( )f N 0 as  ¥N . For any given N , we consider = +u eN 1 and obviously =u 0N .
It follows immediately that

∣( ( ) ( )) ( ( ) ( ))∣ ( ) ( )fF + - F + > -+u R u u R u R e K N .N N N 1

It should also be noted that, in this work we only consider finite-dimensional observation
data for simplicity. A more general case is to consider infinite-dimensional data as well, and
study the limiting behavior of the posterior distributions under measurement refinements. The
matter has been discussed in [9, 17] for Besov priors.

2.3. The TG prior

Until this point, we have discussed the non-Gaussian priors in a rather general setting. In this
section, we introduce the particular choice of the additional regularization term R for the
edge-detection purposes. First we need to specify the space of functions X. Let Ω be a
bounded open subset of q where Îq , and X be the Sobolev space ( )WH1 :

( ) { ( ) ∣ ( ) ∣ ∣ }a= W = Î W ¶ Î WaX H u L u L for all 1 ,x
1

2 2

where ( )a a a= ¼, , q1 and ∣ ∣a a= å =i
q

i1 , and the associated norm · ·   =X H1 is

∣ ∣
( )   


å= ¶
a

a
Wu u .H x L

1

1 2

Naturally we choose the regularization term to be the TV seminorm

( ) ( )   òl l= = R u u u xd , 11TV 2

where λ is a prescribed positive constant. We show that the TV term (11) satisfies the required
assumptions:

Lemma 2.6. Equation (11) satisfies assumptions A.2.

Proof.

(i): The assumption is trivially satisfied.
(ii): For all Îu X with   <u rX , there exists a constant >C 0 such that

( ) ( )    l l l= =R u u C u Cr K r .XTV

(iii): For every >r 0 and all Îu u X,1 2 , there is a constant >C 0 such that

∣ ( ) ( )∣ ( )    l l- - -R u R u u u C u u .X1 2 1 2 TV 1 2
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It follows directly from lemma 2.6 that theorems 2.1 and 2.2 and corollary 2.4 hold for
the prior(11). Following the same procedure of [8], we can show that the MAP estimator for
the TG prior is the minimizer of

( ) ≔ ( ) ( )   lF + +I u u u u
1

2
. 12ETV

2

3. Splitting pCN

We now discuss the numerical implementation of the Bayesian inference with the TG priors.
Typically the Bayesian inference is implemented with MCMC algorithms. The pCN algo-
rithms and a family of dimension-independent MCMC schemes have been proposed to draw
samples in the function spaces. As is mentioned in section 1, thanks to the special structure of
the TG prior, the pCN algorithms can be applied directly to problems with this prior, requiring
no modifications. Nevertheless, in this section, we propose to further improve the sampling
efficiency by making very simple modifications to the pCN algorithms. The idea is based on
the following two observations on the TG prior:

(i) The TV term R is more sensitive to small local fluctuations of u than the data fidelity
term Φ.

(ii) The TV term R can be computed much more efficiently than the data fidelity term Φ. In
fact, evaluating Φ requires to simulate forward model G which is often governed by some
computationally intensive partial differential equations.

As a result of the first observation, to achieve a reasonable acceptance probability, for
example, 20%, one has to use a very small stepsize in the pCN algorithm, resulting in poor
mixing. On the other hand, the restriction of the stepsize is mainly due to the TV term. To
address the issue, we introduce a splitting scheme to the standard pCN algorithm; namely, we
perform the pCN in two stages: one for the TV term and one for the data fidelity term. The
intuition behind the method is rather straightforward: the slowly varying and computationally
intensive data fidelity term Φ is evaluated less frequently than the fast-varying and compu-
tationally efficient TV term R. A particle is moved and accepted or rejected k times according
to the TV term. The sample resulting from the k short step moves is accepted or rejected using
a Metropolis criterion based on Φ after the k short-range moves. Specifically, suppose the
current state is ucurrent, the S-pCN proceeds as follows:

(i) let =v u0 current.
(ii) for i=1 to k perform the following iteration:

(a) propose b b= - +-v v w1 iprop
2

1 , where m~w ;0
(b) let =v vi prop with probability;

( ) { [ ( ( ) ( ))]} ( )= - -- -v v R v R vacc , min 1, exp ; 13R i iprop 1 prop 1

and let = -v vi i 1 with probability ( )- -v v1 acc ,R iprop 1 .
(c) return to step ((ii)(a));

(iii) let =u vknext with probability

( ) { [ ( ( ) ( ))]} ( )= - F - FF v u v uacc , min 1, exp 14k kcurrent current

and =u unext current with probability ( )- F v u1 acc , current .
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We note the similarity of this splitting algorithm and the approximation-accelerated
MCMC algorithms such as [3, 10], and especially the surrogate transition method in [20].
However, our algorithm simply splits the data fidelity term and the TV term, without
requiring any approximations or surrogate models. In fact, if a surrogate is available for the
forward model, it can be naturally incorporated in to the S-pCN algorithm to further improve
the sampling efficiency. Nevertheless, constructing and implementing such a surrogate model
is not in the scope of this work.

A possible interpretation of the S-pCN algorithm is that step 2 is responsible of gen-
erating a new proposal for the target distribution my, which is rejected or accepted according
to the normal MCMC rule in step 3. Under this interpretation, we need to show that the
detailed balance condition is satisfied, which is stated by the following proposition.

Proposition 3.1. Let ( )q u dv, is the proposal kernel corresponding to the vk proposed in
step 2 given u, and Q is its transition kernel given by

( )( ) ( ) ( ) ( ) ( ) ( )òd= + - FQ u v a u v q u v v z u q u z, d , , d d 1 acc , , d ,k u

where ( )F v uacc ,k is given by equation (14) and du is the point mass at u. We then have

( ) ( ) ( ) ( )m m=u Q u v v Q v ud , d d , d .y y
k

The proof of the proposition is similar to the ergodicity proof of the preconditioned
MCMC algorithm in [10], and thus is omitted here.

4. Numerical examples

4.1. A signal denoising problem

First we test the proposed prior on a signal denoising example. Namely, suppose we have a
piecewise constant signal

( )


 

=
<

<
⎧
⎨⎪
⎩⎪

u t
t

t
t

0, 0 1 3;
1, 1 3 2 3;
0, 2 3 1.

We observe 23 data points equally distributed on [ ]0, 1 each with independent Gaussian
observation noise ( )N 0, 0.022 . The true signal and the data points are shown in figure 1 (left).
We first test the Gaussian priors, and specifically we choose the prior to be a zero-mean
Gaussian measure with a squared exponential covariance:

( ) ( )g= -
-⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥K t t

t t

d
, exp

1

2
. 151 2

1 2
2

Note that, with Gaussian prior, the posterior mean can be computed analytically, and here we
computed it with g = 0.1 and =d 0.04, 0.08 and 0.16. We plot the results in figure 1 (right),
which clearly demonstrate that the Gaussian priors perform poorly for this function.

Next we compare the performance of our TG prior and that of the TV prior. As has been
discussed, for the TV prior, we have to use a finite-dimensional formulation, and assume the
density of the prior is
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( ) ( ) lµ -p u uexp ,N N TV

where the regularization parameter is taken to be l = 500. For the TG prior, we need to
specify both the TV term and the Gaussian measure. For the TV term we set l = 500 and for
the Gaussian reference measure, we assume the covariance is again given by equation (15),
with =d 0.02 and g = 0.1. With either prior, we perform the inference using three different
numbers of grid points =N 89, 177, 353, and so that we can see if the inference results
depend on the dimensionality of the problem. As this example does not involve
computationally demanding forward model, we choose to sample the posterior with the
standard pCN algorithm. For the TV prior, we draw 108 samples for the cases N=89 and
N=177 and ´5 108 samples for N=353. We use such large numbers of samples to ensure
reliable estimates of the inference. We plot the posterior mean of the TV prior in figure 2
(left), and we can see (especially from the zoomed-in plots) that the results of the different
numbers of grid points depart evidently from each other, which indicates that the inference
results of the TV prior depends on the discretization dimensionality. These results are
consistent with the findings reported in [17]. Next we draw 108 samples from the posterior

Figure 1. Left: the true signal (solid line) and the observed data points (dots). Right: the
posterior mean of the Gaussian prior with =d 0.04, 0.08, 0.16.

Figure 2. Left: the posterior mean results with the TV prior, computed with grid point
numbers =N 89, 177, 353. Right: the posterior mean results with the TG prior,
computed with grid point numbers =N 89, 177, 353. In both figures, the insets show
the zoom-in view near the jumps.
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with the TG prior, for all the three numbers of grid points, and plot the resulting posterior
means in figure 2 (right). We can see that the results for the three different grid numbers look
almost identical, suggesting that the results with the TG prior are independent of
discretization dimensionality. We also can see that, compared to the standard Gaussian
priors, the TG prior can much better detect the sharp jumps of the signal, thanks to the
presence of the TV term. As is mentioned in the introduction, a major advantage of the
Bayesian method is that it can quantify the uncertainty in the estimates. To show this, in
figure 3 (left), we plot the 95% pointwise credible interval of the unknown, and in figure 3 we
plot 10 random samples drawn from the prior and the posterior. These plot demonstrate the
difference in the Bayesian and the deterministic methods for solving inverse problems.

Finally we want to exam how the inference results depend on the regularization para-
meters, i.e., λ and γ, for the TG prior. Specifically we perform the inferences with different
values of λ and γ, each with 108 samples, and show the results in figure 4. In figure 4 (left),
we show the posterior means computed with g = 0.1 and l = 300, 500, 700; in figure 4
(right), we show the posterior means computed with l = 500 and g = 0.05, 0.1, 0.2. Both

Figure 3. Left: the pointwise 95% credible interval (CI). Right: ten random samples
drawn from the the posterior (solid lines) and from the prior (inset, dashed lines).

Figure 4. The posterior means of the TG prior, computed with various values of γ and
λ. Left: the means computed with g = 0.1 and l = 300, 500, 700. Right: the means
computed with l = 500 and g = 0.05, 0.1, 0.2.
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figures suggest that the inference results are rather robust with respect to the values of these
parameters.

Note, however, that this is only a simply toy problem, and in practice, the problems can
be much more difficult: the observation noise can be much stronger and the forward operator
can be much more ill-posed, etc. Thus, to further evaluate the performance of the TG prior,
we consider a more complicated problem in the next example.

4.2. Estimating the Robin coefficients

Here we consider the one-dimensional heat conduction equation in the region [ ]Îx L0,

( ) ( ) ( )¶
¶

=
¶
¶

u

t
x t

u

x
x t a, , , 16

2

2

( ) ( ) ( )=u x g x b, 0 , 16

with the following Robin boundary conditions:

( ) ( ) ( ) ( ) ( )r-
¶
¶

+ =
u

x
t t u t h t c0, 0, , 160

( ) ( ) ( ) ( ) ( )r-
¶
¶

+ =
u

x
L t t u L t h t d, , . 161

Suppose the functions ( )g x , ( )h t0 and ( )h t1 are all known, and we want to estimate the
unknown Robin coefficient ( )r t from certain measurements of the temperature ( )u x t, . The
Robin coefficient ( )r t characterizes thermal properties of the conductive medium on the
interface which in turn provides information on certain physical processes near the boundary,
and such problems have been extensively studied in the inverse problem literature, e.
g, [14, 27].

To be specific, we assume that a temperature sensor is placed at one boundary x=L of
the medium, and we want to estimate ( )r t in the time interval [ ]T0, from temperature records
measured by the sensor during [ ]T0, . The resulting forward operator G satisfies the
assumptions A.1, which can be derived from the theoretical results provided in [14]. In this
example we choose = =L T1, 1 and the functions to be

Figure 5. Left: the true Robin coefficient. Right: the true solution at x=1 (solid line)
and the observed data points (crosses).
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( ) ( ) ( )= + = + = + +g x x h t t h t t1, 2 1 , 2 2 2 .2
0 1

Moreover, the temperature is measured 100 times (equally spaced) in the given time interval
and the error in each measurement is assumed to be an independent zero-mean Gaussian
random variable with variance 0.012. The ‘true’ Robin coefficient is a piece-wise constant
function shown in figure 5 (left), and the data is generated by substituting the true Robin
coefficient into equations (16), solving the equation and adding noise to the resulting solution,
where both the clean solution and the noisy data are shown in figure 5(right).

We now perform the Bayesian inference with the TG prior. In particular, we choose
l = 300 in the TV term, and for the Gaussian measure, the covariance is again given by
equation (15) with g = 0.1 and =d 0.02. Moreover, the number of grid points is taken to be
200 in this example, and the equation (16) is solved with the finite difference scheme used in
[27]. We sample the posterior with the standard pCN and our S-pCN algorithms, and with
either method, we draw 106 samples from the posterior with additional ´0.5 106 samples
used in the burn-in period. We set b = 0.02 in both algorithms, and in the S-pCN method we
choose k=10, i.e. 10 iterations being performed in the first stage. As a result the average
acceptance rate in the pCN scheme is about 15% and that in the S-pCN scheme is about 40%.

In figure 6, we show the posterior mean (left) and standard deviation (right) computed by
both methods, and we can see that the results of both methods agree rather well with each
other, suggesting that both methods can correctly generate samples from the posterior dis-
tribution. We want to note that the posterior mean resulting from the TG prior can reasonably
detect the jumps in the Robin coefficient; we have not optimized the hyperparameters in the
prior and the results may be further improved if we do so. We now compare the efficiency
performance of the two methods. First, we show in figure 7 the trace plots of the two methods
for the unknown ( )r t at =t 0.2, 0.5 and 0.8. The trace plots provide a simple way to examine
the convergence behavior of the MCMC algorithm. Long-term trends (i.e., low mixing rate)
in the plot indicate that successive iterations are highly correlated and that the series of
iterations have not converged. In this regard, the trace plots indicate that the chains produced
by the S-pCN method mix much faster than those by the standard pCN. Next we examine the
autocorrelation functions (ACF) of the chains generated by both methods. Once again we
consider the points at =t 0.2, 0.5 and 0.8 and we plot the ACF for all the three points in
figure 8. One can see from the figure that, for all three points, the ACF of the chain generated

Figure 6. Left: the posterior mean computed by the S-pCN (dashed line) and by the
standard pCN (dashed-dotted line), compared to the truth (solid line). Right: the
posterior standard deviation computed with S-pCN (dashed) and with pCN (dashed–
dotted).
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by the S-pCN decreases much faster than that of the standard pCN, suggesting that the S-pCN
method achieves a significantly better performance. Alternatively, we look at the ACF of lag
100 at all the grid points, which is plotted in figure 9 (left), and we can see that, the ACF of

Figure 7. The trace plots for the points at =t 0.2, 0.5, and 0.8 with the S-pCN (left)
and the pCN (right) methods.

Figure 8. The ACF of ρ at =t 0.2, 0.5, 0.8.
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the chain generated by the S-pCN is much lower than that of the standard pCN. The effective
sample size (ESS) is another common measure of the sampling efficiency of MCMC [16].
ESS is computed by

t
=

+
N

ESS
1 2

,

where τ is the integrated autocorrelation time and N is the total sample size, and it gives an
estimate of the number of effectively independent draws in the chain. We computed the ESS
of the unknown ρ at each grid point and show the results in figure 9 (right). The results show
that the S-pCN algorithm on average produces significantly more effective independent
samples than the standard pCN.

5. Conclusions

In summary, we have presented a TG prior for infinite-dimensional Bayesian inverse pro-
blems. We use the TV term to improve the ability to detect jumps and use the Gaussian
reference measure to ensure that it results in a well defined posterior measure. Moreover, we
show that the resulting posterior distributions depend continuously on data and more
importantly can be well approximated by finite-dimensional representations. We also present
the S-pCN algorithm which can significantly improve the sampling efficiency by simply
splitting the standard pCN iterations into two stages. Finally we provide some numerical
examples to demonstrate the performance of the TG prior and the efficiency of the S-pCN
algorithm. We believe the proposed TG prior can be useful in many practical inverse pro-
blems involving functions with sharp jumps.

Several extension of the present work are possible. First, it is interesting to consider the
connection between the proposed TG prior and the EN type regularization in deterministic
inverse problems. As is shown, the MAP estimator of the TG prior yields the solution of the
deterministic inverse problem with an EN type of regularization. We believe such a con-
nection can provide some interesting theoretical results of the TG prior, the investigation of
which is of our interest. Secondly, it should also be noted that, throughout the work we
assume the regularization parameter λ is given, while in practice, determining λ can be a
highly non-trivial task. A simply solution here is to determine λ with the techniques used in
the deterministic setting, and then use the result directly in the Bayesian inference.

Figure 9. Left: the ACF of lag 100, at each grid point. Right: the ESS at each grid point.
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Nevertheless, developing rigorous and effective methods to determine the regularization
parameter in the Bayesian setting is a problem of significance. A possible solution is to
impose a prior on λ and formulate a hierarchical or empirical problem to estimate both λ and
u. Finally, a very natural extension of the present work is to consider other choices of
regularization term R, to reflect different prior information. We plan to investigate these issues
in the future.
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