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In this paper, we propose a frozen Gaussian approximation (FGA)-based multi-level particle 
swarm optimization (MLPSO) method for seismic inversion of high-frequency wave data. 
The method addresses two challenges in it: First, the optimization problem is highly non-
convex, which makes hard for gradient-based methods to reach global minima. This is 
tackled by MLPSO which can escape from undesired local minima. Second, the character 
of high-frequency of seismic waves requires a large number of grid points in direct 
computational methods, and thus renders an extremely high computational demand on 
the simulation of each sample in MLPSO. We overcome this difficulty by three steps: First, 
we use FGA to compute high-frequency wave propagation based on asymptotic analysis on 
phase plane; Then we design a constrained full waveform inversion problem to prevent 
the optimization search getting into regions of velocity where FGA is not accurate; Last, 
we solve the constrained optimization problem by MLPSO that employs FGA solvers with 
different fidelity. The performance of the proposed method is demonstrated by a two-
dimensional full-waveform inversion example of the smoothed Marmousi model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In seismic inversion, full-waveform inversion (FWI) [28,41] is a promising technique to reconstruct subsurface velocity 
profiles from seismograms. The method becomes increasingly popular thanks to its ability to produce high resolution images 
of the velocity profile. FWI is usually cast as minimizing the misfit between the collected data and prediction provided by 
the simulation of seismic wave propagation.

Despite the rather simple formulation, computation of FWI problems is rather challenging. One of the major difficulties 
lie in that the minimization problem is highly non-convex [37]: most gradient based optimization techniques rely on good 
initial guesses to reach global minima, and unfortunately such good initial guesses are often not available in practical prob-
lems. In fact, usually one first finds an approximate FWI solution with global optimization techniques and then improves
it with gradient-based optimization methods. Particularly, stochastic global optimization techniques, such as simulated an-
nealing (SA) [35,39], genetic algorithm (GA) [33,36], and more recently, particle swarm optimization (PSO) [34], have been 
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applied to seismic inversion problems due to their abilities of escaping from undesired local minima. However, stochastic 
optimization methods usually require a large number of repeated simulations of wave propagation, and each simulation 
involves waves of high-frequency, whose wavelengths are extremely short compared to the domain size of interest. As a 
result, direct simulations of high-frequency wave propagation, e.g., finite difference/volume/element methods, can be ex-
tremely computationally expensive. Thus performing a global optimization with direct simulations of high-frequency waves
is nearly prohibitive.

Alternative approaches to reduce the computational cost are to look for approximate solutions to wave equation based 
on semiclassical approximation, among which, the ray theory [2,31,6] provides attractive alternatives. In the ray-based ap-
proaches, one decomposes wavefields into elementary waveforms which propagate along rays, and reconstructs wavefields 
based on the dynamic information on rays (e.g., path trajectory, amplitude and phase). Kirchhoff migration [10,21] and 
Gaussian beam migration [15,16,27,11,12,30] are famous seismic migration methods of this kind. Kirchhoff migration greatly 
increases the computational speed with an asymptotic error proportional to the ratio of wavelength over the domain size, 
but it yields unbounded amplitudes at caustics. Gaussian beam migration keeps the merits of ray tracing, but also handles 
multipathing as well as maintain accuracy at caustics. However, Gaussian beam migration relies on the Taylor expansion 
around the central ray, hence the error of the approximation increases when the beams become wide; see Example 4.2 in 
[23] for a numerical study of this case. One needs to tune the width parameter of Gaussian beams in order to get a good 
resolution, especially when the wave solution spreads over time [3,15,7]. This is practically difficult due to the heterogeneity 
of the media and the non-linearity of the Riccati equation involved in the beam construction.

Recently, the frozen Gaussian approximation (FGA) method [42] was developed for seismic modeling in complex struc-
tures. The method was originally motivated by Herman–Kluk propagator for solving the Schrödinger equation in quantum 
chemistry [14,19,20], and later generalized to linear strictly hyperbolic systems [23–25]. The main idea of FGA is to use 
Gaussian functions with fixed widths to approximate the solution of wave equation. These Gaussian functions are also called 
coherent states in quantum mechanics, which was previously applied in seismic imaging [1,9] but did not have the rigorous 
treatment of amplitude factors given by FGA. Compared to Gaussian beam migration, FGA can provide a more accurate and 
robust solution, especially in the situation of wave spreading [23,24]. The main procedure of FGA is described as following. 
The initial data are decomposed into a sum of Gaussians with fixed (small) widths. Then one propagates each Gaussian func-
tion along geometric rays. The amplitudes of these Gaussians are given according to rigorously-derived dynamic equations 
so that the sum of them produces a good approximation to the solution of wave equation at the final time.

As an asymptotic solution to the wave equation, the accuracy of FGA is derived in [24]. Nevertheless, the actual asymp-
totic error of FGA depends on the smoothness of velocity profiles and it loses accuracy in certain cases (e.g. discontinuous 
media), which will lead to erratic inversion results. In practice, it is desirable to restrict the search within the region of 
smooth velocities where FGA provides an accurate approximation, however such a region cannot be easily identified a priori. 
In this work, we introduce a constraint in the original FWI problem to prevent the solution moving out of the FGA-valid 
region. This will add proper smoothing effects, and yield a smoothed velocity profile for the original FWI problem. It is also 
consistent with the original problem when the wave equation is solved exactly.

In principle all the aforementioned global optimization techniques such as SA and GA can be used to solve the con-
strained optimization problem. Here we choose the PSO method for its reported superior computational efficiency in various 
applications [13]. Another issue in optimization is the computational cost of FGA. As will be shown in Section 2, the ac-
curacy of FGA depends on the initial approximation error, which in turn can only be reduced by increasing the number 
of Gaussians in the initial decomposition. Consequently, the cost of computing a highly accurate FGA solution can be 
rather high (though still much lower than direction simulations). On the other hand, at the early stage of the optimiza-
tion, high-accuracy solutions may not be necessary, which motivates the idea to start with a less accurate FGA solver and 
gradually increase its precision as the optimization proceeds. Accordingly, we propose a multi-level particle swarm opti-
mization (MLPSO) algorithm that employs FGA solvers with different fidelity (namely, different number of beams) to further 
improve the computational efficiency.

In summary, the main contribution of the work is threefold: we propose to use FGA to accelerate the computation of 
high-frequency FWI problems; we design a constrained optimization problem to prevent the solution getting into the region 
where FGA is not accurate; we develop an MLPSO algorithm to efficiently solve the resulting optimization problem.

The rest of this paper is organized as follows. In Section 2, we describe the FGA algorithm for the computation high-
frequency wave propagation. We introduce the constrained FWI optimization problem in Section 3. In Section 4, we present 
the MLPSO algorithm to solve the constrained problem. The performance of our method is demonstrated in Section 5 by a 
two-dimensional example of smoothed Marmousi model. Finally, we make conclusive remarks in Section 6.

2. Frozen Gaussian approximation

We consider a high-frequency acoustic wave equation in d-dimension:

∂2u
∂t2 − ξ(x)#u = 0, (2.1)

with the prescribed initial conditions:
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u(0, x) = U ε
0(x), (2.2a)

∂u
∂t

= U ε
1(x), (2.2b)

where t and x are the time and multidimensional space variables respectively, u is the wavefield, ξ(x) = c2(x) > 0 is the 
square of a velocity profile, and ε indicates the scale of wavelength. We assume all variables are in dimensionless units, and 
ε ≪ 1 corresponds to the high-frequency (short wavelength) regime.

Next we introduce how to obtain an FGA solution to Eq. (2.1). Note that the presentation of FGA here has been tailored 
and simplified for the purposes of this work. For more details, such as the asymptotic derivation, the error estimates, the 
validity at caustics, and generalization to other strictly hyperbolic systems, we refer the readers to [23–25,42].

2.1. FGA formulation

The ansatz of FGA is taken to be a sum of Gaussian functions with a fixed width,

uFGA(t, x) =
∑

(q,p)∈G+

a+ψε
+

(2πε)3d/2
e

i
ε P+·(x− Q +)− 1

2ε |x− Q +|2

+
∑

(q,p)∈G−

a−ψε
−

(2πε)3d/2
e

i
ε P−·(x− Q −)− 1

2ε |x− Q −|2 , (2.3)

where

ψε
±(q, p) =

∫

Rd

uε
±,0(y,q, p)e− i

ε p·(y−q)− 1
2ε |y−q|2 d y, (2.4)

uε
±,0(y,q, p) = 1

2

(
U ε

0(y) ± iε
ξ(q)|p| U ε

1(y)
)
. (2.5)

In (2.3), i =
√

−1 is the imaginary unit, and “+” and “−” indicate the two wave branches, and G± are the sets of (q, p)
pairs. In FGA, the weight function ψ± (2.4) is in a form of FBI transform [26], time-independent and computed initially; the 
time-dependent quantities are: Center Q ± , momentum P ± and amplitude a±; the width of Gaussian function is fixed at all 
time.

The evolution of Q ±(t, q, p) and P ±(t, q, p) satisfies the ray tracing equations associated with the Hamiltonian H± =
±

√
ξ( Q ±)|P±|. For simplicity, we will omit the subscripts “±” without any confusion. Then ( Q , P ) follows

⎧
⎪⎨

⎪⎩

d Q
dt

= ∂P H,

dP
dt

= −∂Q H,

(2.6)

with the initial conditions

Q (0,q, p) = q and P (0,q, p) = p. (2.7)

The amplitude a(t, q, p) solves

da
dt

= a
∂P H · ∂Q H

H
+ a

2
tr

(
Z−1 dZ

dt

)
, (2.8)

with initial condition a(0, q, p) = 2d/2. In (2.8), the matrix Z is given by

∂z = ∂q − i∂p, Z = ∂z( Q + iP ). (2.9)

Here ∂z Q and ∂z P are defined as matrices, with the ( j, k) component denoted as ∂z j Q k . The matrices ∂z Q and ∂z P can 
be computed at each time step by either divided difference or the following dynamic ray tracing equations,

d(∂z Q )

dt
= ∂z Q

∂2 H
∂ Q ∂ P

+ ∂z P
∂2 H

∂ P 2 , (2.10)

d(∂z P )

dt
= −∂z Q

∂2 H

∂ Q 2 − ∂z P
∂2 H

∂ P∂ Q
, (2.11)

which can be also written in a componentwise form, with Einstein’s index summation convention,
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d(∂z Q ) jk

dt
= ∂z j Q l

∂2 H
∂ Q l∂ P k

+ ∂z j P l
∂2 H

∂ P l P k
,

d(∂z P ) jk

dt
= −∂z j Q l

∂2 H
∂ Q l Q k

− ∂z j P l
∂2 H

∂ P l∂ Q k
.

Remark that the solution of dynamic ray tracing equations (2.10)–(2.11) in FGA only affects the amplitude a, while it 
affects both the amplitude and the beam width in Gaussian beam migration.

2.2. Initial wavefield decomposition

To compute (2.3) in FGA, one needs to choose proper sets G± of (q, p) pair in (2.3) and compute ψε
± in (2.4) corre-

spondingly, i.e. to decompose the initial wavefield (2.2) into a sum of Gaussian functions. Here we use the local Fast FBI 
transform introduced in [42] to efficiently compute ψε

± .
To obtain ψ± , it is sufficient to know

ψε
j (q, p) =

∫

Rd

U ε
j (y)e− i

ε p·(y−q)− 1
2ε |y−q|2 d y, (2.12)

for j = 0, 1. Rewrite (2.12) by the change of variable r = y − q,

ψε
j (q, p) =

∫

Rd

U ε
j (q + r)e− i

ε p·r− 1
2ε |r|2 dr. (2.13)

Define

gε
q, j(r) = U ε

j (q + r)exp(− 1
2ε |r|2), (2.14)

then ψε
j is given by the (rescaled) Fourier transform of gε

q, j ,

ψε
j (q, p) = ĝε

q, j(p/ε). (2.15)

Notice that gε
q, j contains an exponential function, hence its function value is negligible outside a localized domain centered 

around zero, for example, a small box

Bε = [−L/2, L/2]d ⊂ Rd

with the length L scaled as O(
√

ε). Therefore, ψε
j (q, p) can be evaluated efficiently by applying Fast Fourier Transform of 

gε
q, j restricted on the small box Bε .

Once ψε
± is obtained, we do a thresholding to get the sets G± where ψε

± have relatively large values.

2.3. Algorithm

The algorithm of frozen Gaussian approximation consists of three steps [42]:

(1) Initial decomposition: Choose the sets G± of (q, p) pair and calculate ψε
± defined in (2.4) from U ε

0 and U ε
1 ;

(2) Time propagation: Numerically integrate (2.6) and (2.8) up to the final time T ;
(3) Reconstruction: Compute the wavefield at time T by (2.3).

2.4. Error estimate

First we recall the energy estimate for linear hyperbolic systems.

Lemma 2.1. Given a strictly hyperbolic system

∂t v +
d∑

l=1

Al(x)∂xl v = f ,

with the initial condition v(0, x) = v0(x), where Al : Rd → RN×N , 1 ≤ l ≤ d are smooth matrix valued functions. For any T > 0, there 
exists a constant CT such that

sup
0≤t≤T

∥v(t, x)∥2
L2(Rd;CN )

≤ CT

(
∥v0(x)∥2

L2(Rd;CN )
+

T∫

0

∥ f (s, x)∥2
L2(Rd;CN )

ds
)

.
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Next we define

vε = (∂t uε,∂xuε)T, vε
FGA = (∂t uε

FGA,∂xuε
FGA)T, ṽε = vε − vε

FGA, (2.16)

then (2.1) can be viewed as a linear strictly hyperbolic system for vε , and thus Lemma 2.1 together with Proposition 6.2 in 
[24] implies the following estimate.

Theorem 2.2. For any T > 0, there exists a constant CT and ε0 > 0 such that, for any ε ∈ (0, ε0],

sup
0≤t≤T

∥ṽε(t, x)∥2
L2(Rd)

≤ CT

(
∥ṽε

0(x)∥2
L2(Rd)

+ ε

)
, (2.17)

where ṽε
0(x) = vε(0, x) − vε

FGA(0, x) is the initial error made in the initial decomposition.

Remark. 1. Proposition 6.2 in [24] shows that the local error caused by FGA is of O(ε), i.e.

∂2
t uε

FGA − ξ(x)#uFGA = C(ε), (2.18)

where C is a constant depending on the final time T , and the velocity profile ξ and its derivatives ∂αξ with the multi-index 
|α| ≤ 3.

2. Define

U ε
FGA(t, x) =

∫
a+ψε

+
(2πε)3d/2

e
i
ε P+·(x− Q +)− 1

2ε |x− Q +|2 dq dp

+
∫

a−ψε
−

(2πε)3d/2
e

i
ε P−·(x− Q −)− 1

2ε |x− Q −|2 dq dp, (2.19)

then based on the isometry of the FBI transform, one has

U ε
FGA(0, x) = U ε

0(x), ∂t U ε
FGA(0, x) = U ε

1(x).

Since (2.3) is the discretization of (2.19) on q and p, the initial error ṽε
0(x) is actually the error of discretizing the 

integrals in (2.19) by the rectangular rule, and thus the accuracy is controlled by the number of Gaussians in (2.3).
3. Suppose τ is the time step for a pth order numerical integrator of (2.6)–(2.11), then there will be an error of O(τ p)

appearing on the right-hand-side of (2.17).

3. Constrained FWI optimization problem

Suppose that the wavefield u is related to the predicted data via a detection operator D . The velocity is obtained by 
solving

min
ξ∈)

∥d − Du∥2 , (3.1)

subject to u given by Eq. (2.1), where d is the observed data and ) is the state space of ξ . Note the velocity ξ enters the 
formulation via Eq. (2.1). In what follows, when not causing any ambiguity, we shall use u(ξ) to indicate the mapping from 
ξ to u(t, x) and uFGA(ξ) for the mapping from ξ to uFGA(t, x). Our goal here is to accelerate the optimization by using FGA. 
Namely, as an approximation to Eq. (3.1), one solves

min
ξ∈)

∥d − DuFGA(ξ)∥2, (3.2)

subject to uFGA given by (2.3). The accuracy of the FGA solution depends on the velocity profile ξ(x) and its derivatives [24], 
and cannot be estimated a priori. Hence it is possible that FGA fails to give an accurate approximate in certain state spaces 
of velocity, leading to erratic inversion results. To address the issue, we propose to solve the optimization in a subspace *
of ):

min
ξ∈*

∥d − DuFGA(ξ)∥2, (3.3)

where uFGA approximates u accurately for all ξ ∈ *. A critical question here is how to define and identify such a subspace *. 
To this end, we have the following result:

Proposition 3.1. Suppose C is a positive constant, and let

* = {ξ | max
|α|≤3

|∂αξ | ≤ C}, (3.4)

where α is a multi-index. If ξ∗ is a minimizer of Eq. (3.3), there exists a constant M > 0 such that

∥d − Du(ξ∗)∥2 < min
ξ∈*

∥d − Du(ξ)∥2 + Mϵ.
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Lemma 3.2. For all ξ ∈ *, there exists a uniform estimate on the accuracy of FGA, i.e., ∃ a constant M > 0 independent of ξ such that

∥u(ξ) − uFGA(ξ)∥2 ≤ Mϵ. (3.5)

Proof. The conclusion can be straightforwardly deduced by the accuracy estimate in Theorem 2.2 and the expression of 
remainder terms provided in Proposition 5.5 in [24] which shows the dependence of the constant CT on the derivatives 
of ξ . Note that, for simplicity, we have assumed no initial errors made in FGA, i.e., ṽε

0 = 0 in (2.17). ✷

Proof of Proposition 3.1. Let ξ † be a minimizer of

min
ξ∈*

∥d − Du(ξ)∥2,

and we have

∥d − DuFGA(ξ∗)∥2 ≤ ∥d − DuFGA(ξ †)∥2

≤ ∥d − Du(ξ †)∥2 + ∥Du(ξ †) − DuFGA(ξ †)∥2

≤ min
ξ∈*

∥d − Du(ξ)∥2 + ∥D∥op∥u(ξ †) − uFGA(ξ †)∥2. (3.6)

Thus we can get

∥d − Du(ξ∗)∥2 ≤ ∥d − DuFGA(ξ∗)∥2 + ∥Du(ξ∗) − DuFGA(ξ∗)∥2

≤ min
ξ∈*

∥d − Du(ξ)∥2 + ∥D∥op∥u(ξ †) − uFGA(ξ †)∥2 + ∥D∥op∥u(ξ∗) − uFGA(ξ∗)∥2. (3.7)

According to Lemma 3.2, there exists a constant M ′ > 0 such that

∥u(ξ) − uFGA(ξ)∥2 ≤ M ′ϵ, for all ξ ∈ *,

Eq. (3.5) follows immediately by letting M = 2∥D∥opM ′ . ✷

Proposition 3.1 suggests that Eq. (3.2) is a good approximation to Eq. (3.1) for ξ ∈ * given in (3.4). However, it is still 
not convenient to identify the appropriate * (or equivalently C ) a priori, and thus we propose the following constrained 
optimization formula to address this issue in practice, in which * is approximated by

*′ = {ξ |
T∫

0

∫ ∣∣∣∣
∂2uFGA

∂t2 − ξ(x)∇uFGA

∣∣∣∣
2

dxdt ≤ δ} , (3.8)

where δ is a prescribed constant, and Eq. (3.3) becomes

min
ξ∈*′

∥d − DuFGA(ξ)∥2
2. (3.9)

Obviously the constraint equation (3.8) degenerates as uFGA → u (i.e., ε → 0).

Remark. The choice of the constant δ is highly problem dependent and ideally it should be chosen in a way that the truth 
is contained in *, which certainly is difficult to verify in practice. Thus a practical solution is to try different values and use 
the one that provides the best results.

4. Multi-level particle swarm optimization algorithm

In this section, we describe the multi-level particle swarm optimization (MLPSO) algorithm to solve the optimization 
problem (3.9). We start with a brief introduction to the standard particle swarm optimization (PSO) algorithm for uncon-
strained optimization problems.

4.1. Particle swarm optimization

PSO, first introduced by Kennedy and Eberhart [22], is a stochastic global optimization technique inspired by the swarm 
behavior of animals. Suppose one wants to find the solution of minξ f (ξ). PSO employs a population of agents called 
particles that fly through the state space of the problem following some prescribed rules and search for the optimal solution. 
Each particle is characterized by two variables: the position ξ representing the optimization variables and the velocity v
describing how the position is updated. A major feature of the PSO algorithm is that the particles share information during 
the search. Namely, each particle combines its own best attained solution with the best solution of the whole swarm to 
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determine its search pattern. More specifically the velocity v and position ξ of a particle at each iteration are updated 
as [22],

vk
n = c0 vk

n + c1 αk
n

(
pk

n − ξk
n

)
+ c2 βk

n

(
g − ξk

n

)
, (4.1a)

ξk
n = ξk

n + vk
n, (4.1b)

where k = 1, · · · , K and n = 1, · · · , N are the iteration index and the particle index respectively. pk
n is the best value of the 

n-th particle at iteration n:

pk
n = arg min{ f (ξ1

n ), . . . , f (ξk
n )},

and g is the swarm’s global best positions:

gk = arg min{ f (pk
1), . . . , f (pk

N)}.
The coefficient c0 is known as the “inertial weight” which is used to provide a good balance between global exploration and 
local exploitation [5], and in practice, c0 is usually designed to vary with respect to time. Constants c1 and c2 are called 
the cognitive and social parameters, quantifying a particle’s tendency to move toward its own best and the global best 
solutions respectively. The variables αk

n and βk
n are drawn from a uniform distribution [0, 1], which renders the optimization 

procedure stochastic.
The standard PSO algorithm is originally developed for unconstrained optimization problems, while Eq. (3.9) is a con-

strained optimization. Therefore we use a trial-and-error PSO algorithm proposed by Hu and Eberhart [17] for constrained 
optimization problems, while noting that other constraint-handling mechanisms (e.g., [32]) are also possible. The advantage 
of the algorithm is that the constraints are handled in a very simple manner, and each particle searches the whole state 
space, but only keeps tracking feasible solutions. Specifically two modifications are made on the standard PSO algorithm: 
particles were only initialized to feasible positions; only those particles that satisfy the constraints are used for the local 
and global best positions.

Theoretical analysis of the PSO algorithm is rather difficult, and to the best of our knowledge, only a number of partial 
results are available (see [29] for a detailed discussion), and the general convergence result of the method is still an open 
problem. A comprehensive introduction to PSO is not in the scope of the paper and we refer interested readers to [5,29,4]
and the references therein for further details such as parameter selection and existing variants.

4.2. Multi-level particle swarm optimization

One can implement the PSO algorithm with Eq. (2.1) solved by FGA; however, this can still be rather expensive, since 
an accurate FGA solution requires a large number of Gaussians. On the other hand, when the particle swarm is far from 
the solution, it is not necessary to evaluate the objective function for all the particles with high fidelity. This motivates 
us to propose an MLPSO algorithm that combines FGA solvers with different levels of fidelity to reduce the computational 
cost. In particular, we assume that fl(ξ) and fh(ξ) are respectively a low-fidelity and a high-fidelity approximation to the 
objective function f (ξ) in Eq. (3.9). In our problem, fl is constructed by FGA with a small number of Gaussians while fh is 
constructed by FGA with a large number of Gaussians.

A common idea in designing multi-fidelity algorithm is to compute all the candidate solutions with the low fidelity 
model, and then choose a certain fraction of the solutions and re-compute them with the high fidelity model. The key 
issue here is to find which solutions should be computed with the high fidelity model. In this problem, it is easy to see 
that the particles with smaller objective function values are more important than those with larger values and should be 
evaluated with the high fidelity model. Thus in each iteration, one first evaluates the objective function of all the particles 
with the low fidelity model fl(ξ), and then re-evaluate a certain percentage of the “best” particles (namely those with 
the smallest objective function values) with the high fidelity model fh(ξ). More importantly, as the swarm moves closer 
to the solution, a larger fraction of particles should be evaluated with the high-fidelity model and eventually all particles 
should be computed with the high fidelity model. Namely the percentage of particles evaluated with fh should increase 
with iteration number. To this end, we define a non-decreasing function ρ = ρ(k) where 0 ≤ ρ(k) ≤ 1 and ρ(K ) = 1 to 
compute the percentage. The function ρ(k) is critical for the performance of the algorithm and should be chosen problem 
dependently. We describe the complete MLPSO procedure in Algorithm 1. Finally we note that since we require that the 
percentage function ρ(K ) = 1, i.e., all the solutions are computed with the high fidelity model in the end, the convergence 
analysis of the MLPSO algorithms is the same as that of the standard single-level PSO.

5. Numerical example

The performance of FGA-based MLPSO is demonstrated by a two-dimensional FWI problem. The true velocity profile is 
taken to be the well-known smoothed Marmousi model [40] in Fig. 1 [42]. The computational domain is a [0, 4] × [0, 3]
rectangle. The initial wave is generated from a point source located at the center of the domain shown in Fig. 2. The 
wavefield data used for the inversion is simulated by propagating the source to T = 0.2 using the highly accurate lowrank 
symbol approximation method [8] on a 1000 × 750 mesh. We plot the wavefield data in Fig. 3.
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Input: Low-fidelity model fl(ξ), high-fidelity model fh(ξ), constraint c(ξ) < 0, swarm size N , maximum iteration number K , the percentage 
function ρ(k), the inertia weight c0(k), the cognitive parameter c1 and the social parameter c2;
Output: Best solution g;
Initialization: Randomly generate the position of N particles in the feasible space (i.e., all particles satisfy the constraints): {ξ1

n }N
n=1 and let 

pbestn = ξ1
n ;

for k = 1 to K do
For each particle, evaluate the objective function with the low-fidelity model: yk

n = fl(ξ
k
n ) for n = 1 . . . N;

Compute ρ = ρ(k) and let yρ be the ρ-th quantile of {yk
n}N

n=1;
for n = 1 to N do

if yk
n < yρ then
Re-calculate yk

n with the high-fidelity model: yk
n = fh(ξk

n );
end

end
for n = 1 to N do

if yk
n < pbestn and c(ξk

n ) < 0 then
pbestn = yk

n , pn = ξk
n

end
end
Let g = pn∗ where pbestn∗ = min{pbestn}N

n=1;
if k < K then

Update the position of each particle ξk+1
n using Eqs. (4.1);

end
end

Algorithm 1: Multi-level particle swarm optimization algorithm.

Fig. 1. The smoothed Marmousi velocity model.

Fig. 2. The initial condition.



66 J. Li et al. / Journal of Computational Physics 296 (2015) 58–71

Fig. 3. The wavefield data collected at T = 0.2.

Fig. 4. The errors in FGA with 300 Gaussians.

Fig. 5. The errors in FGA with 3000 Gaussians.

In MLPSO, we use two FGA solvers: The high-fidelity model uses 3000 Gaussians and the low-fidelity one uses 300 Gaus-
sians, which implies the low-fidelity model is ten times faster than the high-fidelity model. In both models, the time 
integration is performed with a fourth-order Runge–Kutta method with sufficiently small time step 0.001 so that the nu-
merical error due to time integration can be neglected. To validate the FGA solvers, we compute the wavefield by FGA for 
the true velocity model and compare it with the data. In Fig. 4, we show the difference between the data and the result 
computed with 300 Gaussians and in Fig. 5 we show that with 3000 Gaussians. The results show that the FGA with 3000 
beams produces a sufficiently good approximation of the true solution. On the other hand, the error in FGA with 300 beams 
is rather large; nevertheless, as we can see later, it is still useful in MLPSO. We also show the computational cost for the 
two FGA models in Table 1. It should also be noted that in what follows the inversion is performed with a different solver 
(i.e. FGA) from that is used to generate the data, and so no inverse crime is committed.

We assume that the velocity model can be written as a linear combination of a set of features:
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Table 1
The number of high fidelity model and low fidelity model evaluations for all four choices of percentage function.

Percentage function ρ1 ρ2 ρ = 0 ρ = 1

Low fidelity model evaluations 20,000 20,000 20,000 0
High fidelity model evaluations 7473 9422 0 20,000
Computer time (hrs) 26 32 6 56
Best function value 0.0147 0.0147 0.0541 0.0147

Fig. 6. The top 6 principle components of the true velocity profile.

ξ(x) =
J∑

j=0

z jφ j(x),

where φ1, φ2, . . . are features and z1, z2, . . . are coefficients. In practice the features are available from prior knowledge 
(e.g. existing rough information about rock structures and velocity profiles), and here we generated the features by applying 
a singular value decomposition (SVD) to the true velocity (which is represented as a matrix) and taking the top J = 20
components. As an example, we show the top 6 features in Fig. 6. Thus we reduce it to a twenty-dimensional problem 
and now all we need to do is to determine the coefficients {z j}20

j=1. In reality it is unlikely to have such accurate features 
that almost exactly resemble the true velocity model. Here we use these synthetic features to minimize its impact on the 
inversion and so we can be focused on the performance of our inversion algorithm.

In this example we choose the constraint parameter δ = 10−2, and use the MLPSO method to solve the constrained 
FWI problem. Specifically we choose swarm size N = 100, maximum number of iteration K = 200, cognitive parameter 
c1 = 2.8 and social parameter c2 = 1.3. The values of the cognitive and social parameters are chosen as recommended in 
[18]. Following [38], the inertial weight is chosen to be time dependent, linearly decreasing from 0.9 to 0.4:

c0(k) = 0.9 − k
400

.

As stated in Section 4, a critical issue in the algorithm is to determine the percentage function ρ . Obviously a fast increasing 
ρ(k) may produce more accurate results but it is more computationally intensive, while a slowly increasing function is less 
computationally intensive but its results can be less accurate. To further analyze the impact of the percentage function, 
we use several different choices of ρ(k) in this example and compare their performance. Namely we choose ρ1 = (k/K )4, 
ρ2 = k/K , and for comparison purposes, we also perform the standard PSO with only the low fidelity model being employed, 
corresponding to ρ3 = 0 in MLPSO, and with only the high fidelity model being employed, corresponding to ρ4 = 1 in 
MLPSO. The four different percentage choices are plotted against the iteration number in Fig. 7 and we can see that ρ2
increases much faster than ρ1.

The total computational cost for the four different choices of percentage function is compared in Table 1. One can 
see that ρ1, ρ2 and ρ = 1 yield comparable optimization results while ρ1 used the least number of high-fidelity model 
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Fig. 7. The four different percentage functions ρ(k) used in the example.

Fig. 8. The results of the multi-level PSO with ρ1(k). The best velocity found at iteration k = 1, k = 60, k = 120 and k = 200.

evaluations. We then compare the computational results of them. In Figs. 8–11, we show the best velocity profile found at 
the iteration k = 1, 60, 120, and 200, for ρ1, . . . , ρ4 respectively. In Fig. 10 one can see that when the low fidelity model 
is only employed, the final results differ significantly from the true velocity profile, indicating that the low fidelity model 
by itself is not sufficient to produce reliability inversion results. When the high fidelity model is only employed, as shown 
in Fig. 11, the inversion results agree well with the true velocity. Once again, we see that MLPSO with both ρ1 and ρ2
produces comparable results to the high fidelity model, while ρ1 is less computationally expensive than ρ2.

Finally, to exam the method’s ability to find the global minimal and understand how it depends on the particle size in 
each iteration, we performed 20 numerical tests each with a randomly chosen initial guess. And in each test, we use 20, 40 
and 100 particles per iteration. We have found that, with 20 particles, none of the results converges to the true solution. 
With 40 particles, 14 tests correctly find the true solution, and with 100 particles, all the 20 test results converge to the 
true solution, which indicates that whether the method’s ability to find the global solution highly depends on the particle 
size and if possible one should use a rather large particle size to increase the possibility of finding the global solution.
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Fig. 9. The results of the multi-level PSO with ρ2(k). The best velocity found by using at iteration k = 1, k = 60, k = 120 and k = 200.

Fig. 10. The results of a standard PSO with the low-fidelity model (ρ = 0). The best velocity found by using at iteration k = 1, k = 60, k = 120 and k = 200.



70 J. Li et al. / Journal of Computational Physics 296 (2015) 58–71

Fig. 11. The results of a standard PSO with the high-fidelity model (ρ = 1). The best velocity found by using at iteration k = 1, k = 60, k = 120 and k = 200.

6. Conclusions

In summary, we develop a frozen Gaussian approximation (FGA)-based multi-level particle swarm optimization (MLPSO) 
method for seismic inversion of high-frequency wave data. We use FGA to compute asymptotic solutions to the wave 
equation, and design a constrained full waveform inversion (FWI) optimization problem to prevent the optimization search 
moving out of the region where FGA does not produce an accurate solution. The constrained FWI problem is consistent 
with the original FWI when the wave equation is solved exactly. We propose a particle swarm optimization algorithm with 
multi-fidelity models of FGA to efficiently solve the global optimization problem. Numerical results are shown to verify the 
FGA-based MLPSO method and indicate the efficiency and robustness of the method.

The proposed MLPSO method only finds an approximate solution to the inversion problem due to the constraint of 
optimization on the FGA-valid regions. As mentioned in the introduction, if a more accurate solution is desired, one can use 
the results of MLPSO as an ideal initial guess for a gradient-based method (e.g., Born approximation) with direct simulations 
of the wave equation.

There are some possible extensions of the work that we plan to investigate in the future. First, for a fixed wavelength, the 
accuracy of FGA is ultimately limited by the asymptotic error no matter how much computational effort is input. However, 
a more accurate solver can be obtained by combining FGA and direct simulation methods. Namely, we can construct a 
surrogate model based on FGA and then use direct simulations to improve it. Secondly, in many practical cases, finding a 
solution is not the only goal of the inverse problems. It is also important to quantify the uncertainty in the solution. In this 
respect, the Bayesian methods are particularly useful. In the Bayesian setting, a large number of simulations of the wave 
equation are required to reconstruct the posterior distribution of the velocity. We believe that the FGA method can be used 
to develop computationally efficient algorithms for the Bayesian inverse problems as well.
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