
Journal of Computational Physics 321 (2016) 1098–1109
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A surrogate accelerated multicanonical Monte Carlo method 

for uncertainty quantification

Keyi Wu a, Jinglai Li b,∗
a Department of Mathematics, Zhiyuan College, Shanghai Jiao Tong University, Shanghai 200240, China
b Institute of Natural Sciences, Department of Mathematics, and MOE Key Laboratory of Scientific and Engineering Computing, Shanghai Jiao 
Tong University, Shanghai 200240, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 August 2015
Received in revised form 12 April 2016
Accepted 13 June 2016
Available online 17 June 2016

Keywords:
Gaussian processes
Multicanonical Monte Carlo
Uncertainty quantification

In this work we consider a class of uncertainty quantification problems where the system 
performance or reliability is characterized by a scalar parameter y. The performance 
parameter y is random due to the presence of various sources of uncertainty in the 
system, and our goal is to estimate the probability density function (PDF) of y. We 
propose to use the multicanonical Monte Carlo (MMC) method, a special type of adaptive 
importance sampling algorithms, to compute the PDF of interest. Moreover, we develop an 
adaptive algorithm to construct local Gaussian process surrogates to further accelerate the 
MMC iterations. With numerical examples we demonstrate that the proposed method can 
achieve several orders of magnitudes of speedup over the standard Monte Carlo methods.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Uncertainty is an inevitable feature of real-world engineering systems. In those systems uncertainty can rise from vari-
ous of sources: material properties, geometric parameters, boundary conditions, applied loadings and so on. In practice, it 
is essentially important to characterize and quantify the impact of the uncertainties on the system performances, which 
constitutes a central task of the newly emerging field of Uncertainty Quantification (UQ). To be specific, we consider the 
UQ problems in the following setting. We assume that the system is (formally) characterized by a performance function 
y = g(x), where the input x is a random vector collecting all the uncertain factors in the system and y is a scalar indicating 
the system performance or reliability (in what follows, we will simply refer to y as the performance parameter). A typical 
example is the structural design problems, in which y can be the stress or the deformation. In this setting, the key task 
is to accurately assess and quantify the uncertainty in the performance parameter y. A challenge here is that real-world 
applications demand various statistical information of the performance y: for example, in robust design, the interests are 
mainly in the lower moments, especially the mean and the variance [12], in reliability analysis, it is mainly the tail prob-
ability [19], in risk management, one can be interested in the tail probability as well as some extreme quantiles [20], and 
in utility optimization, the complete distribution of the performance parameter is required [13]. To this end, a unified so-
lution is to acquire the knowledge of the probability distribution of the performance parameter, which provides a complete 
characterization of the uncertainty in it. In theory, the distribution of y can be estimated by crucial Monte Carlo (MC) sim-
ulations, provided that a sufficient number of samples can be afforded. In reality, however, the function g : x → y generally 
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admits no analytical form, and evaluating function g(x) must be done by performing computer simulation of the underlying 
system, which renders estimating the distribution of y with crucial MC impractical.

The main purpose of this work is to provide an efficient method to compute the full distribution of y. The proposed 
method has two major ingredients. First, we propose to sample the distribution of y with the multicanonical Monte Carlo 
(MMC) method, which can be regarded as a more efficient alternative to MC. The MMC method was initially developed 
by Berg and Neuhaus [5,6] to explore the energy landscape of a given physical system, and later it has been adopted to 
simulate rare events, such as transmission errors in optical communication systems [14,23], and the rare growth factors 
in random matrices [11]. Roughly speaking, the MMC method constructs an iterative procedure that generates samples 
forming a flat histogram in the space of the parameter of interest (i.e., the energy in the original problem setup). As will 
be shown in Section 2, the MMC method often requires to iterate many times and in each iteration it employs Markov 
chain Monte Carlo (MCMC) simulations to draw a rather large number of samples. As a result, the direct use of MMC to 
sample the distribution of the performance parameter can still be computationally demanding, especially for systems with 
computationally intensive models. To this end, the second major component of our method is to employ computationally 
inexpensive surrogates to further reduce the computational cost of MMC. In particular, building on the method developed in 
the work [10], we adaptively construct local Gaussian process (GP) surrogates in the MCMC iteration. We choose to use this 
method for the following reasons: first, the surrogate construction scheme is naturally incorporated in the MCMC iterations, 
which makes it convenient to use; secondly, unlike many other surrogate based algorithms which introduce errors in the 
equilibrium distribution, this method samples asymptotically from the exact distribution of interest [10].

It should be noted that the purpose of the MMC method differs from that of the advanced sampling techniques developed 
in the field of reliability analysis or rare event simulations, such as the cross entropy method [17], subset simulations [2], 
sequential Monte Carlo [8], etc. Namely, the purpose of those methods is to provide a variance-reduced estimator for a 
specific parameter associated with the distribution of y, while that of our method is to estimate the distribution of y itself. 
As will be shown in the next section, MMC is particularly useful for this purpose, which is our primary motivation to choose 
MMC over other advanced sampling schemes.

The rest of this paper is organized as the following. We first review the MMC method in Section 2, and then present 
our local GP construction algorithm in Section 3. Finally numerical examples are provided in Section 4 to demonstrate the 
performance of the proposed method.

2. The multicanonical Monte Carlo method

In this section we introduce the MMC algorithm, largely following the presentation of [7]. We start by summarizing the 
basic setup of our problem. Let x be a random vector taking values in the state space X , and y = g(x) be a real scalar 
function of x. For simplicity we assume that both x and y are continuous random variables whose probability density 
functions exist. We further assume that the PDF p(x) of x is known, possibly up to an unknown normalization constant, 
and our goal is to determine the PDF π(y) of y.

2.1. Flat histogram importance sampling

A popular strategy to estimate the PDF of a continuous random variable y with simulation, is to approximate the PDF 
with histograms, like a special case of the kernel density estimation. Suppose we are interested in the PDF of y in a given 
closed interval R y , and we first equally decompose R y into M bins of width � centered at the discrete values {b1, ..., bM}. 
We define the i-th bin as the interval Bi = [bi − �

2 , bi + �
2 ] and the probability for y to be in Bi is Pi = P{y ∈ Bi}. The PDF 

of y at point yi then can be approximated by

π(yi) ≈ Pi/�,

if � is sufficiently small. This binning implicitly defines a partition of the input space X into M domains {Di}M
i=1, where

Di = {x ∈ X : g(x) ∈ Bi}
is the domain in X that maps into the i-th bin Bi . See Fig. 1 for an illustration. Note that, while Bi are simple intervals, the 
domains Di are multidimensional regions with possibly tortuous topologies. As a result, the probability Pi can be re-written 
as an integral in the input space:

Pi =
∫
Di

p(x)dx =
∫

I Di (x)p(x)dx = E[I Di (x)], (2.1)

where I Di (x) is an indicator function defined as,

I Di (x) =
{

1 x ∈ Di;
0 otherwise.
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Fig. 1. Schematic illustration of the connection between Bi and Di .

Now suppose that N samples {x1, . . . , xN } are drawn from the distribution p(x), possibly with MCMC, Pi can be evaluated 
with the MC estimator:

P̂ MC
i = 1

N

N∑
j=1

I Di (x j) = Ni

N
, (2.2)

where Ni is the number of samples that fall in bin Bi .
As is well known, standard MC simulations have difficulty in reliably estimating the probabilities in the tail bins. The 

technique of importance sampling (IS) can be used to address the issue. Namely we choose a biasing distribution q(x) and 
re-write (2.1) as

Pi =
∫

I Di (x)[ p(x)

q(x)
]q(x)dx = E

∗[I Di (X)w(X)] (2.3)

where w(x) = p(x)/q(x) is the IS weight, and E∗ indicates expectation with respect to the biasing distribution q(x). It 
follows that the IS estimator of Pi becomes

P̂ I S
i =

(
N∗

i

N

)⎡⎣ 1

N∗
i

N∑
j=1

I Di (x j)w(x j)

⎤⎦ (2.4)

where the samples {x1, . . . , xN } are now drawn from the biasing distribution q(x), and N∗
i is the number of samples falling 

in region Di . For conciseness, we let Ĥ∗
i = N∗

i
N . The intuition behind IS is that, the biasing distribution should assign higher 

probability in the region of interest than the original one, and thus it can draw more samples in that region.
The key of IS is to choose an appropriate biasing distribution q(x) that can help to achieve the objective of the simulation. 

Unlike regular IS methods which usually employ biasing distributions that are easy to sample from, the MMC method 
chooses a biasing distribution q(x) in the form of:

q(x) =
⎧⎨⎩

p(x)

�(x)
x ∈ D;

0 x /∈ D,

(2.5)

where �(x) = �i . For q(x) to be a well-defined distribution, we must have 
∑M

i=1 Pi/�i = 1. It is easy to see that the 
distribution given in Eq. (2.5) assigns a constant weight to all x ∈ Di : w(x) = wi for x ∈ Di where wi = �i , which is 
referred to be as uniform-weight (UW). In particular, if we let �i = M Pi for all x ∈ Di, i = 1, ..., M , the biasing distribution 
in Eq. (2.5) assigns equal probability to each bin and zero probability for any region outside D = ∪M

i=1 Di , namely,

P∗
1 = P∗

2 = ...P∗
M = 1/M, where P∗

i =
∫

I Di (x)q(x)dx. (2.6)

We say such a biasing distribution as to be flat-histogram (FH). FH is an important feature for our purpose which is to have 
a good estimate of Pi for all i = 1 . . . M .

2.2. Multicanonical Monte Carlo

It is easy to see, however, that the actual UW-FH distribution presented in Section 2.1 can not be used directly, as �i
depends on the sought after unknown Pi . The MMC method addresses the issue in an incremental manner. Simply speaking 
MMC iteratively constructs a sequence of distributions
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qk(x) =
⎧⎨⎩

p(x)

�k(x)
, x ∈ D;

0 x /∈ D,

(2.7)

where �k(x) = �k,i for x ∈ Di , converging to the actual UW-FH distribution. Specifically the sequence usually starts with 
q0(x) where �0,i = ρ for all i = 1, . . . , M and ρ = ∑M

i=1 Pi ≤ 1 is the probability that y falls in the region of interest.1

The iteration is then guided by the following equation:

P∗
i =

∫
Di

q(x)dx =
∫

Di
p(x)dx

c��i
= Pi

c��i
, (2.8)

or equivalently Pi = P∗
i �i . Namely, in the k-th iteration, one first draws N samples {x j}N

j=1 from the current distribution 
qk(x), and then updates {�k+1,i}M

i=1 using the following formulas, which are derived from Eq. (2.8),

Ĥk,i = N∗
k,i

N
, (2.9a)

Pk,i = Ĥk,i ∗ �k, j, (2.9b)

�k+1,i = Pk,i, (2.9c)

where N∗
k,i is the number of samples falling into region Di in the k-th iteration. We reinstate that, unlike a usual IS method, 

which often chooses a biasing distribution easy to sample from, the biasing distribution of the MMC method Eq. (2.7) is 
not a standard distribution, and thus directly sampling from the distribution is rather difficult. To this end, MMC usually 
employs MCMC algorithm to draw samples from qk(x). Formal convergence analysis, as well as possible improvements of 
the method are not discussed in this work, and interested readers may consult, e.g., [3,4,15,16], and the references therein.

3. Accelerating MMC with local GP surrogates

In the MMC iteration, the main computational cost arises from performing the MCMC iteration to draw samples from 
each qk(x), for each sample requires a full-scale simulation of the underlying system. Thus, the MMC efficiency can be 
significantly improved by using computationally inexpensive surrogates in the MCMC scheme. As is mentioned in Section 1, 
here we adopt the adaptive surrogate construction scheme developed in [10]. In the work [10], the authors presented 
their method with two different surrogate models: the quadratic regression and the GP model, and their numerical results 
suggest that the GP model has better performance. We thus choose to use the GP model, while noting that other types 
of surrogates can also be used. In this section, we first briefly introduce the GP surrogate and then present the adaptive 
surrogate construction scheme modified for our specific use in MMC.

3.1. Gaussian process regression

The GP surrogates, which are also known as kriging, have been widely used in many practical problems (see e.g., [21]). 
The GP surrogate constructs the approximation of g(x) in a nonparametric Bayesian regression framework [18,21]. Specifi-
cally the target function g(x) is cast as

g(x) = μ0(x) + η(x) (3.1)

where μ0(x) is a real-valued function and ε(x) is a zero mean Gaussian process whose covariance is specified by a kernel 
K (x, x′), namely,

COV[η(x),η(x′)] = K (x,x′).

In practice, μ0(x) can be represented as a linear or a quadratic polynomial whose coefficients are determined by simple 
regression. In this work, we assume it is a quadratic polynomial. The kernel K (x, x′) is positive semidefinite and bounded. 
Popular choices of the covariance functions include squared exponential, exponential, and Matern. The hyper-parameters 
inside the covariance functions can be prescribed or determined by maximizing the marginal likelihood function. Suppose 
that N computer simulations of the function g(x) are performed at parameter values X∗ := [

x∗
1, . . . x∗

n

]
, yielding function 

evaluations y∗ := [
y∗

1, . . . y∗
n

]
, where

y∗
i = g(xi) for i = 1, . . . ,n.

Suppose we want to predict the function values at a given point x, i.e., y = g(x), the posterior of which is Gaussian:

1 In practice, it is often convenient to assume that ρ ≈ 1 and in this case we have q0(x) ≈ p(x).
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y | x,X∗,y∗ ∼ N (μ(x),σ 2(x)). (3.2)

The posterior mean of y is

μ(x) = μ0(x) + K (x,X∗)T K (X∗,X∗)−1(y∗ − μ0(X∗)), (3.3a)

and the posterior variance is

σ 2(x) = K (x,x) − K (x,X∗)T K (X∗,X∗)−1 K (X∗,x), (3.3b)

where the notation K (A, B) to denote the matrix of the covariance evaluated at all pairs of points in set A and in set B [21]. 
Eq. (3.3a) can be used as the surrogate to predict the function values at points of interest, and Eq. (3.3b) provides a measure 
of confidence in the predicted values.

3.2. Local GP construction

In the standard GP methods, the surrogates are constructed with all the data points. Constructing the GP surrogate 
this way can be very costly when the data set becomes large, as it involves inverting a large covariance matrix. On the 
other hand, it has been well noted that data points far from the point of interest have little influence on the prediction 
(assuming the usual choices of covariance). Thus, a natural choice is to construct GP only with the data points near the 
point of interest. The resulting surrogate is thus local, in the sense that it is only intended to be accurate at the point of 
interest. Next we discuss in detail how to construct a local GP surrogate at point x given a collection of model evaluations: 
S := {(xi, yi)}nS

i=1 where yi = g(xi) for i = 1...nS .
First we need to determine how many data points we want to use in the surrogate construction. Following the suggestion 

of [10], we choose the number of data points n as

n =
√

dx(dx + 1)(dx + 2)/2,

where dx is the dimensionality of x. This choice allows us to have sufficient data points to perform a quadratic regression 
for μ0(x). The specific points used to build the surrogate are chosen with the nearest neighbor (NN) method: namely, we 
use the n points closest to x to construct the GP surrogate. It has been pointed out that the NN method only provides a 
suboptimal point selection, and better selection strategy can be obtained by solving an optimization problem. However, in 
our problem, the GP construction must be done repeatedly in the MCMC scheme, and as a result even very fast optimization 
may significantly increase the total computational cost. In this respect, we nevertheless adopt the NN method for the sake 
of computational simplicity. In what follows, we refer to a local GP surrogate constructed with the prescribed procedure, as 
g̃(x|S).

3.3. MCMC with local GP surrogates

In this section, we present a modified version of the local surrogate accelerated MCMC scheme developed in [10]. The 
method embeds an adaptive surrogate construction in the MCMC iteration: in each iteration the method constructs a local 
surrogate using data set S, for the proposed point and the current point, and decides whether it needs model refinement; 
when refinement is needed, the algorithm then refines the surrogate by evaluating more points near the proposed point 
or the current one depending on where the refinement is triggered; all the evaluated points are included in the data set 
S which will be used for constructing surrogates in the next step. In [10], refinement is triggered by either of two criteria. 
The first is random: with probability γt , the model refined at either the current point or the proposed point. The second 
criterion used in [10], intended to make the algorithm efficient in practice, is based on an error indicator of the acceptance 
probability. In this work, we follow the random criteria and choose γt to be a constant for simplicity. We use, however, 
a different practical criterion, taking advantage of the special structure of the target distribution qk(x) in Eq. (2.7). Namely, 
it is easy to see that, for qk(x) in Eq. (2.7), an error in the surrogate does not cause an error in the acceptance probability 
unless the surrogate assigns the sample into a wrong bin, assuming a symmetric proposal distribution. Specifically, suppose 
the current sample is x− and the proposed sample is x+ , and the posterior mean and variance of the GP at x+ are y+ and 
ε2 respectively. Suppose it is assigned to bin Bi = [bi −�/2, bi +�/2] based on the predicted value y+ , and the probability 
that the assignment of xi is incorrect can be computed as

β(x+) := P[g(x+) < bi − �/2 or g(x+) > bi + �/2]
= �(bi − �/2, y+,σ+) − �(bi + �/2, y+,σ+) + 1, (3.4)

where �(·, y+, ε) is the cumulative density function (CDF) of the normal distribution with mean y+ and standard devi-
ation σ+ = σ(x+). Thus we can define the refinement criteria as that the misassignment probability β is smaller than a 
threshold value: β < βmax. Since the refinement criteria is applied to each iteration, the probability that the acceptance 
probability computed with the surrogate is erroneous is bounded by 2βmax, in any iteration. As a result, to achieve this 
probability boundedness, we only need to check if x+ satisfies the quality condition: β(x+) < βmax, as x− has been verified 
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Algorithm 1 Metropolis–Hastings with local GP surrogates.
1: for t = 1, ..., T do
2: (xt+1, yt+1, St+1) ← Kt (xt , yt , St , q(·; yt ), γt , βmax)

3: end for
4:
5: procedure Kt (x−, y−, S, q(·; y−), γ , βmax)
6: Draw proposal x+ ∼ �(x−, ·)
7: (y+, ε+) ← g̃(x+, S)

8: if u ∼ Uniform(0, 1) < γ then
9: y+ = g(x+)

10: S ← S ∪ {(x+, y+)}
11: else
12: β ← 1 + �(bi − �/2, y+, σ+) − �(bi + �/2, y+, σ+)

13: if β > βmax then
14: y+ = g(x+)

15: S ← S ∪ {(x+, y+)}
16: end if
17: end if
18: α ← q(x+; y−)/q(x−; y−)

19: if u ∼ Uniform(0, 1) < α then
20: return (x+, y+, S)

21: else
22: return (x−, y−, S)

23: end if
24: end procedure

in the previous iteration. We outline our algorithm in Algorithm 1, where the surrogate construction is integrated into a 
standard Metropolis–Hastings (MH) MCMC scheme.

We have the following remarks regarding the proposed algorithm, highlighting its differences from that given in [10] in 
addition to the refinement criteria.

• As a pre-processing of the first MMC iteration, we choose no points, and use them as the initial data set S. These points 
can be chosen in many different ways: sampling according to p(x), Latin hypercube, or experimental design methods. 
For the succeeding MMC iterations, the data set S is simply taken to be that obtained in the previous round.

• Unlike regular MCMC methods, in each iteration our algorithm returns the sample xt as well as the function value yt
for the sample. Note that, the function values are needed in Eqs. (2.9), and thus by recording the function values, we 
can compute Eq. (2.9) without evaluating the function again.

• As has been discussed in the beginning of Section 3.3, in each iteration we only need to consider the quality of the 
surrogate at the proposed point x+ thanks to the special structure of qk(x), while in the original algorithm, both x+
and x− need to be examined.

• In our algorithm, when model refinement is needed, we simply evaluate the current point x+ . It has been suggested 
that this strategy may lead to poor conditioned regression in particular when polynomial surrogates are used, and as 
an alternative a space filling approach is used in [10]. However, we have found it is not a very serious issue for the GP 
surrogates in our numerical tests, and, considering that the space filling method requires an extra optimization step, we 
choose to directly evaluate x+ for simplicity’s sake.

Finally we note that it is a very interesting problem to analyze the convergence property of the algorithm. To this end, 
the convergence analysis in [10] can provide certain useful results of the MCMC iterations. However, since the algorithm is 
a combination of the two methods, a formal convergence analysis can be very challenging, and so is not pursued in this 
work.

4. Numerical examples

We use three numerical examples to demonstrate the performance of the proposed GP accelerated MMC (GP-MMC) 
method. Before proceeding to the examples, we describe the specific GP surrogate used in all the three examples. First in 
all the examples we use an anisotropic covariance function in the form of:

K (x,x′) = a exp

⎡⎣−
dx∑

i=1

|xi − x′
i |p

li

⎤⎦ , (4.1)

where p is a prescribed positive integer which usually takes values of 1 (the exponential kernel) or 2 (the squared exponen-
tial kernel), the coefficient a is determined with empirical Bayes in the iteration, and the correlation length l = (l1, ..., ldx )

is determined from the initial data set and is not adjusted in the iteration. Note that, the correlation length l can also be 
determined with empirical Bayes in the iteration if desired, but we choose not to do so here for simplicity’s sake, as it 
requires to numerically solving an optimization problem.



1104 K. Wu, J. Li / Journal of Computational Physics 321 (2016) 1098–1109
Fig. 2. The histograms of the first two steps and the 10th iteration of MMC.

Table 1
(Example 1) The performance results of GP-MMC with various values of βmax.

βmax 0.92 0.76 0.32 0.05 0.003 Plain MMC
True model evals 796 810 809 926 1089 106

Maximum RelErr 0.1775 0.148 0.1058 0.1321 0.1217 0.0921
Average RelErr 0.0419 0.039 0.0327 0.0333 0.0345 0.0225

4.1. A multi-dimensional analytical example

Our first example is a multi-dimensional problem where the performance function is

g(x) = min{g1(x), g2(x)} − 1,

with

g1(x) = ‖x − x1‖ , and g2(x) = ‖x − x2‖ .

The input x are multidimensional independently distributed standard normal random variables and x1, x2 are two fixed 
points. It is obvious that each Di has two possibly disjoint sections: {x | g1(x) ∈ Bi} and {x | g2(x) ∈ Bi}, which makes the 
problem challenging for many variance-reducing sampling techniques.

We first test our method for the two dimensional case and choose x1 = (3, 3) and x2 = (3, −3) respectively. We run 
standard MC simulations with 107 samples, and use its results as the “truth” to validate the estimates of the MMC methods. 
In the first numerical experiment, we perform MMC simulations without using surrogates, where 10 iterations are used 
with 105 samples in each iteration, resulting in a total computational cost of 106 full-model simulations. When constructing 
the PDF, we use R y = [−1, 54] which is divided into 55 bins. In Fig. 2 we show the histograms obtained in the 1st, 2nd and 
the final MMC iteration, from which one can see that the histograms tend to become flat as the iterations proceed.

Our second numerical experiment is to run MMC with the assistance of the GP surrogates, and, as is in the first experi-
ment, we again use 10 iterations with 105 samples in each. In the GP-MMC computation, we construct the GP surrogates as 
is described in the beginning of the section, where the kernel is given by Eq. (4.1) with p = 1. The initial data set contains 
50 samples randomly drawn from the distribution of x, and we choose the random model refinement probability γt = 10−4. 
The key parameter in the algorithm is the maximum misassignment probability βmax, and to examine the robustness of our 
method against the choices of βmax, we implement our method with various values of βmax and show the results in Table 1. 
In particular, for the results of each value of βmax, we show the number of true model evaluations, the maximum and the 
average relative errors (compared to the MC results) of all the bins.

One can see that, the method performs well even for very large misassignment probabilities, and the results are rather 
robust for different values of βmax except that the number of true model evaluations grows as βmax becomes smaller.

To further compare the results, we plot the PDF obtained by MC, MMC and GP-MMC with βmax = 0.05, in Fig. 3 (Top), 
and one can see that the results of the three methods agree very well with each other. To have a quantitative assessment of 
the performance, we compute the relative error of the MMC and the GP-MMC estimates, against the results of plain MC:

RelErrMMC = |p̂MMC − p̂MC|
p̂MC

, RelErrGPMMC = |p̂GPMMC − p̂MC|
p̂MC

, (4.2)

and show the results in Fig. 3 (Bottom).
We see that, the relative errors in both MMC and GP-MMC are around 0.1, indicating that both MMC and GP-MMC 

produce reliable estimates of the PDF of y. To further compare the performance, we computed the mean, the variance, 
the 3rd, the 4th and the 5th central moments of y using the samples obtained by the three methods shown in Table 2, 
which shows that the results obtained by the three methods agree well with each other. Regarding the computational cost, 
the MMC method uses 106 full model evaluations while our GP-MMC method only uses less than a thousand full-model 
evaluations.
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Fig. 3. (Example 1) Top: the PDF of y obtained by MC (circles), MMC (dashed line) and GP-MMC (solid line) on a logarithmic scale; inset is the same plots 
on a linear scale. Bottom: the relative error in the PDF obtained by MMC (dashed) and GP-MMC (solid).

Table 2
(Example 1) The mean, variance, and 3rd–5th central moments of y, estimated by 
MC, MMC and GP-MMC.

Moment Mean Var 3rd 4th 5th

MC 14.21 43.58 217.42 7340.55 108583.52
MMC 14.43 44.04 241.11 7505.02 113171.57
GP-MMC 14.28 44.04 230.10 7456.33 111877.63

Table 3
(Example 1) The performance of MMC and GP-MMC with respect to various sample 
sizes.

Sample size 1e+4 1e+5 1e+6

MMC maximum RelErr 0.3097 0.1858 0.0466
average RelErr 0.0791 0.0387 0.0120

GP-MMC true model evals 891 1855 2033
maximum RelErr 0.2593 0.0906 0.0576
average RelErr 0.087 0.0328 0.0147

Table 4
(Example 1) The performance of MMC and GP-MMC with respect to various num-
bers of dimensions.

Dimension 2 8 16

MMC maximum RelErr 0.1173 0.1168 0.1531
average RelErr 0.0225 0.0370 0.0566

GP-MMC true model evals 891 3226 16886
maximum RelErr 0.1497 0.1521 0.1692
average RelErr 0.0414 0.0422 0.0665

We also consider the performance of the proposed method with respect to different sample sizes and dimensionality. To 
this end, we first perform the GP-MMC method as well as standard MMC with different number of samples in each iteration, 
in which βmax is taken to be 0.075. The results are shown in Table 3, and as expected, with more samples in each iteration, 
the results become more accurate at the price of more true model evaluations. Next, we consider the example with different 
number of dimensions. In this case we let x1 = (1, ..., 1)d and x2 = (−1, ..., −1)d for d = 2, 8, 16. We perform both MMC 
and GP-MMC in each case, and in the GP-MMC we take βmax = 0.075 and the number of sample size in each iteration to be 
5 × 104. The performance comparison is shown in Table 4. We can see from the results that as the dimensionality increases, 
the GP-MMC method requires more true model evaluations, but the computational cost saving compared to standard MMC 
is still significant even for the case of 16 dimensions. Overall we have found that the performance of the GP-MMC method 
is rather robust with respect to the sample size and the dimensionality.
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Fig. 4. (Example 2) Schematic illustration of a cantilever beam subject to horizontal and vertical loads.

Table 5
(Example 2) The mean and variance of the random parameters in the cantilever 
beam model.

Parameter w t X Y E

Mean 4 4 500 1000 2.9 × 106

Variance 0.001 0.0001 100 100 1.45 × 106

Table 6
(Example 2) The performance results of GP-MMC with various values of βmax.

βmax 0.92 0.76 0.32 0.05 0.003
True model evals 894 2523 4775 7456 7589
Maximum RelErr 0.116 0.143 0.102 0.099 0.089
Average RelErr 0.034 0.042 0.038 0.038 0.037

Table 7
(Example 2) The mean, variance, and 3rd–5th central moments of y, estimated by 
MC, MMC and GP-MMC.

Moment Mean Var 3rd 4th 5th

MC 0.6024 8.99e−5 6.28e−8 2.43e−8 4.96e−11
MMC 0.6024 8.97e−5 7.04e−8 2.43e−8 5.32e−11
GP-MMC 0.6025 9.04e−5 7.55e−8 2.46e−8 5.54e−11

4.2. Cantilever beam

We now consider a cantilever beam problem [17,22] as illustrated in Fig. 4, with width w , height t , length L, and subject 
to transverse load Y and horizontal load X . This is a popular benchmark problem in the reliability analysis literature, where 
the performance function is

y = 4L3

E wt

√(
Y

t2

)2

+
(

X

w2

)2

,

which represents the deflection of the beam. In this example, we assume that the beam length is fixed L = 100, and the 
beam width w , the height x, the applied loads X and Y , as well as the elastic module E of the material, are random 
parameters. We further assume that these random parameters are all independently distributed, with each following a 
normal distribution. The means and the variances of the parameters are summarized in Table 5.

In this example, we also compute the PDF of y with three methods: plain MC, MMC and GP-MMC. In the MC simulations, 
we use 109 full model evaluations. In both MMC and GP-MMC, we use 10 iterations where 105 samples in each iteration. In 
the GP-MMC computation, the number of initial data and the values of γt are the same as those used in the first example. 
The GP kernel is also given by Eq. (4.1) with p = 1. Also, we test the GP-MMC method with various values of βmax and 
show the results in Table 6. In this example, we use R y = [0.56, 0.66] which is divided into 40 bins. To compare the 
results, we plot the PDF obtained by MC, MMC and GP-MMC with βmax = 0.32 which requires 4775 true model evaluations, 
as well as the relative errors of MMC and GP-MMC, in Figs. 5. We also show the same moment plots as is in the first 
example in Table 7. All the figures indicate that our GP-MMC method yields very reliable estimates of the PDF of y, while 
its computational cost is significantly lower than both MC and standard MMC.

4.3. Random PDE example

Finally we consider a random partial differential equation (PDE) example: a two-dimensional Poisson equation on region 
� = [0, 1] × [0, 1]:

∇(a(x)∇u(x)) = f (x), (4.3a)

u = 0 on ∂�, (4.3b)

where a(x) is a random field and ∂� is the boundary of �. We want to compute the statistical distribution of the value of 
u at location x∗ ∈ �. A physical interpretation of the problem is the following: we consider a steady flow in an isotropic 
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Fig. 5. (Example 2) Top: the PDF of y obtained by MC (circles), MMC (dashed line) and GP-MMC (solid line) on a logarithmic scale; inset is the same plots 
on a linear scale. Bottom: the relative error in the PDF obtained by MMC (dashed) and GP-MMC (solid).

Fig. 6. (Example 3) The eigenvalues of the KL expansion plotted in a descending order.

aquifer subject to random permeability [1], and we are interested in the statistical information of the hydraulic head at a 
particular location x∗ .

We further assume the permeability is a log-normal random field, namely, a(x) = ao exp(z(x)) where z(x) is a Gaussian 
random field with zero mean and covariance kernel,

�(x1,x2) = exp(−‖x1 − x2‖2

�
). (4.4)

In this example we take a0 = 1 and � = 0.6. In practice, the random field z(x) in the PDE is often represented with a trun-
cated Karhunen–Loève (K–L) expansion. Namely, let {λ j, ξ j(x)}∞j=1 be the eigenvalue–eigenfunction pairs of the covariance 
kernel �(·, ·) such that λ j > λ j+1 for all j = 1...∞, and we can approximate z(x) with

z(x) =
J∑

j=1

c j
√

λ jξ j(x), (4.5)

where c = (c1, ..., c J ) follows a standard isotropic normal distribution. Thus the dimensionality of the problem is reduced to 
J and in this example we choose J = 10. We plot the eigenvalues associated with the 10 KL modes in a descending order 
in Fig. 6, which suggests that 10 KL-modes can sufficiently represent the Gaussian field z(x) in this problem. Moreover, in 
the numerical simulations, we take f (x) = 1 and x∗ = (0.5, 0.5). A sample coefficient a(x) and the associated solution u(x)

is shown in Fig. 7.
As the computational cost for solving Eq. (4.3) is rather high, which renders standard MC unfeasible, we choose to only 

perform MMC and GP-MMC simulations in this problem. In both cases, we use 10 iterations with 20000 samples in each 
iteration. In GP-MMC, we use the covariance function (4.1) with p = 2. The number of initial samples is 400, γt = 10−4

and βmax = 0.05. As a result the total number of true model evaluations is 4885. When constructing the PDF, we use 
R y = [−2, 0] divided into 20 bins. We plot the PDF computed with MMC and GP-MMC as well as the relative error in the 
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Fig. 7. Left: a randomly drawn coefficient sample a(x). Right: the solution of Eq. (4.3) associated with a(x).

Fig. 8. (Example 3) Top: the PDF of y obtained by MMC (dashed line) and GP-MMC (solid line) on a logarithmic scale; inset is the same plots on a linear 
scale. Bottom: the relative error in the PDF.

two results in Fig. 8. One can see from the figures that the results of GP-MMC agree very well with those of plain MMC, 
while it only uses around one fortieth true model evaluations of the plain MMC.

5. Conclusions

We consider a special type of UQ problems where the system performance is characterized by a scalar parameter. We 
use a MMC based method to compute the distribution of the performance parameter, and we also propose to use a local GP 
surrogate to accelerate the MMC simulations. Based on the work [10], we design an adaptive algorithm that can effectively 
refine the GP surrogate in the MMC iterations. With numerical examples, we demonstrate that the proposed GP-MMC 
method can efficiently and accurately compute the distribution of the performance parameter. We expect the proposed 
method can be useful in various fields of applications, such as reliability analysis, risk management, and utility optimizations.

There are a number of possible improvements and extensions of the proposed method that we plan to investigate in the 
future. First there are some well-known open issues with GP: most notably, how to choose the best covariance functions, 
and such a choice may certainly affect the performance of our MMC-GP method. To this end, we hope to develop approaches 
that can effectively choose the covariance functions for our MMC method. Second, as has been mentioned in Section 3, we 
are not able to provide a convergence analysis of the proposed method in this paper and we hope to address the issue 
in a future work. Third we are also interested in more general uncertainty propagation problems where the output is a 
multidimensional vector rather than a scalar. In this case, the standard MMC scheme does not apply directly, due to the 
multi-dimensionality of the output. We plan to tackle such problems with modified MMC algorithms. Finally, we note that 
the Wang–Landau algorithms, which can be regarded as a variant of MMC, have been applied to the Bayesian inference 
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problems (e.g. [9]), and we hope that our GP-MMC method can be applied to such problems as well. In this case, we 
expect that our method can further improve the computational efficiency of the Bayesian inferences, thanks to the use of 
surrogates.
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