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Many scientific and engineering problems require to perform Bayesian inference for 
unknowns of infinite dimension. In such problems, many standard Markov Chain Monte 
Carlo (MCMC) algorithms become arbitrary slow under the mesh refinement, which 
is referred to as being dimension dependent. To this end, a family of dimensional 
independent MCMC algorithms, known as the preconditioned Crank–Nicolson (pCN) 
methods, were proposed to sample the infinite dimensional parameters. In this work we 
develop an adaptive version of the pCN algorithm, where the covariance operator of the 
proposal distribution is adjusted based on sampling history to improve the simulation 
efficiency. We show that the proposed algorithm satisfies an important ergodicity condition 
under some mild assumptions. Finally we provide numerical examples to demonstrate the 
performance of the proposed method.

© 2016 Published by Elsevier Inc.

1. Introduction

In many real-world inverse problems, the unknowns that one wants to estimate are functions of space and/or time. 
Solving such problems with the Bayesian approaches [11,23], often requires to perform Markov Chain Monte Carlo (MCMC) 
simulations in function spaces. Namely one first represents the unknown function with a finite-dimensional parametriza-
tion, for example, by discretizing the function on a pre-determined mesh grid, and then performs MCMC simulations in the 
resulting finite dimensional space. It has been known that standard MCMC algorithms, such as the random walk Metropolis–
Hastings (RWMH), can become arbitrarily slow as the discretization mesh of the unknown is refined [19,21,3,15]. That is, 
the mixing time of an algorithm can increase to infinity as the dimension of the discretized parameter approaches to in-
finity, and in this case the algorithm is said to be dimension-dependent. To this end, a very interesting line of research is 
to develop dimension-independent MCMC algorithms by requiring the algorithms to be well-defined in the function spaces. 
In particular, a family of dimension-independent MCMC algorithms, known as the preconditioned Crank Nicolson (pCN) al-
gorithms, were presented in [6] by constructing a Crank–Nicolson discretization of a stochastic partial differential equation 
(SPDE) that preserves the reference measure.

The sampling efficiency of the pCN algorithm can be improved by incorporating the data information in the proposal 
design, and a popular way to achieve this goal is the adaptive MCMC methods. Simply speaking, the adaptive MCMC algo-
rithms improve the proposal based on the sampling history from the targeting distribution (cf. [1,2,20] and the references 
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therein) as the iterations proceed. A major advantage of the adaptive methods is that they only require the ability to eval-
uate the likelihood functions, which makes them particularly convenient for problems with black-box models. In a recent 
work [9], we develop an adaptive independence sampler MCMC algorithm for the infinite dimensional problems. A main 
difficulty of independence sampler MCMC algorithms is that the efficiency of such algorithms depends critically on the 
ability of the chosen proposal, often in a parametrized form, to approximate the posterior in the entire state space, and the 
algorithm may perform very poorly if the proposal can not well approximate the posterior distribution. In this respect, ran-
dom walk based algorithms may be more convenient to use, as they do not require such a “global proposal”. In this work, 
we present an adaptive random walk MCMC based on the preconditioned Crank–Nicolson (pCN) algorithm in [6]. Specifi-
cally, we adaptively adjust the covariance operator of the proposal to improve the sampling efficiency. We parametrize the 
covariance operator in a specific form that has been used in [17,9], and we provide an algorithm that can efficiently update 
the parameter values as the iteration proceeds. By design, the acceptance probability of our algorithm is well defined and 
thus the algorithm is dimension independent. Moreover, we can show that the algorithm satisfies some important ergodicity 
conditions in the infinite dimensional setting. Note that, another existing adaptive MCMC algorithm for infinite dimensional 
problems is the dimension independent adaptive Metropolis (DIAM) proposed in [5]. The DIAM is also based on the pCN 
algorithm, but our method preserves an important feature of the standard pCN algorithm, i.e., the acceptance probability 
being independent on the proposal distribution, while the DIAM method does not.

We note that, an alternative class of methods improve the sampling efficiency by guiding the proposal with the local 
derivative information of the likelihood function. Such derivative based methods include: the stochastic Newton MCMC [14,
16], the Riemann manifold Hamiltonian MC [4], the operator-weighted proposal method [13], the dimension-independent 
likelihood-informed MCMC [7], the generalized pCN algorithm [22], and so on. We reinstate that in this work we are focused 
on the type of problems where the derivative information is difficult to obtain, and thus those derivative based methods are 
not in our scope.

The rest of the paper is organized as the following. In section 2 we describe the setup of infinite dimensional inference 
problems and present our adaptive algorithm in detail. In section 3 we provide several numerical examples to demonstrate 
the performance of the proposed algorithm. Finally we offer some concluding remarks in section 4.

2. The adaptive pCN algorithm

2.1. Bayesian inferences in function spaces

We present the standard setup of the Bayesian inverse problem following [23]. We consider a separable Hilbert space 
X with inner product ⟨·, ·⟩X . Our goal is to estimate the unknown u ∈ X from data y ∈ Y where Y is the data space and 
y is related to u via a likelihood function exp(−!y(u)). In the Bayesian inference we assume that the prior µ0 of u, is a 
(without loss of generality) zero-mean Gaussian measure defined on X with covariance operator C0, i.e. µ0 = N(0, C0). Note 
that C0 is symmetric positive and of trace class. The range of C

1
2

0 ,

E = {u = C
1
2

0 x | x ∈ X} ⊂ X,

which is a Hilbert space equipped with inner product [8],

⟨·, ·⟩E = ⟨C− 1
2

0 ·,C− 1
2

0 ·⟩X ,

is called the Cameron–Martin space of measure µ0. In this setting, the posterior measure µy of u conditional on data y is 
provided by the Radon–Nikodym derivative:

dµy

dµ0
(u) = 1

Z
exp(−!y(u)), (2.1)

with Z being a normalization constant, which can be interpreted as the Bayes’ rule in the infinite dimensional setting. In 
what follows, without causing any ambiguity, we shall drop the superscript y in !y and µy for simplicity, while keeping 
in mind that these items depend on the data y. For the inference problem to be well-posed, one typically requires the 
functional ! to satisfy the Assumptions (6.1) in [6]. It is known that there exists a complete orthonormal basis {e j} j∈N
on X and a sequence of non-negative numbers {α j} j∈N such that C0e j = α je j and 

∑∞
j=1 α j < ∞, i.e., {e j}k∈N and {α j}k∈N

being the eigenfunctions and eigenvalues of C0 respectively ([8], Chapter 1). For convenience’s sake, we assume that the 
eigenvalues are in a descending order: α j ≥ α j+1 for any j ∈ N. {e j}∞j=1 are known as the Karhunen–Loève (KL) modes 
associated with N (0, C0).

2.2. The Crank–Nicolson algorithms

We start by briefly reviewing the family of Crank–Nicolson (CN) algorithms for infinite dimensional Bayesian inferences, 
developed in [6]. Simply speaking the algorithms are based on the stochastic partial differential equation (SPDE)
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du
ds

= −KLu +
√

2K
db
ds

, (2.2)

where L = C−1
0 is the precision operator for µ0, K is a positive operator, and b is a Brownian motion in X with covariance 

operator the identity. The proposal is then derived by applying the CN discretization to the SPDE (2.2), yielding,

v = u − 1
2
δKL(u + v) +

√
2K δξ0, (2.3)

for a white noise ξ0 and δ ∈ (0, 2). In [6], two choices of K are proposed, resulting in two different algorithms. First, one 
can choose K = I , the identity, obtaining:

(2C + δI)v = (2C − δI)u +
√

8δw,

where w ∼ N (0, C0), which is known as the plain CN algorithm. Alternatively one can choose K = C0, resulting in the pCN 
proposal:

v = (1 − β2)
1
2 u + βw, (2.4)

where

β =
√

8δ

2 + δ
.

It is easy to see that β ∈ [0, 1]. In both CN and pCN algorithms, the acceptance probability is

a(v, u) = min{1,exp !(u) − !(v)}. (2.5)

2.3. The adaptive algorithm

To derive the new algorithm, we rewrite the proposal Eq. (2.3) as

v = (I − 1
2 δKL)

(I + 1
2 δKL)

u +
√

2δK
(I + 1

2 δKL)
ξ0. (2.6)

Now we do a substitution. Namely we let
√

2δK
(I + 1

2 δKL)
= β

√
B, (2.7)

and by some simply calculation, we can verify that

(I − 1
2 δKL)

(I + 1
2 δKL)

=
√

(I − β2BL). (2.8)

Substitute Eqs. (2.7) and (2.8) into Eq. (2.6), and we obtain a new proposal:

v = (I − β2BL)
1
2 u + βw B (2.9)

where w B ∼ N (0, B). This proposal can be understood as a special case of the generalized pCN or the operator weighted 
proposal. The major difference is that in those two methods, the operator is determined by the derivative information of the 
likelihood function, while in our algorithm, it is determined with an adaptive method. Before discussing the details of how 
to determine the operator B, we first show that under mild conditions, the proposal (2.9) results in well-defined acceptance 
probability in a function space:

Proposition 1. Suppose operator B is symmetric positive and of trace class. Let q(u, ·) be the proposal distribution associated to 
Eq. (2.9). Define measures η(du, dv) = q(u, dv)µ(du) and η⊥(du, dv) = q(v, du)µ(dv) on X × X. If B commutes with C0 , η⊥ is 
absolutely continuous with respect to η, and

dη⊥

dη
(u, v) = exp(!(u) − !(v)).

Proof. Define η0(du, dv) = q(u, dv)µ0(du). The measure η0 is Gaussian. From B and C0 are commutable, we have

Eη0 v ⊗ v = (I − β2BL)C0 + β2B = C0 = Eη0 u ⊗ u.

Then η0 is symmetric in u, v . Now
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η(du,dv) = q(u,dv)µ(du), η0(du,dv) = q(u,dv)µ0(du),

and µ, µ0 are equivalent. It follows that η and η0 are equivalent and

dη

dη0
(u, v) = dµ

dµ0
(u) = 1

Z
exp(−!(u)).

Since η0 is symmetric in u, v we also have that η⊥ and η0 are equivalent and that

dη⊥

dη0
(u, v) = 1

Z
exp(−!(v)).

Since equivalence of measures is transitive it follows that η and η⊥ are equivalent and

dη⊥

dη
(u, v) = exp[!(u) − !(v)]. ✷

It follows immediately from the detailed balance condition that the associated acceptance probability of proposal (2.9)
is also given by Eq. (2.5). We reinstate that an important feature of the original pCN algorithm is that its acceptance prob-
ability only depends on the function !, and as a result the discretization dimensionality has no impact on the acceptance 
probability up to the numerical error in evaluating !. The proposal (2.9) preserves this important feature.

Now we discuss how to specify the operator B, and we start with assuming B an appropriate parametrized form. Note 
that an essential condition in Proposition 2.3 is that B must commute with C0. To satisfy this condition, it is convenient to 
design a B that has common eigenfunctions with C0. Namely, we write B in the form of

B · =
∞∑

j=1

λ j⟨e j, ·⟩e j, (2.10)

with λ j being the coefficients. It is easy to see that B is a symmetric operator with eigenvalue–eigenfunction pair {λ j, e j}∞j=1, 
which implies that B and C0 commute.

A well-adopted rule in designing efficient MCMC algorithms is that the proposal covariance should be close to the 
covariance operator of the posterior [21,10]. Now suppose the posterior covariance is C , and one can determine the proposal 
covariance B by solving

min
{λ j}∞λ=1

∥B − C∥H S , (2.11)

where ∥ · ∥H S is the Hilbert–Schmidt norm defined as ∥A∥2
H S = Tr(A∗A) where A is any bounded operator on X and A∗

is the adjoint of A. By some basic algebra, we can show that the optimal solution of Eq (2.11) is

λ j = ⟨Ce j, e j⟩
for j = 1...∞. Since C is the posterior covariance, for any v and v ′ ∈ X , we have [8],

⟨Cv, v ′⟩ =
∫

⟨v, u − m⟩⟨v ′, u − m⟩µ(du), (2.12)

where m is the mean of µ. Using Eq. (2.12), we can derive that

λ j =
∫

(x j − u j)
2µ(du), (2.13)

where x j = ⟨m, e j⟩ and u j = ⟨u, e j⟩ for j = 1...∞.
In practice, the posterior covariance C is not directly available, and so here we determine the operator B with an adaptive 

MCMC algorithm. Simply speaking, the adaptive algorithm starts with an initial guess of B and then adaptively updates the 
B based on the sample history. Estimating all eigenvalues from the sample history is not practical due to the finite sample 
size. Here we make a finite-dimension reduction: namely, only the first J eigenvalues are given in the form of Eq. (2.13)
which is further estimated from the sample history and the rest of them are taken to be fixed. In particular we let

λ j =
{∫

(x j − u j)
2µ(du) for j ≤ J

α j for j > J .
(2.14)

The argument that we compute λ j as is in Eq. (2.14) may become more clear if we look at the projections of the proposal 
onto each eigenmodes:

⟨v, e j⟩ =
{

(1 − β2λi/αi)
1
2 u j + βw j where w j ∼ N (0,λ j) for j ≤ J

(1 − β2)
1
2 u j + βw j where w j ∼ N (0,α j) for j > J .

(2.15)
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Eq. (2.15) shows the basic scheme of the algorithm: it performs an adaptive pCN for the KL modes j ≤ J with the proposal 
covariance adapted to approximate that of the posterior, and a standard pCN for all j > J . The intuition behind our algorithm 
is based on the assumption that the (finite-resolution) data is only informative about a finite number of KL modes of the 
prior. In particular, the data can not provide information about the modes that are highly oscillating (associated with small 
eigenvalues) and for those modes, the posterior is approximately the prior. In this case, for the modes that are informed by 
the data, we shall adjust the eigenvalues to approximate the posterior covariance; for those that are not, the best strategy 
is to simply use the covariance of the prior (which is also the posterior). Finally we note that the same covariance structure 
has been used in a number of existing works such as [17].

Now we discuss how to update the values of λ j from posterior samples for i = 1... J . To this end, suppose we have a 
set of posterior samples {un}n

i=0, and the values of parameters λ j are estimated using the sample average approximation of 
Eq. (2.13):

xn
j = 1

n + 1

n∑

i=0

⟨ui, e j⟩, (2.16a)

sn
j =

n∑

i=0

(un
j )

2, (2.16b)

λn
j = 1

n + 1

n∑

i=0

(xn
j − ui

j)
2 + ϵ2, (2.16c)

for j = 1... J . Here ϵ is a small constant, introduced to ensure the stability of the algorithm, i.e., to keep λn
j from becoming 

arbitrarily small. For efficiency’s sake, we can rewrite Eq (2.16) in a recursive form

xn
j = n

n + 1
xn−1

j + 1
n + 1

⟨un, e j⟩, (2.17a)

sn
j = sn−1

j + (un
j )

2, (2.17b)

λn
j = 1

n + 1
sn

j − (xn
j )

2, (2.17c)

for j = 1... J and n > 0. Note here that, in principle the estimated λn
j from samples can be arbitrarily large, which causes 

issues as (I − β2BL) must not be negative. Thus we let λn
j = min{λn

j , α j} for j = 1... J , and as a result λ j ≤ α j for j = 1... J . 
It is easy to see that the operator B resulting from {λn

j }
J
j=1 is symmetric positive and of trace class. Finally we note that, 

it is not robust to estimate the parameter values with a very small number of samples, and to address the issue, we first 
draw a certain number of samples with a standard pCN algorithm before starting the adaptation. We describe the complete 
adaptive pCN (ApCN) algorithm in Algorithm 1.

Finally an important issue in the implementation is to determine the number of adapted eigenvalues J . Here we propose 
to let J = min{ j ∈ N} such that,

∑ j
i=1 α j∑∞
i=1 αi

> ρ,

where 0 < ρ < 1 is a prescribed number (e.g. ρ = 0.99).

2.4. Ergodicity analysis

It is well known that, the adaptation may destroy the ergodicity of the algorithm, and as a result the chain constructed 
may not converge to the target distribution. It has been suggested by Roberts and Rosenthal [20] that, an adaptive MCMC 
algorithm has the correct asymptotic convergence, provided that it satisfies the Diminishing Adaptation (DA) condition, 
which, loosely speaking, requires the transition probabilities to converge as the iteration proceeds, and the Containment 
condition. As the latter is regarded as merely a technical condition which is satisfied for virtually all reasonable adaptive 
schemes [20], it often suffices to prove an adaptive algorithm satisfies the DA condition. Next we show that the proposed 
ApCN algorithm satisfies the DA condition under a minor modification. Namely, we change Eq. (2.1) to be

dµy

dµ0
(u) =

{
1
Z exp(−!(z)), ∥u∥X ≤ R
0, ∥u∥X > R,

(2.18)

where R is a prescribed positive constant. We want emphasize here that, just like the work [10], the purpose of the 
modification is to simplify our proof here, and practically speaking, its impact on the inference results should be negligible, 
provided that R is taken to be sufficiently large.
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Algorithm 1 The adaptive pCN algorithm.
1: Initialize u0 ∈ S;
2: for n = 0 to N ′ do
3: Propose v using Eq (2.4);
4: Draw θ ∼ U [0, 1]
5: Let a := min{1, exp[!(un) − !(v)]};
6: if θ ≤ a then
7: un+1 = v;
8: else
9: un+1 = un;

10: end if
11: end for
12: Compute {xN ′

j , sN ′
j , λN ′

j } J
j=1 using Eq. (2.16) and samples {ui}N ′

i=1;
13: for j = 1 to J do
14: λ j = min{λ j , α j};
15: end for
16: for n = N ′ to N do
17: Compute B from Eqs. (2.10) with {λn

j }
J
j=1;

18: Propose v using Eq (2.9);
19: Draw θ ∼ U [0, 1]
20: Let a := min{1, exp[!(un) − !(v)]};
21: if θ ≤ a then
22: un+1 = v;
23: else
24: un+1 = un;
25: end if
26: Compute {xn+1

j , sn+1
j , λn+1

j } J
j=1 using Eqs. (2.17);

27: end for

Let us now set up some notations. Assume that Bn(u0, u1, · · · , un−2, u) is the operator B at iteration n computed with 
u0, u1, · · · , un−2, u through Algorithm 1. For simplicity, we define

Bn,ζn−2(u) = Bn(u0, u1, · · · , un−2, u), where ζn−2 = (u0, u1, · · · , un−2),

and let {λn,i}∞i=1 be the eigenvalues of Bn,ζn−2(u). We define qn,ζn−2 (u; dv) to be the proposal distribution associated to

v = (I − β2Bn(ζn−2, u)L)
1
2 u + βw

where w ∼ N(0, Bn,ζn−2(u)), and

Q n,ζn−2(u,dv) = a(u, v)qn,ζn−2(u,dv) + δu(dv)(1 −
∫

a(u, z)qn,ζn−2(u,dz))

where a(·, ·) is given by Eq. (2.5). It can be verified that

σn,i = (1 − β2 λn,i

αi
)

1
2 , (2.19)

are the eigenvalues of (I − β2Bn,ζn−2(u)L)
1
2 . We then have the following theorem:

Theorem 1 (DA condition). There is a fixed positive constant γ such that

sup
u∈X

∥Q n,ζn−2(u, ·) − Q n+1,ζn−1(u, ·)∥ ≤ γ

n

for any ζn−1 and ζn−2 such that ζn−1 is a direct continuation of ζn−2. Here ∥ · ∥ is the total variation norm.

We provide the proof of the theorem in the Appendix.

3. Numerical examples

3.1. An ODE example

Our first example is a simple inverse problem where the forward model is governed by an ordinary differential equation 
(ODE):

∂x(t)
∂t

= −u(t)x(t)
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Fig. 1. (For the ODE example.) The truth (left) and the data simulated with it (right).

Fig. 2. (For the ODE example.) Left: 10 randomly drawn samples from the posterior. Right: the posterior mean and the 95% confidence interval.

with a prescribed initial condition. Suppose that we observe the solution x(t) several times in the interval [0, T ], and we 
want to infer the unknown coefficient u(t) from the observed data.

In our numerical experiments, we let the initial condition be x(0) = 1 and T = 1. Now suppose that the solution is 
measured every T /100 time unit from 0 to T and the error in each measurement is assumed to be an independent Gaussian 
N(0, 0.12). The prior is taken to be a zero mean Gaussian with Matérn covariance [18]:

K (t1, t2) = σ 2 21−ν

0(ν)
(
√

2ν
d
l
)ν Bν(

√
2ν

d
l
),

where d = |t1 − t2|, 0(·) is the Gamma function, and Bν (·) is the modified Bessel function. A random function with the 
Matérn covariance is [ν − 1] mean square (MS) differentiable. Several authors suggest that the Matérn covariances can often 
provide a better model for many real-world physical processes than the popular squared exponential covariances [18]. In 
this example, we choose l = 1, σ = 1, and ν = 5 implying second order MS differentiability. In the numerical tests, we 
represent the unknown with 501 grid points. We use synthetic data that is generated by applying the forward model to a 
true coefficient u and then adding noise to the result. The true coefficient is randomly drawn from the prior distribution. 
Both the truth and the simulated data are shown in Fig. 1. We perform the proposed adaptive pCN algorithm with 1 × 106

samples and another 5 × 104 pCN samples are used in the pre-run. We set the stepsize β = 1/5, and we choose ρ = 0.99
resulting in J = 14, i.e., 14 eigenvalues being adapted.

We show the simulation results in Fig. 2: in the left figure, we show 10 randomly chosen MCMC samples from the 
posterior, and in the right figure, we plot the posterior mean, as well as the 95% confidence interval, both computed with 
the MCMC samples. To illustrate the diminishing of the adaption, we plot the 1st and the 14th eigenvalues against the 
iterations in Fig. 3, and the plots indicate that both parameters tend to converge to certain fixed values as the iterations 
proceed. For comparison, we also draw 1.05 × 106 samples from the posterior with a standard pCN algorithm where the 
step size is again taken to be β = 1/5. In Fig. 4, we compare the autocorrelation function (ACF) of the samples drawn by 
the two methods at t = 0.4 (left) and t = 0.8 (right), and the ACF results show that the adaptive pCN method performs 
better than standard pCN. We then compute the ACF of lag 100 at all the grid points, and show the results in Fig. 5 (left), 
and we can see that, the ACF of the chain generated by the ApCN is clearly lower than that of the standard pCN at all 
the grid points. The effective sample size (ESS) is another popular measure of the sampling efficiency of MCMC [12]. ESS is 
computed by
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Fig. 3. (For the ODE example.) The eigenvalues λ1 (left) and λ14 (right) plotted against the number of iterations.

Fig. 4. (For the ODE example.) Autocorrelation functions (ACF) for the pCN and the ApCN methods at t = 0.2 and t = 0.8.

Fig. 5. (For the ODE example.) Left: ACF (lag 100) at each grid point. Right: ESS at each grid point.

ESS = N
1 + 2τ

,

where τ is the integrated autocorrelation time and N is the total sample size, and it gives an estimate of the number of 
effectively independent draws in the chain. We compute the ESS of the unknown u at each grid point and show the results 
in Fig. 5 (right). The results show that the ApCN algorithm produces much more effectively independent samples than the 
standard pCN.

3.2. Estimating the Robin coefficient

In the second example, we consider a one-dimensional heat conduction equation in the region x ∈ [0, L],
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Fig. 6. (For the Robin example.) The truth (left) and the data simulated with it (right).

Fig. 7. (For the Robin example.) Left: 10 randomly drawn samples from the posterior. Right: the posterior mean and the 95% confidence interval.

∂u
∂t

(x, t) = ∂2u
∂x2 (x, t), (3.1a)

u(x,0) = g(x), (3.1b)

with the following Robin boundary conditions:

− ∂u
∂x

(0, t) + ρ(t)u(0, t) = h0(t), (3.1c)

∂u
∂x

(L, t) + ρ(t)u(L, t) = h1(t). (3.1d)

Suppose the functions g(x), h0(x) and h1(x) are all known, and we want to estimate the unknown Robin coefficient ρ(t)
from certain measurements of the temperature u(x, t). This example is studied in [25,24]. Here we choose L = 1, T = 1 and 
the functions to be

g(x) = x2 + 1, h0 = t(2t + 1), h1 = 2 + t(2t + 2).

We assume that a temperature sensor is placed at the end x = 0. The temperature is measured every T /200 time unit from 
0 to T and the error in each measurement is assumed to be an independent Gaussian N(0, 0.12). In the computation, 501
equally spaced grid points are used to represent the unknown. Moreover, the prior is the same as that used in the ODE 
example.

The data is generated the same as the first example, with the true Robin coefficient randomly drawn from the prior 
distribution. Both the truth and the simulated data are shown in Fig. 6. We implement the adaptive pCN algorithm, where 
we choose β = 1/5, and ρ = 0.99 resulting in J = 14. With the algorithm, we draw 5.5 × 105 samples from the posterior, 
including 5 ×104 pCN samples in the pre-run, and the average acceptance probability is around 20%. In the left plot of Fig. 7, 
we show 10 randomly chosen MCMC samples from the posterior, and in the right plot, we show the posterior mean and 
the 95% confidence interval, both computed with the MCMC samples. Once again, we sample the posterior with standard 
pCN algorithm for comparison, and in particular we run pCN with two different stepsizes: first we use β = 1/5 which is 
the same as that used the ApCN algorithm; we then use β = 1/300, yielding higher acceptance probability. In each case, 
we draw 5.5 × 105 samples, and the average acceptance probability for β = 1/5 is around 0.3%, and that for β = 1/300 is 
around 20%, which matches that of the ApCN algorithm. In Fig. 8, we compare the ACF of the samples drawn by the two 
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Fig. 8. (For the Robin example.) ACF for the pCN and the ApCN methods at t = 0.1 and t = 0.9.

Fig. 9. (For the Robin example.) Left: ACF (lag 1000) at each grid point. Right: the ESS at each grid point.

methods at t = 0.1 (left) and t = 0.9 (right). One can see from the figures that, the ACF of the chain generated by the pCN 
with β = 1/300 decreases slightly faster than that with β = 1/20, thanks to the higher acceptance probability, while the 
result of the ApCN is significantly better than both of them. We then compute the ACF of lag 1000 as well as the ESS at 
all the grid points, and show the results in Fig. 9. Once again, both the ACF and the ESS results suggest that the sampling 
efficiency of the ApCN is significantly higher than that of the standard pCN algorithm.

4. Conclusions

In summary, we consider MCMC simulations for Bayesian inferences in function spaces. In particular, we develop an 
adaptive variant of the pCN algorithm to improve the sampling efficiency. The implementation of the ApCN algorithm 
is rather simple, without requiring any information of the underlying models, and during the iteration the proposal can 
be efficiently updated with explicit formulas. We also show that the adaptive pCN algorithm satisfies certain ergodicity 
condition. Finally we demonstrate the effectiveness and efficiency of the ApCN algorithm with several numerical examples. 
We expect the algorithm can be of use in many practical problems, especially in those involving blackbox models.

The most serious limitation of the present algorithm is that, it determines the “effective subspace” (i.e. the space that 
we perform adaptation in) from the prior distributions. As a result, the algorithm may become less efficient for problems 
where the eigenvalues of the priors decay slowly and consequently the dimensionality of effective subspace becomes large. 
Thus, for such problems, simply determining the effective subspace from the prior may not be a good choice, and one may 
have to identify the subspace using alternative approaches. We plan to address such problems by making improvements on 
the present algorithm in a future work.
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Appendix A. Proof of Theorem 1

We provide a proof of Theorem 1 in this appendix, which largely follows the proof for the finite dimensional adaptive 
Metropolis algorithm given in [10]. We start with the following inequality:

|Q n,ζn−2(u, A) − Q n+1,ζn−1(u, A)|
= |

∫
A a(u, v)qn,ζn−2(u,dv) + δA(u)(1 −

∫
X qn,ζn−2(u,dz)a(u, z))

−
∫

A a(u, v)qn+1,ζn−1(u,dv) + δA(u)(1 −
∫

X qn+1,ζn−1(u,dz)a(u, z))|

≤ 2
∫

X a(u, v)|dqn,ζn−2 (u,·)
dµ0

(v) − dqn+1,ζn−1 (u,·)
dµ0

(v)|µ0(dv)

≤ 2
∫

X |dqn,ζn−2 (u,·)
dµ0

(v) − dqn+1,ζn−1 (u,·)
dµ0

(v)|µ0(dv)

≤ 2
∫

X |dqn,ζn−2 (u,·)
dµ0

(v) − d q̃
dµ0

(v)|µ0(dv) + 2
∫

X | d q̃
dµ0

(v) − dqn+1,ζn−1 (u,·)
dµ0

(v)|µ0(dv),

where q̃ is the Gaussian measure that has the same mean with qn,ζn−2 (u, ·) and has the same covariance operator with 
qn+1,ζn−1(u, ·). It should be clear that ̃q is equivalent to µ0. Now let

I1 =
∫

X

|dqn,ζn−2(u, ·)
dµ0

(v) − d q̃
dµ0

(v)|µ0(dv) (A.1)

and

I2 =
∫

X

| d q̃
dµ0

(v) − dqn+1,ζn−1(u, ·)
dµ0

(v)|µ0(dv).

First we consider I1. Since qn,ζn−2(u, ·) and ̃q are both Gaussian measures with same mean, and their covariance operators 
have the same eigenfunctions and at most J different eigenvalues, we can show that,

I1 =
∫

R J

|
J∏

i=1

1
√

2πβ2λn,i
exp(− x2

i

2β2λn,i
) −

J∏

i=1

1
√

2πβ2λn+1,i
exp(− x2

i

2β2λn+1,i
)|dx1 · · ·dx J . (A.2)

Thanks to the modified likelihood function (2.18), it is easy to see that there exist constants C1, C2 > 0 such that

|λn,i − λn+1,i| ≤
C1

n
, and λn+1,i ≥ C2, (A.3)

for i = 1... J . Using these results, and by some elementary calculus, one can derive that I1 < C3/n for some constant C3 > 0.
We now consider I2. Let

3m = (I − β2Bn,ζn−2(u)L)
1
2 u − (I − β2Bn+1,ζn−1(u)L)

1
2 u,

and it can be seen that ⟨3m, ei⟩ = 0 for ∀i > J . We re-write I2 as

I2 =
∫

X

|1 − dqn+1,ζn−1(u, ·)
d q̃

(v)|̃q(dv),

where

dqn+1,ζn−1(u, ·)
d q̃

(v) = exp(−1
2
∥(β2Bn,ζn−2(u))−

1
2 3m∥2 + ⟨v, (β2Bn,ζn−2(u))−13m⟩).

Similar to I1, we can also write I2 as a finite dimensional integral:

I2 =
∫

R J

|
J∏

i=1

1
√

2πβ2λn+1,i
exp(− (xi − ⟨3m, ei⟩)2

2β2λn+1,i

−
J∏

i=1

1
√

2πβ2λn+1,i
exp(− x2

i

2β2λn+1,i
)|dx1 · · ·dx J .

It then follows from Eqs. (2.19) and (A.3) that there exist constants C4, C5 > 0 such that

|σn,i − σn+1,i| ≤
C4

n
, and σn,i,σn+1,i ≥ C5, (A.4)
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for i = 1... J . We thus have,

|⟨3m, ei⟩| = |σn,i − σn+1,i| · |⟨u, ei⟩| ≤
C6

n
,

for some constant C6 > 0. Once again, by some elementary calculus, we can obtain I2 ≤ C7
n for some constant C7 > 0, which 

completes the proof.

References

[1] Christophe Andrieu, Johannes Thoms, A tutorial on adaptive MCMC, Stat. Comput. 18 (4) (2008) 343–373.
[2] Yves Atchade, Gersende Fort, Eric Moulines, Pierre Priouret, Adaptive Markov chain Monte Carlo: theory and methods, preprint, 2009.
[3] Alexandros Beskos, Gareth Roberts, Andrew Stuart, et al., Optimal scalings for local Metropolis–Hastings chains on nonproduct targets in high dimen-

sions, Ann. Appl. Probab. 19 (3) (2009) 863–898.
[4] Tan Bui-Thanh, Mark Girolami, Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo, In-

verse Probl. 30 (11) (2014) 114014.
[5] Yuxin Chen, David Keyes, Kody J.H. Law, Hatem Ltaief, Accelerated dimension-independent adaptive Metropolis, arXiv preprint, arXiv:1506.05741, 2015.
[6] Simon L. Cotter, Gareth O. Roberts, A.M. Stuart, David White, et al., MCMC methods for functions: modifying old algorithms to make them faster, Stat. 

Sci. 28 (3) (2013) 424–446.
[7] Tiangang Cui, Kody J.H. Law, Youssef M. Marzouk, Dimension-independent likelihood-informed MCMC, J. Comput. Phys. 304 (2016) 109–137.
[8] Giuseppe Da Prato, An Introduction to Infinite-Dimensional Analysis, Springer, 2006.
[9] Zhe Feng, Jinglai Li, An adaptive independence sampler MCMC algorithm for infinite dimensional Bayesian inferences, arXiv preprint, arXiv:1508.03283, 

2015.
[10] Heikki Haario, Eero Saksman, Johanna Tamminen, An adaptive Metropolis algorithm, Bernoulli (2001) 223–242.
[11] Jari Kaipio, Erkki Somersalo, Statistical and Computational Inverse Problems, vol. 160, Springer, 2005.
[12] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, Radford M. Neal, Markov Chain Monte Carlo in practice: a roundtable discussion, Am. Stat. 52 (2) 

(1998) 93–100.
[13] Kody J.H. Law, Proposals which speed up function-space MCMC, J. Comput. Appl. Math. 262 (2014) 127–138.
[14] James Martin, Lucas C. Wilcox, Carsten Burstedde, Omar Ghattas, A stochastic Newton MCMC method for large-scale statistical inverse problems with 

application to seismic inversion, SIAM J. Sci. Comput. 34 (3) (2012) A1460–A1487.
[15] Jonathan C. Mattingly, Natesh S. Pillai, Andrew M. Stuart, et al., Diffusion limits of the random walk Metropolis algorithm in high dimensions, Ann. 

Appl. Probab. 22 (3) (2012) 881–930.
[16] Noemi Petra, James Martin, Georg Stadler, Omar Ghattas, A computational framework for infinite-dimensional Bayesian inverse problems, part II: 

stochastic Newton MCMC with application to ice sheet flow inverse problems, SIAM J. Sci. Comput. 36 (4) (2014) A1525–A1555.
[17] Frank J. Pinski, Gideon Simpson, Andrew M. Stuart, Hendrik Weber, Algorithms for Kullback–Leibler approximation of probability measures in infinite 

dimensions, SIAM J. Sci. Comput. 37 (6) (2015) A2733–A2757.
[18] Carl Edward Rasmussen, Gaussian Processes for Machine Learning, MIT Press, 2006.
[19] Gareth O. Roberts, Andrew Gelman, Walter R. Gilks, et al., Weak convergence and optimal scaling of random walk Metropolis algorithms, Ann. Appl. 

Probab. 7 (1) (1997) 110–120.
[20] Gareth O. Roberts, Jeffrey S. Rosenthal, Examples of adaptive MCMC, J. Comput. Graph. Stat. 18 (2) (2009) 349–367.
[21] Gareth O. Roberts, Jeffrey S. Rosenthal, et al., Optimal scaling for various Metropolis–Hastings algorithms, Stat. Sci. 16 (4) (2001) 351–367.
[22] Daniel Rudolf, Björn Sprungk, On a generalization of the preconditioned Crank–Nicolson Metropolis algorithm, arXiv preprint, arXiv:1504.03461, 2015.
[23] A.M. Stuart, Inverse problems: a Bayesian perspective, Acta Numer. 19 (2010) 451–559.
[24] Liang Yan, Fenglian Yang, Chuli Fu, A Bayesian inference approach to identify a Robin coefficient in one-dimensional parabolic problems, J. Comput. 

Appl. Math. 231 (2) (2009) 840–850.
[25] Zhewei Yao, Zixi Hu, Jinglai Li, A TV-Gaussian prior for infinite-dimensional Bayesian inverse problems and its numerical implementations, Inverse 

Probl. 32 (7) (2016) 075006.

http://refhub.elsevier.com/S0021-9991(16)30610-6/bib616E6472696575323030387475746F7269616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6265736B6F73323030396F7074696D616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6265736B6F73323030396F7074696D616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib62756932303134736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib62756932303134736F6C76696E67s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6368656E32303135616363656C657261746564s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib636F74746572323031336D636D63s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib636F74746572323031336D636D63s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6375693230313664696D656E73696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib646132303036696E74726F64756374696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib66656E67323031356164617074697665s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib66656E67323031356164617074697665s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib68616172696F323030316164617074697665s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6B616970696F32303035737461746973746963616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib4B61737331393938s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib4B61737331393938s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6C61773230313470726F706F73616C73s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6D617274696E3230313273746F63686173746963s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6D617274696E3230313273746F63686173746963s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6D617474696E676C7932303132646966667573696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib6D617474696E676C7932303132646966667573696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib706574726132303134636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib706574726132303134636F6D7075746174696F6E616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib70696E736B6932303135616C676F726974686D73s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib70696E736B6932303135616C676F726974686D73s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib7261736D757373656E32303036676175737369616Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib726F6265727473313939377765616Bs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib726F6265727473313939377765616Bs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib726F6265727473323030396578616D706C6573s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib726F6265727473323030316F7074696D616Cs1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib7275646F6C663230313567656E6572616C697A6174696F6Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib73747561727432303130696E7665727365s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib79616E32303039626179657369616Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib79616E32303039626179657369616Es1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib79616F323031357476s1
http://refhub.elsevier.com/S0021-9991(16)30610-6/bib79616F323031357476s1

	On an adaptive preconditioned Crank-Nicolson MCMC algorithm for inﬁnite dimensional Bayesian inference
	1 Introduction
	2 The adaptive pCN algorithm
	2.1 Bayesian inferences in function spaces
	2.2 The Crank-Nicolson algorithms
	2.3 The adaptive algorithm
	2.4 Ergodicity analysis

	3 Numerical examples
	3.1 An ODE example
	3.2 Estimating the Robin coefﬁcient

	4 Conclusions
	Acknowledgements
	Appendix A Proof of Theorem 1
	References


