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Abstract—We study the statistics of transmission impairments
due to polarization-mode dispersion in systems characterized by
the hinge model. In particular, we validate the use of a compu-
tationally efficient expression for the probability density function
(PDF) of the differential group delay (DGD) of systems with an ar-
bitrary number of hinges. We then combine this expression for the
PDF of the DGD with the outage map approach to compute outage
probabilities and noncompliant capacity ratios for transmission
links with varying numbers of sections (from 4 up to 20), each for
several values of mean DGD and different system parameters.

Index Terms—Hinge model, noncompliant capacity ratio, optical
fiber communications, outage probability, polarization mode dis-
persion.

I. INTRODUCTION

T HE proper specification of outage probabilities due to po-
larization-mode dispersion (PMD) in optical fiber trans-

mission systems has been well studied under the assumption of
Maxwellian statistics for the differential group delay (DGD) [1],
[2]. Recent field measurements on deployed optical fiber plants,
however, have shown that this assumption is often violated. In
its place, a hinge model [3]–[6] of PMD has been proposed to
characterize the behavior of the fiber transmission system. The
hinge model assumes that the transmission link consists of sev-
eral sections of long fiber, well protected from environmental
changes, that are stable in their PMD characteristics over long
periods of time (months). These stable sections are connected by
“hinges” which act as rapidly varying polarization transformers.
The hinges could be amplifier sites, servicing huts with varia-
tions in temperature, fiber cables exposed to mechanical vibra-
tions on, e.g., railroad bridges, etc. The number of such sections
in a typical transmission link is estimated to be between five and
ten or more [3].

Two conditions set the limits of validity for the hinge model.
One is the time scale over which the DGD of each section re-
mains constant. The other is the time scale over which the hinges
provide uniform coverage of the Poincaré sphere. The hinge
model retains the traditional assumption that the DGD of each
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section, though frozen in time, still follows Maxwellian statis-
tics as a function of wavelength, corresponding to the mean
DGD of that section. Thus, each section has a statistically dif-
ferent DGD value for each wavelength band, as determined by
the section’s bandwidth of the principal state [2]. The outage
characteristics of different wavelength bands are, therefore, sta-
tistically independent. Note that, in this context, a wavelength
band may contain one or more wavelength-division-multiplexed
(WDM) channels. It is, therefore, necessary to speak of wave-
length bands rather than of WDM channels.

A specific feature of the hinge model is that a certain fraction
of bands are found to violate any specified outage criterion [7],
which leads to a paradigm shift in the way PMD system outage
must be dealt with. In particular, a quantity called the noncom-
pliant capacity ratio (NCR) was introduced in [7] as the fraction
of WDM channels that do not comply with a given outage spec-
ification. Note that, in order for the NCR to be a useful quantity,
the number of statistically independent WDM channels must be
large. In the traditional model of PMD, all wavelength bands
are statistically identical, and, therefore, they are either all com-
pliant or all noncompliant with a given
outage specification. This is not the case, however, if PMD is de-
scribed by the hinge model.

In the traditional model of PMD, the value of the total DGD
is assumed to follow a Maxwellian distribution over time, and
the angular distribution of the PMD vector is taken to be uni-
form. For the hinge model, the angular distribution is still taken
to be uniform, but the probability density function (PDF) of the
DGD equals that of an emulator with fixed DGD elements con-
nected by polarization transformers varying over time like the
hinges. Analytic expressions for the PDF of the DGD in both the
traditional and the hinge model of PMD are available [8], [9],
and the expression for the PDF due to Antonelli and Mecozzi
[9] was used in [7] for the development of precise outage data
of links with six sections for the hinge model, using the outage
map approach [10], [11]. System designers, however, need ac-
curate data for transmission links with larger numbers of sec-
tions (up to about 20), in order to assess system outage and to
develop strategies for PMD compensation. They are also inter-
ested in the sensitivity of the outages to changes in the number
of hinges (which is sometimes uncertain). The approach used
in [7] encountered computational difficulties when the number
of hinges increased. Here, we, therefore, explore more efficient
methods for the computation of the PDF of the DGD for sys-
tems with an arbitrary number of sections. We then use these
methods to perform simulations in order to compute the system
outage probability and NCR for links with varying numbers of
sections between four and 20.
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II. PDF OF THE DGD IN THE HINGE MODEL

As mentioned earlier, the hinge model of PMD character-
izes a transmission link as a finite sequence of long fiber sec-
tions with fixed properties, connected by dynamically varying
“hinges.” Recall that, at each frequency, the growth of polariza-
tion-dependent effects for a concatenation of a finite number of
sections is governed by the PMD concatenation equations (e.g.,
see [12]). In particular, for first-order PMD, the concatenation
equation is

(1)

where is the total PMD vector after the th section and
before the th hinge, the fixed vector is the PMD vector
of the th section, is the rotation matrix of the th section
and the rotation matrix originating from the th hinge. As
in [6] and [7], we assume that the DGD of each
section is constant in time and that it follows a Maxwellian dis-
tribution in wavelength. Also, for simplicity, in all the numer-
ical simulations that will be discussed in Section IV, we assume
that the DGD distributions of each section have identical mean
DGD. Note, however, that neither the hinge model itself nor
the computational methods we describe are restricted to such
a limitation.

Under the above assumptions, the only temporal variations
in (1) arise from the hinge rotation matrix . As customary,
we assume that the hinges act as polarization controllers which
scatter the previous PMD vector evenly across the Poincaré
sphere. With this assumption, (1) becomes

(2)

where and where is
now randomly and uniformly distributed on the Poincaré sphere.
Then, if one is only interested in the total DGD , the
matrix is unessential, and the dynamics of first-order PMD
becomes equivalent to that of a 3-D random walk, the statistics
of which have been well studied in literature. We provide here
sufficient detail for its use by others. In particular, a closed-form
expression for the PDF of the DGD was obtained in [9]

(3)

with , where is Heavi-
side’s unit step function, is the number of minus signs in
and . Here and below,

is the -component vector that collects
the individual DGD of all sections. The evaluation of (3) re-
quires a sum of terms. Therefore, its computational cost
grows exponentially with , and its use becomes prohibitive
already for moderate values of . Fortunately, the PDF of the
DGD can also be obtained from the sum of an infinite Fourier
series [8]

(4a)

Fig. 1. PDF of the DGD on a logarithmic scale, for a system consisting of four
sections, with individual DGDs of 0.1, 0.15, 0.2, and 1 ps, respectively. The solid
line is the PDF computed using Barakat’s formula with � Fourier modes; the
dashed line is obtained from (3).

with

(4b)

where and where is the number of sec-
tions.

Hereafter, we refer to (4) as Barakat’s formula. We emphasize
that (4) is an exact expression for the PDF. Any errors resulting
from its use are due to the numerical truncation of the Fourier
series. Indeed, in all situations we tested (which included var-
ious numbers of sections between four and 22), (4) produced
results equivalent to those of (3) up to roundoff error when a
sufficient number of Fourier modes was used. Fig. 1 shows an
extreme case in which the DGD of one section is larger than the
sum of all the others. The spurious tail at small DGDs of the
PDF obtained from Barakat’s formula can be made arbitrarily
small by using an appropriate number of Fourier modes. Note
also that only values of the PDF at large DGDs are significant in
the calculation of outage probabilities [7] (see also Section III),
and, therefore, this tail is uninfluential except for cases in which
the mean DGD is abnormally large. Note also that Barakat’s for-
mula only yields the PDF for values of DGD below , and
above these values the PDF is taken to be automatically zero.
Hence, no spurious tails are produced at large DGDs.

Most importantly, (4a) can be evaluated using the fast Fourier
transform, yielding a numerical value of the PDF at a computa-
tional cost that only depends on the number of Fourier modes
used and is essentially independent of the number of sections.
If Fourier modes are used, the two methods have about equal
execution time for about four sections, and for 20 sections,
Barakat’s method has a speed advantage of about 250 000 over
(3) (cf. Fig. 8 in the Appendix).

The Appendix contains a detailed comparison of the compu-
tational costs and the accuracy of the two methods. In particular,
we found that Fourier modes are sufficient to ensure that the
differences in all computed values of NCR to be discussed in
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Section III are comparable to the statistical error arising from
the use of a finite sample of bands (e.g., 10 000 bands here and
in [7]; see Appendix for further details). For this reason, we used
Barakat’s formula in all the numerical simulations which pro-
duced Figs. 2–8, which are discussed in Section IV.

III. OUTAGE PROBABILITIES AND NCR

We start by discussing the computation of the outage proba-
bility for a given WDM channel following the outage map ap-
proach introduced in [10] and [11]. Recall that the two main
ingredients which are needed to use this method are the outage
maps and the statistical distribution of the DGD. The outage
maps are plots of constant optical signal-to-noise ratio (OSNR)
margins as a function of the DGD of the link and the power split-
ting ratio, characterizing the polarization of the input signal. The
OSNR margins are allocated by the system designer to accom-
modate PMD impairments. Outage maps can be determined by
careful simulations or measurements and depend on details of
receiver design and modulation format [10]. In order to deter-
mine system outage probabilities, the outage maps are then inte-
grated over those DGDs and signal polarizations which violate
the margin specification, using the appropriate PMD statistics.

Once the PDF of the DGD has been obtained, and once a max-
imum OSNR penalty has been specified, the outage probability
in a channel affected by first-order PMD can be written as [7]

(5)

where is the outage weight; that is, the frac-
tional range of values of the splitting ratio that produces an
outage for a given value of DGD. Note that the derivation of (5)
assumes a uniform distribution , implying the presence of a
polarization scatterer at the input of the system, with character-
istics similar to those of a hinge. The required for a typ-
ical receiver was determined in [10] from numerical simulations
using a DeBrujin bit sequence, Gaussian detection statistics,
a second-order Gaussian optical filter (with a 3-dB bandwidth of

), and a fifth-order Bessel electrical filter (with bandwidth
of ), where is the bit period. The OSNR penalties were
simulated as a function of and for non-return-to-zero (NRZ)
and 33% duty cycle return-to-zero (RZ) on-off keying (OOK) at
40 Gb/s (implying ps) and at a target bit-error-ratio
(BER) of . The results of those numerical simulations
showed that the outage weight is well-approximated by
the following expression:

(6)

for , together with for and
for with

(7)

and

(8)

Here, (in decibels) is the OSNR margin allocated to PMD, and
and are dimensionless coefficients, which depend on the

transmission format. In particular, as described in [7],
and , for the non-return-to-zero (NRZ) format, and

and for a return-to-zero (RZ) format with
33% duty cycle. An immediate consequence of these relations is
that if a particular concatenation of fiber sections has ,
the outage weight will be zero over the entire range of the DGD
and, therefore, .

We now discuss the calculation of the NCR. In the conven-
tional model of PMD, no statistical differences exist among
channels. Thus, is the same for all channels, and
all channels exhibit the same outage probability. In the hinge
model, however, the DGD of each section is a frozen real-
ization from the same Maxwellian distribution. In a WDM
system, channel frequencies separated by more than the PMD
correlation bandwidth will, therefore, experience statistically
independent values of DGD. Hence, each channel will be char-
acterized by a different value of outage probability. In other
words, becomes itself a stochastic quantity. Recall that, to
characterize the stochastic property of the system outage prob-
abilities, the noncompliant capacity ratio (NCR) of a WDM
transmission system was introduced in [7], which is defined as
the expected value of the fraction of wavelength bands that have
an outage probability greater than a specified value

(9)

Recall also that, in the traditional model of PMD (i.e., in the
case where the DGD has a Maxwellian distribution, which is
equivalent to the limit of an infinite number of sections), all
wavelength bands have the same outage probability , and,
therefore, the NCR is 0 for and 1 for

. As we discussed earlier, however, the outage probability
in systems characterized by the hinge model can assume any
value depending on the individual DGDs of the fiber sections.
Then the NCR is simply the integral of the PDF of from
the specified outage to infinity, i.e., the complementary
cumulative distribution function (CCDF) of . That is

(10)

where is the volume element in , with
being the product of

identical Maxwellian distributions, each with mean , and
where is an indicator function, which equals 1 if

and 0, otherwise.
In practice, the exact evaluation of the integral in (10) is not

feasible. Here, we approximate the NCR numerically following
the same procedure used in [7], but extending the computa-
tions to larger numbers of sections. Namely, we use Monte-
Carlo methods to approximate the -dimensional integral in
(10). For each number of section and each value of mean DGD
of the transmission span, we randomly draw a number of
section DGDs for a given wavelength band from an identical
Maxwellian distribution, we evaluate the resulting PDF of the
DGD, and we then integrate it over the outage map to obtain
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the outage probability for that wavelength band. To obtain suf-
ficient accuracy, we repeat the procedure for 10 000 bands as
in [7] [note that, with the same personal computer used for our
simulations, calculations with 10 000 wavelength bands and 20
sections would take almost three years instead of about 6 min
if (3) were used instead of Barakat’s formula!]. The resulting
10 000 outage probabilities are sorted, and the bands exceeding
a specified outage are counted, yielding a numerical esti-
mation of the NCR. Counts less than 10 are discarded to main-
tain good accuracy.

When smooth curves of NCR versus the mean DGD are de-
sired (as in Figs. 4–6), the above computation needs to be re-
peated for about 1000 values of mean DGD. Note, however,
that, once the computations have been performed for one value
of mean DGD, one can obtain data at different values of mean
DGD without repeating the most expensive part of the computa-
tion, which is the calculation of the PDF of the DGD. Note first
that, if collects DGD values each dis-
tributed according to an identical Maxwellian with mean , a
vector of DGD values distributed ac-
cording to a Maxwellian with mean is obviously obtained
by simply letting . But elementary scaling
properties of PDFs imply that if is the PDF of
the DGD for that realization with mean DGD , the PDF for
the corresponding realization with mean is

.

IV. SIMULATIONS AND RESULTS

We now present the results of numerical simulations of the
NCR, computed as described in Section III for both the NRZ
and RZ modulation formats with various numbers of sections
between four and 20. In all these simulations, we used
Fourier modes and 10 000 wavelength bands and we set the
OSNR margin to 1 dB.

Figs. 2–6 show in detail the results obtained for transmission
links with ten and 20 sections. These are, for and

, exactly the same kinds of figures as those that were
given in [7] for the case of . Indeed, even though to avoid
duplication we omit the figures for here (with the ex-
ception of Fig. 3(a), which shows the NCR versus for RZ
systems with sections which was not shown in [7]), the
present figures are intended to complement those in [7], and we
emphasize that the reader should compare Figs. 2–6 here to [7,
Figs. 2–4] in order to fully appreciate the result of increasing
the number of sections.

Fig. 2 shows the NCR as a function of for systems with
and sections using the NRZ modulation

format, while Fig. 3 does the same for systems using the RZ
modulation format. As already demonstrated in [7], the NCR
undergoes a gradual transition from the value 0 (obtained for

) to its asymptotic value in the limit , which
is well approximated by

(11)

Fig. 2. NCR as a function of � with 40-Gb/s NRZ modulation. Top: Plot
for links of ten sections. Bottom: Plot for links of 20 sections. The link’s mean
DGD is indicated on each curve. The dashed lines indicate the traditional outage
probabilities, computed using (12). The dotted horizontal lines are the asymp-
totes of zero outage probability for each mean DGD, computed using (11).

Comparing Fig. 3 with [7, Fig. 2] for the case , one sees
how the curves become progressively steeper, tending to their
asymptotic limit as .

Fig. 4 shows the mean DGD versus the outage probability for
fixed values of NCR, again for and , and for
both NRZ and RZ. The traditional outage curves are calculated
using the following formula:

(12)

where, again, is the mean DGD of the line (the corre-
sponding formula used in [7] contains an error, corrected
in [13]).

Again, one should compare these curves to the curves in the
case , which were given in [7, Fig. 3].

Finally, Figs. 5 and 6 show the NCR as a function of normal-
ized mean DGD for several different outage specifications. The
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Fig. 3. Same as Fig. 2, but for the RZ transmission format. Top: � � � (which
was not shown in [7]). Middle: � � ��. Bottom: � � ��.

limit of zero outage is shown as a dot-dashed curve. Comparing
these results to those for , which were given in Fig. 4
of [7], one notices once more how the curves become progres-
sively steeper as increases.

Fig. 4. Mean DGD�� of the link required for specified outage probability.
Top: Links of ten sections. Bottom: Links of 20 sections. Contours for ��� �

����� ������	 are shown. The traditional outage curves, obtained from (12),
are shown as dashed lines. The dotted lines show the corresponding asymptotic
values of mean DGD in the limit of zero outage probability for the RZ and the
NRZ formats, as obtained from (11).

Fig. 7 summarizes the above results by showing explicitly
the dependence of the NCR on the number of sections for
systems with two different values of , for both the NRZ
and the RZ modulation formats. The increased robustness of the
RZ format to PMD, compared to the NRZ format, is once more
evident from these data.

V. CONCLUSION

We have presented a method for the computation of precise
outage specifications for transmission spans characterized by
the hinge model of PMD for varying numbers of sections. The
method uses the simulated outage maps and an expression for
the PDF of the DGD originally obtained by Barakat. We then
applied the method to study systems with and
sections. The resulting figures complement those for in
[7]. In particular, the curves in Figs. 2–6 show significant steep-
ening as the section number increases. Note, however, that, even
for 20 sections, significant differences remain as compared to
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Fig. 5. NCR versus mean DGD/T for systems with ten sections and with speci-
fied values of the outage probability. The outage probabilities associated to each
curve are, from left to right, �� � �� � �� � and �� � respectively. The
limiting value of the NCR for zero outage is shown in the dot-dashed curves.

Fig. 6. Same as Fig. 5, but for systems with 20 sections. Left: NRZ format.
Right: RZ format.

the step function which is characteristic of the outage behavior
in the traditional model of PMD.

APPENDIX

Here, we compare the relative speed and accuracy of the two
methods for the computation of the PDF of the DGD discussed
in Section II, namely Antonelli and Mecozzi’s (A&M’s) for-
mula (3) and Barakat’s sine series (4).

We first compare the computational cost of the two methods
of evaluating the PDF of the DGD discussed in Section II. Fig. 8
shows the execution time for various numbers of sections with
the two methods, both optimized for speed to the best of our
ability. The two methods have about equal execution time for
about four sections if Fourier modes are used, or
seven sections with modes. For a larger number of
sections, the time required to evaluate (3) increases by a factor
of two for every added section, as expected, while the time re-
quired to compute (4) stays about constant. For 20 sections, the
latter has a speed advantage of about 250 000 when Fourier

Fig. 7. NCR as a function of the number of sections � of RZ and NRZ sys-
tems with various mean DGDs and outage specifications. Circles: NRZ with
� � �� and mean DGD�� � ����; squares: NRZ with � � ��

and mean DGD�� � ����; upward triangles: RZ with � � �� and
mean DGD�� � ����; downward triangles: RZ with � � �� and mean
DGD�� � ����.

Fig. 8. Time (in seconds) required to calculate the PDF of DGD using, respec-
tively, Barakat’s formula (4) with � and � Fourier modes and the formula in
[9], as a function of the number of sections � . The calculations were performed
on a 2.40-GHz Pentium 4 personal computer using Matlab version 7.0 (R14).

modes are used. It should be noted that, as mentioned in [9], at
most, half of the terms in (3) are nonzero, and, therefore, (3)
could be computed by evaluating terms instead of . To
take advantage of this fact, however, one must identify all the
nonzero combinations beforehand, index them, and then recall
them every time the PDF must be evaluated. In theory, this could
save a factor 2 in speed (in practice, the actual saving might be
smaller depending on how much overhead is needed for the in-
dexing). For simplicity, our code simply evaluates all com-
binations. However, even a speedup of (3) by a factor of 2 would
not alter significantly the speed comparison.

We now discuss the relative accuracy of the two methods.
It would be fairly easy to plot the PDF of the DGD with both
methods and compute the relative difference. Rather than doing
so, however, we believe that it is more appropriate to study how
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TABLE I
ERROR COMPARISONS FOR THE CALCULATION OF THE NCR

any errors in the determination of the PDF reflect in the calcu-
lation of the NCR, since the NCR is ultimately the quantity of
interest. Thus, Table I shows the differences between the values
of the NCR as obtained from the following comparisons.

A A&M twice.

Barakat twice with .

Barakat twice with .

Barakat twice with .

Barakat twice with .

A&M versus Barakat with .

A&M versus Barakat with .

A&M versus Barakat with .

A&M versus Barakat with .

That is, case A compares the values of the NCR obtained run-
ning the simulations twice (that is, with two different random
samples of wavelength bands) using in both cases Antonelli and
Mecozzi’s formula (3). Cases – compare the values ob-
tained using Barakat’s formula with two different random sam-
ples of wavelength bands, using either

or Fourier modes.
Finally, cases to compare the results obtained using
A&M’s formula versus those obtained using Barakat’s formula
(4a), again with or

Fourier modes. In all these cases, the compar-
isons were done for an NRZ system with 6 sections and for two
different values of mean DGD: 2.25 and 5 ps, and with sample
sizes of either or wavelength
bands. In each of these cases, the value in the table is the max-
imum difference in the values of the NCR obtained with the two
methods, taken across the whole range of values of .

To interpret these numbers, it is important to realize that there
are two sources of errors in the calculation of the NCR: i) the
statistical error due to the use of finite number of wavelength
bands; and, if Barakat’s formula is used, ii) the truncation error
due to the use of finite number of Fourier modes (we assume
that roundoff error is negligible here). The computation of the
NCR using A&M’s formula is not affected by truncation error,
but it is affected by statistical error. Thus, the differences among

the values of the NCR reported in the first row of Table I are an
indication of the size of the pure statistical error resulting from
the use of a given number of wavelength bands. More precisely,
the differences reported are an estimate of the standard deviation
of the result, obtained by making only two measurements. Note,
however, that the values in Table I are, of course, themselves
affected by statistical fluctuations and are, thus, not a precise
measure of the error.

Based on the above considerations, the values in Table I then
suggest the following conclusions. First, the error due to finite
truncation of the Fourier series when or more Fourier modes
are used is of the same order of magnitude as the pure statistical
error. Second, increasing the number of Fourier modes from to

does not seem to reduce the total error significantly in most
cases. We, therefore, conclude that the use of Fourier modes is
adequate when 10 000 samples of wavelength bands are used. Of
course, if more precise results are desired, one must increase the
number of Fourier modes as well as the number of wavelength
bands. Finally, note that, even when the absolute error is small,
the relative error incurred can be large for small values of the
NCR, even when A&M’s method is used. This is because, if
NCR is small, a very small fraction of wavelength bands are non-
compliant, and, therefore, calculating the NCR via Monte Carlo
methods suffers from the usual problems of rare event estimation.
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