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Abstract. The preconditioned Crank–Nicolson (pCN) method is a Markov chain Monte Carlo (MCMC) scheme,
specifically designed to perform Bayesian inferences in function spaces. Unlike many standard
MCMC algorithms, the pCN method can preserve the sampling efficiency under the mesh refine-
ment, a property referred to as being dimension independent. In this work we consider an adaptive
strategy to further improve the efficiency of pCN. In particular we develop a hybrid adaptive MCMC
method: the algorithm performs an adaptive Metropolis scheme in a chosen finite dimensional sub-
space and a standard pCN algorithm in the complement space of the chosen subspace. We show
that the proposed algorithm satisfies certain important ergodicity conditions. Finally with numeri-
cal examples we demonstrate that the proposed method has competitive performance with existing
adaptive algorithms.
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1. Introduction. Many real-world inverse problems require us to estimate unknowns that
are functions of space or time. Solving such problems with the Bayesian approach [12, 23] has
become increasingly popular, largely due to its ability to quantify the uncertainty in the esti-
mation results. To implement the Bayesian inference in those problems, it is often required to
perform Markov chain Monte Carlo (MCMC) simulations in function spaces. Usually, the un-
known is represented with a finite dimensional parametrization, and then MCMC is applied to
the resulting finite dimensional problems. Many standard MCMC algorithms, such as the pop-
ular random walk Metropolis–Hastings (RWMH), are known to be dimension dependent, as
they can become arbitrarily slow as the discretization dimensionality increases [20, 16]. To this
end, a very interesting line of research is to develop dimension-independent MCMC algorithms
by requiring the algorithms to be well-defined in the function spaces. In particular, a family
of dimension-independent MCMC algorithms, known as the preconditioned Crank–Nicolson
(pCN) algorithms, were presented in [5] by constructing a Crank–Nicolson (CN) discretiza-
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622 QINGPING ZHOU, ZIXI HU, ZHEWEI YAO, AND JINGLAI LI

tion of a stochastic partial differential equation (SPDE) that preserves the reference measure.
Several variants of the pCN algorithms have been developed to further improve the sampling
efficiency. For example, a class of algorithms accelerate the pCN scheme using the gradient
information of the likelihood function; such algorithms include the pCN Langevin method [5],
the operator-weighted proposal method [14], the dimension-independent likelihood-informed
MCMC [6], and the generalized pCN algorithm [22], just to name a few.

In this work, we focus on an alternative way to improve the sampling efficiency, the
adaptive MCMC methods. Simply speaking, the adaptive MCMC algorithms improve the
proposal based on the sampling history from the targeting distribution (cf. [1, 2, 19] and
the references therein) as the iterations proceed. A major advantage of the general adaptive
methods is that they only require the ability to evaluate the likelihood functions, which makes
them particularly convenient for problems with black-box models.

In a recent work [11], we developed an adaptive pCN (ApCN) algorithm based on the idea
of adapting the proposal covariance to approximate that of the posterior. The ApCN algorithm
requires the proposal covariance to be diagonal, assuming the unknown is represented with the
Karhunen–Loève expansion [11], as the implementation involves computing the square root
of a large matrix, which is very intensive if the covariance is not diagonal [11]. In this work,
we present an improved adaptive MCMC algorithm for functions, particularly addressing this
limitation of the ApCN algorithm. The proposed algorithm is essentially a hybrid scheme:
it performs an adaptive Metropolis (AM) scheme in a chosen finite dimensional subspace of
the state space and a pCN in the complement of it. In the present algorithm, the proposal
covariance directly approximates that of the posterior without assuming a diagonal structure.
With numerical examples, we show that the present algorithm can outperform the ApCN
scheme, thanks to the relaxation of the diagonal structure. Another important improvement
of the present method is the convergence property of the algorithm. Recall that, to show
the ergodicity property of the ApCN method, we need to impose an artificial modification of
the likelihood function to ensure that the support of the posterior is bounded [11]; however,
for the present hybrid algorithm, we can show that it satisfies the same ergodicity conditions
without modifying the likelihood function.

We note that other MCMC algorithms for the infinite dimensional problems are available,
such as the dimension independent adaptive Metropolis [4] and the infinite dimension inde-
pendence sampler [9]. Comparison of these methods with the pCN based algorithms can be
found in [11].

The remainder of the paper is organized as follows. In section 2 we present our hybrid
adaptive MCMC algorithm as well as some theoretical results regarding its ergodicity. In sec-
tion 3 we provide several numerical examples to demonstrate the performance of the proposed
algorithm. Finally we offer some concluding remarks in section 4.

2. The hybrid adaptive MCMC method.

2.1. Bayesian inferences in function spaces. We present the standard setup of the
Bayesian inverse problem following [23]. We consider a separable Hilbert space X with inner
product 〈·, ·〉. Our goal is to estimate the unknown u ∈ X from data y ∈ Y , where Y is the
data space and y is related to u via a likelihood function L(x, y). In the Bayesian inference
we assume that the prior µ0 of u is a Gaussian measure defined on X with mean m0 covari-D
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HYBRID MCMC ALGORITHM IN FUNCTION SPACES 623

ance operator C 0, i.e., µ0 = N(m0, C0). Note that the mean of the Gaussian measure m0

can be taken to be zero without loss of generality, and C0 is symmetric positive and of trace
class. In this setting, the posterior measure µy of u conditional on data y is provided by the
Radon–Nikodym derivative:

(1)
dµy

dµ0
(u) =

1

Z
exp(−Φy(u))

with Z being a normalization constant, which can be interpreted as the Bayes rule in the
infinite dimensional setting. A typical example is the so-called Bayesian inverse problems [12,
23], which assume that the unknown u is mapped to the data y via a forward model y =
G(u) + ζ, where G : X → Rd and ζ is a d-dimensional Gaussian noise with mean zero and
covariance Cζ . In this case,

(2) Φy(u) =
1

2
|C−

1
2

ζ (G(u)− y)|22.

For the inference problem to be well-posed, one typically requires the functional Φy to
satisfy [23, Assumptions (2.6)]. Finally we quote the following lemma [8, Chapter 1], which
will be useful later.

Lemma 2.1. There exists a complete orthonormal basis {ej}j∈N on X and a sequence of
nonnegative numbers {αj}j∈N such that C0ej = αjej and

∑∞
j=1 αj < ∞, i.e., {ej}j∈N and

{αj}j∈N being the eigenfunctions and eigenvalues of C0, respectively.

For convenience’s sake, we assume that the eigenvalues are in a descending order: αj ≥
αj+1 for any j ∈ N. {ej}∞j=1 are known as the Karhunen–Loève (KL) modes associated with
N (0, C0).

2.2. The preconditioned Crank–Nicolson algorithm. We now briefly review the basic
preconditioned CN algorithm for infinite dimensional Bayesian inference, following the pre-
sentation of [5]. Simply speaking the algorithms are based on the SPDE

(3)
du

ds
= −KLu+

√
2K

db

ds
,

where L = C−1
0 is the precision operator for µ0, K is a positive operator, and b is a Brownian

motion in X with covariance operator the identity. The proposal is then derived by applying
the CN discretization to the SPDE (3), yielding

(4) v = u− 1

2
δKL(u+ v) +

√
2K δξ0

for a white noise ξ0 and δ ∈ (0, 2). In [5], two choices of K are proposed, resulting in two
different algorithms. First, one can choose K = I , the identity, obtaining

(2C + δI )v = (2C − δI )u+
√

8δw,
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624 QINGPING ZHOU, ZIXI HU, ZHEWEI YAO, AND JINGLAI LI

where w ∼ N (0, I ), which is known as the plain CN algorithm. Alternatively one can choose
K = C0, resulting in the pCN proposal:

(5) v = (1− β2)
1
2u+ βw,

where

β =

√
8δ

2 + δ
.

It is easy to see that β ∈ [0, 1]. In both the CN and pCN algorithms, the acceptance proba-
bility is

(6) a(u, v) = min{1, exp [Φy(u)− Φy(v)]}.

2.3. The hybrid algorithm. We start with a nonadaptive version of the proposed hybrid
algorithm. For a prescribed integer J > 0 (the interpretation of J and how to determine it
will be discussed later), we let X+ = span{e1, . . . , eJ} and X− = (X+)⊥, i.e., the orthogonal
complement of X+. For any u ∈ X, we can write u = u+ +u−, where u+ ∈ X+ and u− ∈ X−.
Our algorithm is proposed according to

(7a) v = v+ + v− with v+ = u+ + βw+, and v− = (1− β2)
1
2u− + βw−,

where

(7b) w+ =
J∑
i=1

wiei with (w1, . . . , wJ)T ∼ N(0,Σ)

with Σ being a J×J covariance matrix (and thus it must be symmetric and positive definite),
and

(7c) w− =
√

Bξ0,

in which

B · =
∞∑

j=J+1

αj〈ej , ·〉ej ,

and ξ0 is a white Gaussian noise. It is easy to see that the proposal defined by (7) is a Gaussian

measure N (m(u), β2C) with mean m = u+ + (1− β2)
1
2u− and covariance C such that

(8) C · =
J∑

i,j=1

σi,j〈ei, ·〉ej + B·

The key in the algorithm is to choose an appropriate covariance matrix Σ. Before discussing
how to choose Σ, we first show that under mild conditions, the proposal (7) results in well-
defined acceptance probability in a function space.D
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HYBRID MCMC ALGORITHM IN FUNCTION SPACES 625

Proposition 2.2. Let q(u, ·) be the proposal distribution associated to (7). Define measures
η(du, dv) = q(u, dv)µy(du) and η⊥(du, dv) = q(v, du)µy(dv) on X×X. If Σ is symmetric and
positive definite, η⊥ is absolutely continuous with respect to η, and

(9)
dη⊥

dη
(u, v) = exp

[
Φy(u)− Φy(v) +

1

2

J∑
i=1

(〈u, ei〉2 − 〈v, ei〉2)

αi

]
.

Proof. Define η0(du, dv) = q(u, dv)µ0(du) and η⊥0 (du, dv) = q(v, du)µ0(dv). Both η0 and
η⊥0 are Gaussian. First, we have

η(du, dv) = q(u, dv)µy(du), η0(du, dv) = q(u, dv)µ0(du),

and µy, µ0 are equivalent. It follows that η and η0 are equivalent and

(10)
dη

dη0
(u, v) =

dµy

dµ0
(u) =

1

Z
exp(−Φy(u)).

Obviously following the same argument, we also have that η⊥ and η⊥0 are equivalent and

(11)
dη⊥

dη⊥0
(u, v) =

1

Z
exp(−Φy(v)).

Now we let q′(u, dv) be the proposal distribution of the standard pCN algorithm and define
ηpcn(du, dv) = q′(u, dv)µ0(du) and η⊥pcn(du, dv) = q′(v, du)µ0(dv). It is easy to see that

(12)
dη⊥0
dη0

(u, v) =
dη⊥0
dη⊥pcn

(u, v)
dη⊥pcn

dηpcn
(u, v)

dηpcn

dη0
(u, v),

and as is proved in [5],
dη⊥pcn
dηpcn

(u, v) = 1. Moreover, we can see that

(13)
dη⊥0
dη⊥pcn

(u, v) =
dq(v, ·)
dq′(v, ·)

(u),

and by design,
(14)
dq(v, ·)
dq′(v, ·)

(u) = exp

[
−1

2
(x− x′)TΣ−1(x− x′) +

1

2
(x−

√
1− β2x′)TC−1

J (x−
√

1− β2x′)

]
,

where x = (〈u, e1〉, . . . , 〈u, eJ〉)T , x′ = (〈v, e1〉, . . . , 〈v, eJ〉)T , and CJ is a J×J diagonal matrix:
CJ = diag[β2α1, . . . , β

2αJ ] . Similarly we can show that

(15)
dηpcn

dη0
(u, v) =

dq′(u, ·)
dq(u, ·)

(v)

= exp

[
1

2
(x′ − x)TΣ−1(x′ − x)−1

2
(x′ −

√
1− β2x)TC−1

J (x′ −
√

1− β2x)

]
.
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626 QINGPING ZHOU, ZIXI HU, ZHEWEI YAO, AND JINGLAI LI

Substituting (14) and (15) into (12) yields

(16)
dη⊥

dη⊥0
(u, v) = exp

[
1

2

J∑
i=1

(〈u, ei〉2 − 〈v, ei〉2)

αi

]
.

It follows immediately from (10)–(16) that η and η⊥ are equivalent and (9) holds.

From the detailed balance condition (see, for example, [18, Definition 6.45]), one can derive
that the acceptance probability of proposal (7) is

(17) a(u, v) = min

{
1,
dη⊥

dη
(u, v)

}
,

where dη⊥

dη (u, v) is given by (9).
We now consider how to determine Σ. A rule of thumb in designing efficient MCMC

algorithms is that the proposal covariance should be close to the covariance operator of the
posterior [20, 10]. Now suppose the posterior covariance is Cy, and one can determine the
proposal covariance C given by (8) by solving

(18) min
Σ
‖C − Cy‖HS :=

∞∑
j=1

‖(C − Cy)ej‖X2,

where ‖ · ‖HS is the Hilbert–Schmidt operator norm and ‖ · ‖X is the norm defined on the
space X. Since Σ only affects the first J eigenmodes, (18) is equivalent to

(19) min
Σ

J∑
j=1

‖(C − Cy)ej‖2X,

which can be written as

(20)
J∑
j=1

‖(C − Cy)ej‖X2 =
J∑
j=1

‖
J∑
i=1

σi,jej − Cyej‖X2

=
J∑
j=1

( J∑
i=1

σi,j

)2

− 2
J∑
i=1

σi,j〈Cyej , ei〉+ ‖Cyej‖X2

 ,
where σi,j for i, j = 1 . . . J are the entries of Σ. Now since the right-hand side of (20) is a
quadratic function of {σi,j} Ji,j=1, taking the partial derivative of it with respect to each σi,j
yields the optimal solution of (18):

σi,j = 〈Cyej , ei〉 for i, j = 1 . . . J.

Since Cy is the posterior covariance for any v and v′ ∈ X, we have [8]

(21) 〈Cyv, v′〉 =

∫
〈v, u−my〉〈v′, u−my〉µy(du),
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where my is the mean of µy. Using (21), we can derive that

(22) σi,j =

∫
〈u−my, ei〉〈u−my, ej〉µy(du)

for i, j = 1 . . . J .
Since (22) cannot be computed directly, we estimate the covariance matrix Σ by the

adaptive Metropolis method. Simply speaking, the AM algorithm starts with an initial guess
of Σ and then adaptively updates the Σ based on the sample history. Namely, suppose we
have a set of samples {u1, . . . , un} and let xi be the projection of ui onto the basis (e1, . . . , eJ):

xi = (〈ui, e1〉, . . . , 〈ui, eJ〉).

We estimate Σ with

x̂ =
1

n

n∑
i=1

xi,(23a)

Σ̂ =
1

n− 1

n∑
i=1

(xi − x̂)(xi − x̂)T + δI,(23b)

where δ is a small positive constant and I is the identity matrix. Note that the term δI in
(23b) is introduced to stabilize the iteration, as is used in [10]. For efficiency’s sake, (23)
can be recast in a recursive form [10, equation (7)]. It should be noted that it is not robust
to estimate the parameter values with a very small number of samples, and to this end we
employ a prerun, drawing a certain number of samples with a standard pCN algorithm, before
starting the adaptation. Finally, we note that, in principle, a sample x with very large norm
can distort the estimate of the covariance matrix Σ, and to prevent this from happening, we
introduce a norm threshold R � 0, and if a samples norm exceeds this threshold, it is not
used to update the covariance. This step is essential for our convergence results. We describe
the complete hybrid adaptive algorithm in Algorithm 1.

The basic idea behind the proposed method may become more clear if we look at the
projections of the proposal onto each eigenmode:

(24) 〈v, ei〉 =

{
〈u, ei〉+ βwi for i ≤ J,
(1− β2)

1
2 〈u, ei〉+ βwi for i > J,

where v follows the proposal distribution q(u, ·), (w1, . . . , wJ)T ∼ N(0,Σ), and wi ∼ N(0, αi)
for i > J . Equation (24) shows the hybrid nature of the algorithm: it performs an AM
algorithm in a finite dimensional space spanned by {e1, . . . , eJ} with the proposal covariance
adapted to approximate that of the posterior and a standard pCN sampler for all j > J . The
intuition behind our algorithm is based on the assumption that the (finite-resolution) data is
only informative about a finite number of KL modes of the prior. In particular, the data can
not provide information about the modes that are highly oscillating (associated with small
eigenvalues), and for those modes, the posterior is approximately the prior. In this case, in
the finite dimensional subspace spanned by the modes that are significantly informed by theD
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628 QINGPING ZHOU, ZIXI HU, ZHEWEI YAO, AND JINGLAI LI

Algorithm 1 The hybrid adaptive algorithm.

1: Initialize u1 ∈ X;
2: Draw N ′ samples with a standard pCN algorithm, denoted as {ui}N

′
i=1;

3: Let S = {ui, i = 1 . . . N ′ | ‖ui‖X < R}
4: Compute Σ using (23) and samples in S;
5: for n = N ′ to N ′ − 1 do
6: Propose v using (7);
7: Draw θ ∼ U [0, 1]
8: Compute a(u, v) with (17);
9: if θ ≤ a then

10: un+1 ← v;
11: else
12: un+1 ← un;
13: end if
14: if ‖un+1‖X < R then
15: S ← S ∪ {un+1};
16: Update Σ using (23) and samples in S;
17: end if
18: end for

data, we shall perform an AM algorithm to improve the sampling efficiency; in its complement
space, we just use the standard pCN method to preserve the dimension independence of the
MCMC scheme.

Finally an important issue in the implementation is to determine the number of adapted
eigenvalues J . Following [11], we let

J := min

{
j ∈ N :

∑j
i=1 αi∑∞
i=1 αi

> ρ

}
,

where 0 < ρ < 1 is a prescribed number (e.g., ρ = 0.9). In section 3, with numerical examples,
we demonstrate how the choice of J affects the sampling efficiency of the algorithm.

2.4. The convergence property. It is well known that the chain constructed with an
adaptive MCMC algorithm may not converge to the target distribution, i.e., losing its ergod-
icity. Thus, for a new adaptive algorithm, it is important to study whether it can correctly
converge to the target distribution. It has been proved by Roberts and Rosenthal [21] that an
adaptive MCMC algorithm has the correct asymptotic convergence, provided that it satisfies
the diminishing adaptation (DA) and the containment conditions. The DA condition, loosely
speaking, requires the transition probabilities to converge as the iteration proceeds, i.e., as in
the following.

Definition 1. The DA condition is

lim
n→∞

sup
u∈X
‖Qn+1(u, ·)−Qn(u, ·)‖TV = 0, in probability,

where Qn is the transition kernel at step n, and ‖ · ‖TV is the total variation norm of distri-
butions.D
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The containment condition [3] is stated as follows.

Definition 2. The containment condition is as follows: for any ε > 0, the sequence
{Mε(un,Σn)}∞n=1 is bounded in probability where

Mε(u,Σ) = inf
n
{n ≥ 1 : ‖QnΣ(u, ·)− π(·)‖TV < ε},

QΣ is a transition kernel with the subspace covariance Σ, and π is the target measure.

It has also been suggested by the authors that the containment condition is often merely
a technical condition which is satisfied for virtually all reasonable adaptive schemes [19], and
thus here we show that the proposed hybrid algorithm satisfies the DA condition. Recall that
to show the ApCN algorithm satisfies the DA condition, the likelihood function is modified
to be

dµy

dµ0
(u) ∝

{
exp(−Φy(u)), ‖u‖X ≤ Rmax,

0, ‖u‖X > Rmax,

whereRmax is a prescribed positive constant. Removal of this artificial modification is certainly
desirable, and in what follows we shall show that the present hybrid algorithm satisfies the
DA condition, without making such a modification.

Suppose at iteration n, we have samples {u0, u1, . . . , un−2, u} and for simplicity we define
the notation: ζn−2 = (u0, u1, . . . , un−2). Let Σn be the subspace covariance matrix estimated
with {u0, u1, . . . , un−2, u} using (23), and Cn,ζn−2(u) be the corresponding proposal covariance
operator. We define qn,ζn−2(u, dv) = N (m(u), β2Cn,ζn−2(u)), i.e., the proposal distribution at
iteration n, and

Qn,ζn−2(u, dv) = a(u, v)qn,ζn−2(u, dv) + δu(dv)

(
1−

∫
a(u, v′)qn,ζn−2(u, dv′)

)
,

where a(·, ·) is given by (17). We then have the following theorem (the DA condition).

Theorem 2.3. There is a fixed positive constant γ such that

sup
u∈X
‖Qn,ζn−2(u, ·)−Qn+1,ζn−1(u, ·)‖TV ≤

γ

n

for any ζn−1 and ζn−2 such that ζn−1 is a direct continuation of ζn−2.

Proof. First it is easy to see that qn,ζn−2(u, ·) and qn+1,ζn−1(u, ·) are both Gaussian mea-
sures with same mean, and we can write them as

(25) qn,ζn−2(u, ·) = qJn,ζn−2
× q̃Jn,ζn−2

, and qn+1,ζn−1(u, ·) = qJn+1,ζn−1
× q̃Jn+1,ζn−1

,

where qJn,ζn−2
and qJn+1,ζn−1

are Gaussian distributions defined onX+, and q̃Jn,ζn−2
and q̃Jn+1,ζn−1

are Gaussian distributions defined on X−. It should be clear that by design we have q̃Jn,ζn−2
=

q̃Jn+1,ζn−1
, and the covariances of qJn,ζn−2

and qJn+1,ζn−1
are Σn and Σn+1, respectively. Thus

some simple calculations yield

(26)
dqn,ζn−2(u, ·)
dqn+1,ζn−1(u, ·)

(v) =

√
|Σn+1|
|Σn|

exp

[
1

2
∆xT (Σ−1

n+1 − Σ−1
n )∆x

]
,
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where ∆x = (〈v − u, e1〉, . . . , 〈v − u, eJ〉)T . Let A be any member of the Borel σ-field of X,
and we compute

|Qn,ζn−2(u,A)−Qn+1,ζn−1(u,A)|

=

∣∣∣∣∣
∫
A
a(u, v)qn,ζn−2(u, dv) + δA(u)(1−

∫
X
a(u, v′)qn,ζn−2(u, dv′))

−
∫
A
a(u, v)qn+1,ζn−1(u, dv) + δA(u)(1−

∫
X
a(u, v′)qn+1,ζn−1(u, dv′))

∣∣∣∣∣
≤ 2

∫
X
a(u, v)|

dqn,ζn−2(u, ·)
dqn+1,ζn−1(u, ·)

(v)− 1|qn+1,ζn−1(u, dv)

≤ 2

∫
X

∣∣∣∣ dqn,ζn−2(u, ·)
dqn+1,ζn−1(u, ·)

(v)− 1

∣∣∣∣ qn+1,ζn−1(u, dv),

= 2

∫
X

∣∣∣∣∣
√
|Σn+1|
|Σn|

exp

[
1

2
∆xT

(
Σ−1
n+1 − Σ−1

n

)
∆x

]
− 1

∣∣∣∣∣ qn+1,ζn−1(u, dv),

=
2

(2π)
J
2

∫
RJ

∣∣∣∣∣ 1√
|Σn|

exp

(
−1

2
∆xTΣ−1

n ∆x

)
− 1√

|Σn+1|
exp(−1

2
∆xTΣ−1

n+1∆x)

∣∣∣∣∣ d∆x

≤ c1‖Σn − Σn+1‖HS
for some constant c1 > 0. Note that the very last inequality in the equation above follows
directly from [10, equation (16)]. If ‖un‖X > R, ‖Σn−Σn−1‖HS = 0; otherwise, following the
same argument of the proof of [10, Theorem 2], we can show that ‖Σn −Σn−1‖HS ≤ c2/n for
some constant c2 > 0. It follows directly that the theorem holds.

3. Numerical examples.

3.1. A Gaussian example. Intuitively, we expect that the proposed hybrid method should
be advantageous over ApCN in problems where the the eigenmodes are strongly correlated.
To test this property, we construct a simple mathematical example. We assume the unknown
is a function defined on the interval [0, 1], and the prior is taken to be a zero mean Gaussian
with Matérn covariance [17]:

(27) K(t1, t2) = σ2 21−ν

Gam(ν)

(√
2ν
d

l

)ν
Bν

(√
2ν
d

l

)
,

where d = |t1− t2|, Gam(·) is the Gamma function, and Bν(·) is the modified Bessel function.
A random function with the Matérn covariance is [ν−1] mean square (MS) differentiable, and
here we choose ν = 5/2 for all numerical examples implying second order MS differentiability.
Moreover, we set σ = 1 and l = 1 in this example. We take the function Φy(u) to be

Φy(u) =
1

2
xT Γx,

where x = (〈u, e1〉, . . . , 〈u, eK〉)T for a positive integer K and Γ[i, j] = exp(−(i − j)2/∆) for
i, j = 1 . . .K and a constant ∆ > 0. In this example we choose K = 14. It is easy to see
that the posterior distribution is also Gaussian, and by choosing a different value of ∆ we canD
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Figure 1. (For the Gaussian example: ∆ = 1) ACF for the chains drawn by the pCN, the ApCN, and the
hybrid methods at t = 0.4 and t = 0.8.
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Figure 2. (For the Gaussian example: ∆ = 1) Left: ACF (lag 100) at each grid point. Right: ESS per 100
samples at each grid point.

control the posterior correlation between the eigenmodes. In particular, we perform numerical
tests for the two cases: ∆ = 1 (weak correlation) and ∆ = 14 (strong correlation). In each
case, we sample the posterior distribution with three methods: the standard pCN, ApCN,
and the hybrid method. For the ApCN and the hybrid methods, we draw 5 × 105 samples
with another 0.5× 105 pCN samples used in the prerun, and for the pCN method, we directly
draw 5.5× 105 samples. Moreover, we set J = 14 in both the ApCN and the hybrid methods.
We note that, in all the numerical tests performed in this work, unless stated otherwise, the
unknown is represented with N = 201 grid points and the stepsize β has been chosen in a
way that the resulting acceptance probability is around 25%. Moreover, in all the numerical
examples, we set R = 3Nα1 for the hybrid algorithm.

We first show the results for ∆ = 1. In Figure 1, we plot the autocorrelation function
(ACF) of the samples drawn by each method against the lag at t = 0.4 and t = 0.8. We
then compute the ACF of lag 100 at all the grid points and show the results in Figure 2D

ow
nl

oa
de

d 
07

/1
6/

17
 to

 2
02

.1
20

.1
9.

84
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

632 QINGPING ZHOU, ZIXI HU, ZHEWEI YAO, AND JINGLAI LI

lag
0 20 40 60 80 100

A
C

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t=0.4

pCN 
ApCN
hybrid

lag
0 20 40 60 80 100

A
C

F

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
t=0.8

pCN
ApCN
hybrid

Figure 3. (For the Gaussian example: ∆ = 14) ACF for the chains drawn by the pCN, the ApCN, and the
hybrid methods at t = 0.4 and t = 0.8.
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Figure 4. (For the Gaussian example: ∆ = 14) Left: ACF (lag 100) at each grid point. Right: ESS per
100 samples at each grid point.

(left). The effective sample size (ESS) is another popular measure of the sampling efficiency
of MCMC, which gives an estimate of the number of effectively independent draws in the
chain. Specifically the ESS is computed as N/(1 + 2τ), where N is the number of sample size
and τ is the integrated autocorrelation time [13]. We compute the ESS per 100 samples of
the unknown u at each grid point and show the results in Figure 2 (right). We then show
the same plots for ∆ = 14 in Figures 3 and 4. We can see from these plots that, in the
weakly correlated case ∆ = 1, the hybrid method is not clearly advantageous over the ApCN
algorithm; in the strongly correlated case ∆ = 14, the hybrid method performs much better
than the ApCN algorithm, suggesting that taking the covariances between eigenmodes into
account can significantly improve the sampling efficiency in this case. These results agree well
with our expectations.D
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Figure 5. (For the ODE example: test 1) ACF for the chains drawn by the pCN, the ApCN, and the hybrid
methods at t = 0.4 and t = 0.8.

3.2. An ODE example. Our second example is an inverse problem where the forward
model is governed by an ordinary differential equation (ODE):

∂x(t)

∂t
= −u(t)x(t)

with a prescribed initial condition. Suppose that we observe the solution x(t) several times
in the interval [0, T ], and we want to infer the unknown coefficient u(t) from the observed
data. In our numerical experiments, we let the initial condition be x(0) = 1 and T = 1. The
equation is solved with a fourth order Runge–Kutta scheme. Now suppose that the solution
is measured every T/50 time unit from 0 to T and the error in each measurement is assumed
to be an independent Gaussian N(0, 0.12). The prior is taken to be a zero mean Gaussian
with covariance specified by (27).

First we want to compare the performance of the hybrid method with that of the ApCN
method introduced in [11], and so we use the same problem setup as in [11]: we choose l = 1,
σ = 1. We also use the same true coefficient u(t) and synthetic data x(t) as those in [11]. We
draw samples from the posterior with three methods: pCN, ApCN, and the hybrid algorithm.
In both ApCN and the hybrid algorithm, we use 5×105 samples with additional 0.5×105 pCN
samples used in the prerun, and in the standard pCN we directly draw 5.5× 105 samples. In
both the ApCN and the hybrid methods, we follow [11] and choose J = 14, i.e., 14 eigenvalues
being adapted. Since the inference results have been reported in [11], we omit them here
and only compare the performance of the three methods. In Figure 5, we plot the ACF of
the samples drawn by each method against the lag. The results indicate that the ACF of
both adaptive algorithms decay faster than the standard pCN, while the ACF of the hybrid
algorithm decays faster than that of the ApCN. We then compute the ACF of lag 100 at all
the grid points and show the results in Figure 6 (left), and we can see that the ACF of the
chain generated by the hybrid method is clearly lower than that of the standard pCN and the
ApCN at all the grid points. We compute the ESS per 100 samples of the unknown u at each
grid point and show the results in Figure 6 (right). The results show that the hybrid algorithmD
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Figure 6. (For the ODE example: test 1) Left: ACF (lag 100) at each grid point. Right: ESS per 100
samples at each grid point.
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Figure 7. (For the ODE example: test 1) Acceptance probabilities with different resolutions are plotted
against the stepsize parameter β.

produces much more effectively independent samples than pCN and ApCN. In summary, with
this example, we show that the proposed hybrid adaptive method performs better than both
the standard pCN and the ApCN methods.

We note that another interesting issue is to show that the proposed algorithm is indepen-
dent of discretization dimensionality. To show this, we plot in Figure 7 the average acceptance
probability as a function of the stepsize parameter β for three different numbers of grid points:
101, 201, and 501. The figure shows that the three plots agree very well with each other, in-
dicating that the proposed hybrid method is indeed dimension-independent.

Next we use the example to test how the value of J affects the sampling efficiency. We
choose l = 0.2, σ = 1. A “truth” u(t) is randomly generated from the prior distribution, and
the synthetic data x(t) is generated by applying the forward model to the generated coefficient
u and then adding noise to the result. We perform the hybrid algorithm with three different
values of J : J = 5, J = 10, and J = 20, each with 5 × 105 plus 0.5 × 105 pCN (prerun)D
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Figure 8. (For the ODE example: test 2) ACF for the chains drawn by the hybrid method with J = 5, 10, 20
at t = 0.4 and t = 0.8.
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Figure 9. (For the ODE example: test 2) Left: ACF (lag 100) at each grid point for J = 5, 10, 20. Right:
ESS per 100 samples at each grid point for J = 5, 10, 20.

samples. As a comparison, we also perform a standard pCN with 5.5× 104 samples. We plot
the ACF as a function of lag at t = 0.4 and t = 0.8 for all the results in Figure 8. In Figures 9
we plot the ACF of lag 100 as well as the ESS at all the grid points. One can see from the
plots that the algorithm with J = 10 yields the best results, suggesting that J = 10 may
be sufficient for this problem and J = 20 may be too large for the given number of samples.
Nevertheless, in all the cases, the hybrid method performs better than the standard pCN.

3.3. Estimating the Robin coefficient. In the last example, we consider a one-dimensional
heat conduction equation in the region x ∈ [0, L] ,

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t),(28a)

u(x, 0) = g(x),(28b)
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Figure 10. (For the Robin example) The correlation coefficients between any two of the first 14 eigenmodes.

with the following Robin boundary conditions:

− ∂u

∂x
(0, t) + ρ(t)u(0, t) = h0(t),(28c)

∂u

∂x
(L, t) + ρ(t)u(L, t) = h1(t).(28d)

Suppose the functions g(x), h0(x), and h1(x) are all known, and we want to estimate the
unknown Robin coefficient ρ(t) from certain measurements of the temperature u(x, t). This
example is studied in [26, 11, 25], and here we solve the heat equation using the finite difference
method as in [25]. Here we choose L = 1, T = 1 and the functions to be

g(x) = x2 + 1, h0 = t(2t+ 1), h1 = 2 + t(2t+ 2).

A temperature sensor is placed at the end x = 0. The solution is measured every T/200
time unit from 0 to T , and the error in each measurement is assumed to be an independent
Gaussian N(0, 0.12). Moreover, the prior is the same as that used in the first test of the ODE
example.

Just like the ODE example, a “true” Robin coefficient ρ(t) is randomly drawn from the
prior distribution and the synthetic data u(x, t) is generated by applying the forward model
to the drawn Robin coefficient ρ and then adding noise to the result. We sample the posterior
distribution with the three methods: pCN, ApCN, and the hybrid algorithm. For the ApCN
and the hybrid method, once again we choose J = 14 and draw 5×105 (adaptive) + 0.5×105

(prerun) samples. For the pCN method, we draw 5.5 × 105 samples using standard pCN
directly. Moreover, we plot the correlation coefficients of any two of the first 14 eigenmodes
computed from the posterior samples in Figure 10, and the figure shows that many eigenmodes
are indeed strongly correlated. In fact, we have found that about one quarter of the correlation
coefficients in Figure 10 are larger than 0.3. We now compare the performance of the threeD
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Figure 11. (For the Robin example) ACF for the pCN and the ApCN methods at t = 0.1 (left) and t = 0.5
(right).
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Figure 12. (For the Robin example) Left: ACF (lag 100) at each grid point. Right: the ESS at each grid
point.

methods. First we plot the ACF of the samples obtained by the methods at t = 0.1 and
t = 0.5 in Figure 11, and then we plot the ACF at lag 100 and the ESS at all the grid points
in Figure 12. In all these figures, we can see that, while both adaptive algorithms yield better
results than the standard pCN, the hybrid algorithm clearly outperforms the ApCN method,
which again indicates that the new algorithm can significant improve the sampling efficiency
over the ApCN approach, by taking the correlations between eigenmodes into account.

4. Conclusions. In summary, we consider MCMC simulations for Bayesian inference in
function spaces. We develop a hybrid algorithm, which combines the adaptive Metropolis
and the pCN algorithm, particularly addressing some limitations of our previously developed
ApCN method. The implementation of the proposed algorithm is rather simple, without re-
quiring any information of the underlying models. We also show that the hybrid adaptive
algorithm satisfies an important ergodicity condition without making any modifications of theD
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likelihood function. Finally we demonstrate the efficiency of the hybrid adaptive algorithm
with several numerical examples, in which we see that the hybrid algorithm can evidently out-
perform the ApCN method, thanks to its ability to take into account the correlations between
eigenfunctions. Note here that, in problems where the correlations between eigenfunctions are
weak, the hybrid may not improve the efficiency much over the ApCN method. Nevertheless,
as is illustrated by our numerical examples, in that case, the hybrid algorithm’s performance
is at least comparable to that of the ApCN. We expect the hybrid adaptive algorithm can be
useful in many applied problems, especially in those with underlying models whose gradient
information is difficult to obtain.

Some improvements of the hybrid algorithm are possible. First, in the present formulation
of the hybrid algorithm, we choose to adapt in the subspace spanned by the eigenfunctions
corresponding to the leading eigenvalues. This strategy can be improved by allowing the
algorithm to automatically identify this “data-informed subspace” during the iterations [6].
Moreover, reduced models or surrogates (see, e.g., [7, 15, 24]) of the forward operator may
be constructed using only the intrinsic dimensions to accelerate the simulation. Another
possible improvement is that in the present algorithm the parameter R is fixed, and one can
probably further improve the performance of the algorithm by adapting the parameter R as
well. Another issue is that in this work we only show that the hybrid algorithm satisfies the
DA condition, and a more comprehensive study of the ergodicity property of the algorithm
is certainly needed. In particular, it is certainly desirable to prove the containment condition
for the algorithm as well. We plan to address these issues in future studies.
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