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We discuss a generalized waveplate hinge model to characterize anisotropic effects associated with the hinge
model of polarization-mode dispersion in installed systems. In this model, the action of the hinges is a ran-
dom time-dependent rotation about a fixed axis. We obtain the probability density function of the differential
group delay and the outage probability of an individual wavelength band using a combination of importance
sampling and the cross-entropy method, and we then compute the noncompliant capacity ratio by averaging
over wavelength bands. The results show that there are significant differences between the outage statistics
predicted by isotropic and anisotropic hinge models. © 2008 Optical Society of America

OCIS codes: 060.2330, 060.4510.

Recent experimental investigations of polarization-
mode dispersion (PMD) in wavelength-division-
multiplexed (WDM) installed systems have found
variations in the temporal statistics of the differen-
tial group delay (DGD) of different wavelength bands
[1]. This behavior is consistent with the so-called
“hinge model” of PMD [1-4] in which systems are
composed of a concatenation of a relatively small
number of long stable fiber sections joined by short
unprotected sections, or “hinges,” which are subject
to environmental effects. The DGD of each stable sec-
tion is assumed to follow a Maxwellian distribution
with respect to wavelength and to be frozen in time.
The hinges themselves bring little or no contribution
to the total DGD, but they scatter the PMD vector
across the Poincaré sphere, and their fluctuations are
responsible for the temporal dynamics of PMD within
each channel. The measured statistics of PMD-
induced transmission outages of systems described
by the hinge model differ from those of traditional
models in that they contradict the assumption that
all channels have an identical outage probability.

A common assumption in the hinge model is that
the hinges act as polarization controllers that scatter
the PMD vector uniformly across the Poincaré
sphere. We will refer to this as the isotropic hinge
model. System outages for the hinge model have been
well studied under the isotropic assumption. Recent
experimental observations [5], however, suggest that
the hinges do not scatter the PMD vector across all of
the Poincaré sphere but rather act more like rotators,
that is, like elements that rotate the PMD vector
about a fixed axis. This action is consistent with the-
oretical studies of the behavior of arbitrary polariza-
tion elements [6], which show that, to first order with
respect to variations of any parameter, any polariza-
tion element behaves like a rotator. Based on these
experimental results and theoretical observations,
here we therefore study an anisotropic hinge model
in which the stable sections are joined by “wave-
plate-type” hinges that produce a random time-
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dependent rotation about a static rotation axis. As we
show below, the statistics of PMD in this model differ
significantly from those in the isotropic model.

At each wavelength, the total PMD for a finite
number of sections is determined by the PMD concat-
enation equations. For first-order PMD, this is [7]

(1)

Here 7, is the total PMD vector after the nth section,
the fixed vector A7, is the PMD vector of the nth sec-
tion, R,,; is the rotation matrix of the (n+1)st sec-
tion, and H, is the rotation matrix of the nth hinge.
The PMD vector A7, of each section is uniformly dis-
tributed on the Poincaré sphere but is frozen in time,
and the DGD Ar,=|A7,| of each section obeys a
Maxwellian distribution with respect to wavelength.
If one is interested only in the length of the total
PMD vector, it is possible to eliminate R, ,; from Eq.

Tu+1 = RpiiH, 7, + AT

(1) by defining 7,,;=R;}; 7,1, A7), =R,};A7,,;, and
H,=H,R,. As a result,
1_:r’1+1 = H;L;;l + A;I’L+17 (2)

where the A7, are also uniformly distributed on the
Poincaré sphere. In what follows, we will omit the
primes for simplicity. The only temporal variation in
Eq. (2) arises from the hinge rotation matrix H,. In
the isotropic hinge model it is assumed that the
hinges scatter the previous PMD vector 7, randomly
and uniformly across the Poincaré sphere. Based on
[5,6], however, here we assume that the nth hinge de-
scribes a rotation about a fixed axis fn=(r,1l,r,21,rf;)
that is arbitrarily distributed on the Poincaré sphere
with respect to wavelength with a rotation angle ¢,
that is randomly and dynamically varying. Thus, the
rotation matrix H, becomes [7]

(3)

where | is the 3 X 3 identity matrix, ## is the dyadic
matrix, and 7X is the cross-product matrix [7].

A At . A
H, =cos ¢,l + (1 - cos ¢,)7,7, + sin ¢, 7, X,
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By analogy with the behavior of a wave plate, we
refer to this as the waveplate hinge model. Note how-
ever that, unlike ordinary wave plates, the rotation
axes 7, are not confined to the equator of the
Poincaré sphere. (This statement applies even when
the hinges are actual wave plates because of the ar-
bitrary rotation introduced when going from H, to
H,.) Thus, one should think of the hinges as general-
ized waveplates. We reiterate that Eq. (3) describes
the response of any polarization element to first-
order with respect to variations of any of its param-
eters [6].

It is difficult to use either standard Monte Carlo
(MC) simulations or laboratory measurements to
fully assess system outage probabilities owing to the
extremely large number of PMD configurations that
must be visited to obtain reliable estimates. Impor-
tance sampling (IS) has been used to address this
problem and allow efficient computation of PMD-
induced transmission penalties [8—10]. The idea is to
implement MC simulations using a biased distribu-
tion p*(x) of the random variable x instead of the
true distribution p(x) so that large DGDs occur more
frequently than they would normally while correcting
for the bias using the likelihood ratios. In our case
the vector x collects the rotation angles ¢, ..., o5 1
of all the hinge rotation matrices H,,.

The fundamental issue in IS is of course to design a
good biasing strategy. In contrast to previous studies
[8-10], to the best of our knowledge it is not possible
to identify the optimal biasing directions analytically
for the waveplate hinge model, because the PMD dy-
namics are more complicated. To overcome this diffi-
culty we use the cross-entropy (CE) method. It is well
known that an optimal biasing distribution exists in
principle; p (x) I (x)p(x)/P where the indicator
function I (x) equals 1 if x is in the region of interest
and 0 otherwise and where P is the sought-after
probability. This result is not useful by itself as it re-
quires knowledge of the unknown quantity P. One
can, however, find a good biasing distribution by re-
quiring that it be “close” to the optimal biasing dis-
tribution in terms of some measure of distance. The
CE (or Kullback-Leibler distance) between two dis-
tributions [11] is a good choice for such a measure:

D(p,,:P") = by [In(p, (x)p ()], (4)

where £, is the expectation value with respect to a
density p. Although D(p .»p*) itself cannot be evalu-
ated directly (because p opt depends on P), the direc-
tion of its gradient is independent of P and can there-
fore be evaluated even without its knowledge. In this
way, one can determine a good biasing distribution
p*(x) by minimizing the distance between it and the
optimal distribution p* ot [(x) [11]. In summary, the
method to be used for the simulations consists of: (i)
first searching for a good biasing distribution p* x) by
minimizing the CE distance between it and p (x)
and (ii) then applying IS using the distribution p (x)
The implementation and simulation details are be-
yond the scope of this Letter and will be discussed
elsewhere.
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We used IS-CE simulations to reconstruct the prob-
ability density function (PDF) of the total DGD in the
waveplate hinge model. We considered transmission
links consisting of ten sections, a mean DGD of 3 ps,
and sectional PMD vectors and rotation axes uni-
formly distributed across the Poincaré sphere but fro-
zen while the hinge rotation angles were randomly
varying and uniformly distributed in [0,2]. Figure 1
compares the PDF of the DGD for the isotropic model
[12] with that for the waveplate hinge model (with
two different sets of hinge rotation axes) with the
same sectional PMD vectors. Note that for each
choice of sectional PMD vectors there are infinitely
many PDFs for the waveplate hinge model (one for
each specific realization of hinge rotation axes). The
IS-CE simulations agree with unbiased MC simula-
tions (not shown) of the waveplate model where the
latter give results. Also, as in the isotropic model, one
observes convergence to the Maxwellian distribution
as the number of sections tends to infinity in simula-
tions of the waveplate hinge model.

To estimate the outage probability we used the out-
age map method [13]. Namely, for each wavelength
band, we expressed the first-order PMD-induced out-
age probability as

© rye(7)
Pout= f f p(T’ 7)d7d77 (5)
0 Yy

where 7is the total DGD and v is the power splitting
ratio, p(7, y) is their joint PDF, and [ y;(7), y2(7)] is the
range of values of the power splitting ratios that re-
sult in an outage (namely, the values for which the
PMD-induced penalty exceeds a prescribed value &)
as obtained from detailed numerical simulations [13].
Assuming a uniform distribution of y (which implies
the presence of an isotropic polarization scatterer at
the input of the system), the inner integral in Eq. (5)
simply yields pg.q4(7)A9(7), where pggq(7) is the PDF of
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Fig. 1. (Color online) Comparison of the PDF of the DGD

for the waveplate hinge model (dashed curve, for two sets
of hinge directions) versus that for the isotropic hinge
model (solid curve). Each case uses the same set of ten sec-
tional PMD vectors. The vertical line indicates the cut-off
value 7,=6.89 ps, which is the outage threshold for a sys-
tem with a 1 dB penalty margin.
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the DGD and Ay=y5(7)— (7). A good approximation
for Ay has been found to be [13]

N7 = \/1+—\/ ( ) (6)

for 7,<7< 7, with Ay(7)=0 for 7<7, and Ay(7)=1 for
7>r1,, where 7,=2T/\JA/e+4a and 7,=T/\o. Here T
is the bit period, and A and « depend on the modula-
tion format. Note that Eq. (6) implies that outages
can only take place when 7> 7,. An upper bound for
the outage probability, which removes the require-
ment for an input scatterer, can also be obtained by
taking A(y)=1 for all 7> 7,.

We considered a link of ten sections with a mean
DGD of 3 ps (as before) using the non-return-to-zero
format at 40 Gb/s, corresponding to A=51, «=0.41,
and T'=25 ps and an allocated power margin & of
1 dB. With these parameters, the cut-off value is 7,
=6.89 ps. So a channel represented by one of the
dashed curves on the left in Fig. 1 is outage-free in
the waveplate hinge model, although it is not in the
isotropic hinge model (solid curve). The results also
show that, for the same set of section lengths, the
waveplate hinge model predicts a larger fraction of
outage-free channels than the isotropic hinge model.

The noncompliant capacity ratio (NCR) was intro-
duced in [13] to characterize the outage statistics of a
WDM system, where PMD follows the hinge model.
Specifically, the NCR is defined as the fraction of
wavelength bands that are noncompliant with a
given outage specification. In Fig. 2 we compare the
NCR predicted by the isotropic hinge model with that
predicted by the waveplate hinge model from an MC
simulation of 10,000 wavelength bands (with a differ-
ent set of sectional PMD vectors and hinge rotation
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Fig. 2. (Color online) NCR as a function of the specified
outage probability for transmission links with ten sections
and a mean DGD 3.5 (top left curves) and 2.5 ps (bottom
right curves). Dashed lines, NCR in the isotropic model;
solid lines, NCR in the anisotropic model assuming uni-
form splitting ratios; dotted—dashed curves, upper bound
for the NCR in the anisotropic model; vertical lines, tran-
sition between NCR=0 and NCR=1 in the traditional
model of PMD.
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axes for each band). The NCR in the limit of an infi-
nite number of sections is also shown and is a step
function, namely, NCR=1 for Py, <P, and NCR
=0 otherwise. Some differences are visible between
the upper bound and the values obtained assuming
uniform splitting ratios. Nonetheless, at the small
outage probabilities that are of practical interest (to
the right in Fig. 2) the values of NCR for the wave-
plate hinge model are significantly smaller than
those from the isotropic model. Therefore, in this re-
gime the isotropic hinge model overestimates the
NCR compared with the waveplate hinge model.
Similar results also arise for transmission links with
different numbers of sections.

In summary, we have proposed a waveplate hinge
model to characterize anisotropic effects associated
with polarization hinges in installed optical fiber
communication systems. We have also discussed
various PMD statistics of such a model, and we have
demonstrated that the outage statistics of isotropic
and anisotropic hinge models behave very differently
from one another. In particular, the waveplate hinge
model predicts smaller values of NCR in the range of
outage probabilities of interest. These results clearly
indicate that PMD-induced outages depend on the
specific details of the manner in which PMD is physi-
cally generated in the system. Thus, the issue of
what is the correct physical model to describe PMD
in actual installed systems appears to deserve fur-
ther study.
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ence Foundation under grants DMS-0506101 and
DMS-0709070.
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