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Abstract In this note, we present a derivative-free trust-
region (TR) algorithm for reliability based optimization
(RBO) problems. The proposed algorithm consists of solv-
ing a set of subproblems, in which simple surrogate models
of the reliability constraints are constructed and used in
solving the subproblems. Taking advantage of the spe-
cial structure of the RBO problems, we employ a sample
reweighting method to evaluate the failure probabilities,
which constructs the surrogate for the reliability constraints
by performing only a single full reliability evaluation in
each iteration. With numerical experiments, we illustrate
that the proposed algorithm is competitive against existing
methods.
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1 Introduction

Reliability based optimization (RBO) problems, which opti-
mize the system performance subject to the constraint that
the system reliability satisfies a prescribed requirement,
are an essential task in many engineering design problems
(Valdebenito and Schuëller 2010; Aoues and Chateauneuf
2010). In a standard RBO problem, the reliability constraint
is typically formulated as that the failure probability of the
system is lower than a threshold value, and a very com-
mon class of RBO problems is to minimize a cost function
subject to the failure probability constraint:

min
x∈D

f (x), s.t. c(x) := lnP(x) − ln θ ≤ 0, (1.1)

where x is the design parameter, D is the design space, f (·)
is the cost function, P(x) is the failure probability associ-
ated with design x and θ is the failure probability threshold.
In practice, the cost function is often deterministic and easy
to evaluate, while computing the probabilistic constraint is
much more costly as it requires expensive Monte Carlo
(MC) simulations.

In this work we consider the so-called double loop (DL)
RBO methods, where an inner loop estimating the failure
probability is nested in the outer loop solving the optimiza-
tion problem (Aoues and Chateauneuf 2010; Valdebenito
and Schuëller 2010; Eldred et al. 2002), and so other meth-
ods, such as the single loop and the decoupling algorithms
(Valdebenito and Schuëller 2010) are not in our scope. The
DL methods only require to evaluate the limit state func-
tion of the underlying system, which makes it particularly
convenient for problems with black-box models. The com-
putational burden of the DL methods arises from both the
inner and the outer loops. Namely, the total computational
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cost depends on the number of reliability (failure prob-
ability) evaluations required and the cost for performing
each single failure probability evaluation. This work aims
to address the former: to solve the RBO problems with a
small number of reliability evaluations. A difficulty here is
that, due to the use of MC simulations, it is very difficult to
obtain the derivatives of the reliability constraints. One way
to alleviate the difficulty is to perform stochastic sensitiv-
ity analysis with the so-called score functions (SF) (Rahman
2009; Rubinstein and Shapiro 1993). Here we consider an
alternative type of methods, known as the derivative-free
(DF) trust-region (TR) algorithms (Conn et al. 2009), devel-
oped to solve problems whose derivatives are difficult to
obtain. Loosely speaking, the DF-TR methods consist of
solving a set of TR subproblems in which surrogate models
of the objective and/or the constraint functions are con-
structed and used in solving the subproblems. The main
contribution o the work is two-fold. First we present a DF-
TR algorithm specifically designed for the RBO problems,
which does not require the knowledge of the derivative
information of the objective and the constraint functions.
Note that the computational cost associated with the DF-
TR algorithm poses a challenge here, as constructing a
surrogate model with regression or interpolation requires
to repeatedly evaluate the reliability constraints, which is
highly expensive. Thus our second contribution is to employ
a sampling reweighting method, which only uses a single
full reliability evaluation to construct the surrogates in each
TR iteration. With a numerical example, we illustrate that
the DF-TR algorithm can be a competitive alternative to the
score-function based methods.

The paper is organized as follows. We present our DF-
TR algorithm for RBO problems in Section 2. We describe
the evaluation of reliability constraints in Section 3. Finally
we provide a benchmark example to demonstrate the perfor-
mance of the proposed algorithm in Section 4.

2 The DF-TR algorithm for RBO problems

2.1 The derivative-free trust-region algorithm

A natural idea to solve the RBO problem (1.1) is to con-
struct a computationally efficient surrogate for the con-
straint c(x), and then solve the optimization problem subject
to the surrogate constraint. The TR methods provide a rig-
orous formulation of this surrogate based approach. The
TR methods start from an initial point x0 and finds a crit-
ical point by computing a series of intermediate points
{xk}k∈N. Specifically, suppose the current point is xk , and
to compute the next point, the algorithms solve a TR sub-
problem in which surrogates of the objective function and
the constraints are constructed and used in a neighborhood

of xk . This neighborhood of xk is known as the trust-region
and the size of it is adjusted in a way that the surrogate
models are sufficiently accurate in it. In our problem, the
objective function is of simple form, and we only need
to construct the surrogate for the constraint function. As
a result, in our RBO problems, the TR sub-problem at
iteration k becomes,

min
x∈D

f (x), s.t. sk(x) ≤ 0 and ‖x − xk‖ ≤ ρk, (2.1)

where sk(x) is the surrogate model of c(x), and ρk is the
radius of the TR of xk . In what follows we use the notation:
O(xc, ρ) = {x|‖x − xc‖ ≤ ρ}. Before discussing the con-
struction of the surrogate models, we first present our main
algorithm for solving the RBO problems:

A key step in a TR algorithm is to adjust the radius of
the TR in each step. In this respect our algorithm follows
the procedure given in Augustin and Marzouk (2014), but
only adjusts the radius according to the constraint func-
tion (Augustin and Marzouk (2014) adjusts it based on both
the objective and the constraint functions). Here ρ0 is the
initial TR radius and ω+ and ω− are the TR expansion
and contraction constants respectively. The TR subproblem
(2.1) can be solved with any usual constrained optimiza-
tion technique, and in this work we choose to use the
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sequential quadratic programming (SQP) method. The algo-
rithm terminates when one of the following three conditions
is satisfied: xk+1 is an inner point of O(xk, ρk), the dif-
ference between f (xk) and f (xk+1) is below a prescribed
threshold δ, or the radius is smaller than a prescribed min-
imal value ρmin. Moreover, ε∗ is the error bound for the
surrogate models, and M is the number of points used to
construct the surrogate models.

We now discuss the construction of the surrogates, which
is a critical step in Algorithm 1. In the DF framework, one
first writes the surrogate model as a linear combination of a
set of basis functions namely,

s(x) =
L∑

l=1

albl(x), (2.2)

where {bl(x)}Ll=1 are a set of basis functions and a =
(a1, ..., aL)T is the vector collecting all the coefficients, and
then determines the coefficients a with either regression
or interpolation. We choose to use the popular quadratic
polynomials surrogates, while noting that the proposed algo-
rithm does not depend on any particular type of surrogates.

In the standard DF-TR algorithms, the surrogate mod-
els are required to be fully linear or quadratic (Conn et al.
2009). Imposing such conditions is very difficult in RBO
problems as the failure probability is evaluated with sam-
pling methods. Thus here we simply require that the error
between the surrogate and the true constraint function is
bounded in the TR: for a given fixed ε > 0 and a TR
O(xc, ρ), |s(x) − c(x)| ≤ ε for any x ∈ O(xc, ρ). Now, we
propose a scheme to construct TR surrogate with a bounded
error, described as:

Simply put, the algorithm constructs the quadratic regres-
sion and examines whether the resulting surrogate satis-
fies the error bound condition; if not, the algorithm con-
tracts the TR and repeats. In Line 7, we estimate the
approximation error with the leave-one-out cross valida-
tion method. Namely, let X = {x1, ..., xM} and Y =
{y1, ..., yM} with ym = c(xm) for m = 1...M . Let
Xm− = {x1, ..., xm−1, xm+1, ..., xM} and Ym− = {y1, ...,
ym−1, ym+1, ..., yM}. Let sm(x) be the surrogate model
based on data (Xm−, Ym− ) and the approximation error ε is
estimated by ε = max{|c(xm) − sm(xm)|}Mm=1. Apparently,
to construct the surrogate, we need to evaluate the relia-
bility constraint at a rather large number of design points,
which can be computationally demanding. However, as will
be shown in the next section, we apply a sample reweight-
ing strategy, which allows us to obtain the values of the
constraint at all the design points by only performing a full
sampling based reliability evaluation at xc. Thus the com-
putational cost is significantly reduced. We also note that,
another way to improve the efficiency for evaluating the
reliability constraint is to use low-cost surrogate models for
the limit state function, but in many practical problems (e.g.
the source of uncertainty is modeled by a random process),
constructing such surrogates itself can be a very challenging
task.

3 The sample reweighting method

In this section, we discuss the evaluation of the reliability
constraint c(x), or equivalently, the failure probability P(x).
Let z be a dz-dimensional random variable with distribution
q(z), representing the uncertainty in a system. The system
reliability is described by the limit state function g(z), and,
namely, the event of failure is defined as g(z) < 0. Fol-
lowing the formulations in Rahman (2009), we assume that
the distribution of z depends on the design parameter x, i.e.,
q(z; x), while the limit state function g(z) is independent of
x. As a result the failure probability is

P(x) = P(g(z) < 0) =
∫

z∈Rdz

I (z)q(z, x)dz, (3.1)

where I (z) is an indicator function:

I (z) =
{
1 if g(z) < 0,
0 if g(z) ≥ 0.

(3.2)

P(x) can be computed with the MC estimation:

P̂MC = 1

N

N∑

n=1

I (z(n)), (3.3)

with samples z(1), ..., z(N) drawn from q(z; x).
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Recall that in Algorithm 1, we need to evaluate the failure
probability at a number of design points in the TR to con-
struct the surrogate function. Since each evaluation requires
a full MC sampling procedure, the total computational cost
can be very high. To improve the efficiency, we present a
sample reweighting approach, which allows one to obtain
the failure probability values at all design points with one
full MC based failure probability evaluation. Suppose we
have performed a MC estimation of the failure probability
at the center of the TR, xc, obtaining a set of samples from
q(z; xc): {(z(n), g(z(n)))}Nn=1. For any point x in the TR, we
can write P(x) as,

P(x) =
∫

I (z)q(z; x)dz =
∫

I (z)r(z)q(z; xc)dz, (3.4)

where r(z) = q(z; x)/q(z; xc). It follows immediately that
P(x) can be estimated as

P̂ (x) = 1

N

N∑

n=1

I (z(n))r(z(n)), (3.5)

i.e., by simply assigning new weights r(z) to the samples
generated in the evaluation of P(xc). Note that, in this
method, only the computation of P(xc) involves the evalu-
ations of the limit state function g(·), which is referred to
as a full reliability evaluation. This method uses the same
formulation as importance sampling (IS), but it differs from
a standard IS as its purpose is not to reduce the sampling
variance, but to reuse the samples. We use this approach to
construct the surrogates in Algorithm 2.

4 A benchmark example

As an illustrating example, we consider a cantilever beam
problem, with width W , height T , length L, and subject
to transverse load Y and horizontal load X. This is a well
adopted benchmark problem in optimization under uncer-
tainty (Eldred et al. 2002), where the system failure is
defined as the maximum deflection exceeding a threshold
value:

g = Do − 4L3

EWT

√(
Y

T 2

)2

+
(

X

W 2

)2

. (4.1)

Here Do is the deflection threshold and E is the Young’s
modulus. In this example we assume the beam length L is
fixed to be 100 and D0 = 6. The random variables are:
the elastic modulus E ∼ N (29 × 106, (1.45 × 106)2),
external loads X ∼ N (500, 252) and Y ∼ N (500, 252),
and the actual beam width W ∼ N (w, σ 2) and height
T ∼ N (t, σ 2), respectively. The mean width w and the
mean height t are design variables, and our goal is to mini-
mize the construction cost f (w, t) = wt , subject to that the
associated failure probability is smaller than θ = 0.1. In the

Table 1 The parameter values of the DF-TR algorithm

ρ0 ρmin ε∗ ω− ω+ M δ

0.1 10−6 0.1θ 0.9 1.1 20 10−4

numerical tests, we solve the problem with σ = 10−1 and
σ = 10−2.

For comparison, we solve the problem with three meth-
ods: the DF-TR with reweighting (denoted by DF-TR-R),
the DF-TR method without reweighting (denoted by DF-
TR), and a standard active set method, where the gradients
are computed with the SF method (denoted by SF). The
algorithm parameter values of the DF-TR and DF-TR-R
algorithms are given in Table 1. In the MC simulations of all
the methods, we use two samples sizes N = 104 and N =
105. Since all the methods are subject to random errors, to
take that into account, we repeatedly solve the problem with
all the three methods 100 times and summarize the results
in Table 2. Specifically, we compare the average errors of
the obtained solutions (compared to a benchmark solution
computed by the SF method with 5 × 106 samples), and
the average number of full reliability evaluations. We see
from the results that in all the test cases, the DF-TR-R algo-
rithm outperforms the SF based method, in terms of both
average errors and the number of full reliability evaluations.
This suggests that the proposed DF-TR-R algorithm can be
more robust and efficient than the SF method for small sam-
ple size. In the comparison of the two DF-TR algorithms,
we can see that, both algorithms yield comparable results in
terms of accuracy, while the DF-TR-R algorithm uses sig-
nificantly less full reliability evaluations than the algorithm
without reweighting. We note that more numerical tests are
needed to have a conclusive performance comparison of the

Table 2 Performance comparison of the three methods

σ N method avg error full evals

SF 0.079 142

10−1 104 DF-TR 0.025 620

DF-TR-R 0.0273 49

SF 0.063 140

10−1 105 DF-TR 0.021 380

DF-TR-R 0.0217 28

SF 0.0334 114

10−2 104 DF-TR 0.015 420

DF-TR-R 0.0201 29

SF 0.031 126

10−2 105 DF-TR 0.011 320

DF-TR-R 0.0165 18
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methods. Nevertheless, the results suggest that the DF-TR-
R algorithm provides an efficient and easy-to-use alternative
to the SF based methods.

5 Conclusions

In summary, we present a DF-TR algorithm to solve the
RBO problems without using the gradients of the reliabil-
ity constraints. A sample reweighting method is employed
so that the TR surrogate can be obtained by performing a
single full reliability evaluation. Due to space limitation we
only present a simple benchmark example, and applications
of the method to some real-world design problems will be
reported in a future work. Moreover, we note that in general
the design parameters x could also affect the limit state func-
tion itself, and in this case the sample reweighting method
does not apply directly. We hope to address this issue in
future studies.
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