
A Path-Based Method for Simulating Large Deviations
and Rare Events in Nonlinear Lightwave Systems

By J. Li and W. L. Kath

Errors in nonlinear lightwave systems are often associated with rare,
noise-induced, large deviations of the signal. We present a method to
determine the most probable manner in which such rare events occur by
solving a sequence of constrained optimization problems. These results then
guide importance-sampled Monte Carlo simulations to determine the events’
probabilities. The method applies to a general class of intensity-based
optical detectors and to arbitrarily shaped and multiple pulses.

1. Introduction

In lightwave systems, additive noise produces large signal deviations that
lead to system errors [1–3], and determining the probabilities associated
with such events is essential for evaluating system performance. Because
such large deviations can be extremely rare (e.g., ≤ 10−9), standard Monte
Carlo (MC) simulations are impractical due to the prohibitively large
number of samples needed to produce reliable probability estimates.

A number of methods have been devised for improving the simulation
efficiency of rare events [4]. Here, we will focus on importance sam-
pling (IS) [5, 6]. IS generates samples using a biased distribution and
corrects for the biasing using the likelihood ratio [4, 6]. A key issue with
applying IS, however, is identifying the most probable regions of sample
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space leading to the large deviations of interest, and then finding a biasing
distribution that concentrates samples in such regions. Identifying these
noise configurations not only improves error probability estimates but also
can provide insight into mechanisms responsible for errors.

In soliton-based lightwave systems, the most probable noise config-
urations leading to large deviations have been identified using soliton
perturbation theory, both for return-to-zero [7, 8] and differential phase-shift
keyed formats [9, 10]. IS has also been used to determine the phase distri-
butions of nonsoliton pulses using a root-mean-square approximation [11].
Studies further extended the method to dispersion-managed (DM) systems
by taking advantage of a path-averaged governing equation and a singular
perturbation technique [12–14]. More recently, a method applicable to ar-
bitrarily shaped pulses was developed [15]; in this case, the most probable
noise configurations were found using a combination of the singular value
decomposition (SVD) and the cross-entropy (CE) method.

A related simulation technique is the multicanonical Monte Carlo (MMC)
method [16]. MMC produces random samples with a Markov chain MC
random walk, and uses an iterative procedure to locate the important regions
of state space. When the biasing distribution can be found explicitly, the IS
simulations tend to be more efficient.

Here, we pose a constrained optimization problem to identify the most
probable noise configurations leading to errors in systems governed by
the nonlinear Schrödinger equation (NLSE) with varying dispersion, optical
noise, and a receiver subsystem that includes an optical filter and an
integrate and dump receiver. Compared with the SVD/CE method [15],
we avoid the expensive SVD computation by exploiting the mathematical
structure of the governing equation, and replace the CE method with
deterministic optimization, significantly improving efficiency. As a result,
we are able to extend previous results to determine the large deviations in
multiple bit patterns, accounting for pulse interactions.

The rest of this paper is organized as follows. Section 2 describes the
lightwave system model, and Section 3 presents our method for determining
large deviations. Section 4 applies the proposed method to determine
transmission errors in lightwave systems, and Section 5 provides two
numerical examples. Section 6 gives some final remarks.

2. Simulation model

Propagation of light in optical fibers is described by the NLSE, which in a
dimensionless form is

∂u

∂z
= i

2
d(z)

∂2u

∂t2
+ i |u|2u +

Na∑
n=1

sn(t) δ(z−zn) , (1)
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Figure 1. Optical detector schematic showing noisy (solid) and noise-free (dashed) optical
signals; |u|2 is the optical power.

where u(t, z) is the optical field envelope, z and t are dimensionless
distance and retarded time, respectively [1–3]. For DM systems, d(z) is
the dispersion map [1] (otherwise, d(z) = 1). The last term represents the
random perturbations added at amplifiers due to amplified spontaneous
emission (ASE) noise from in-line optical amplifiers [1–3]. Na is the
number of amplifiers, zn are their locations, and δ(z) is the Dirac delta
distribution. The terms sn(t) are approximated by i.i.d. Gaussian white noise
with E[sn(t)] = 0 and E[sn(t)s∗

n′(t ′)] = σ 2δ(t − t ′) δnn′, where E[ · ] denotes
ensemble average, δ(t−t ′) is a Dirac delta function, δnn′ is the Kronecker
delta, and σ 2 is a combination of physical constants and system parameters
that determines the noise power [3]. In real systems (and in any simulation),
noise has a finite bandwidth, of course [17].

A model detection procedure is illustrated in Fig. 1. At the receiver, the
signal is filtered, and optical power is converted into an electrical voltage
V, which is then compared to a threshold level VD to determine whether a
“1” bit (if V > VD) or a “0” bit (if V < VD) was sent. Here, we assume an
optical bandpass filter f̂ (ω) and an integrate-and-dump detector:

V =
∫ T2

T1

|F−1[ f̂ (ω)F[u(t, zend)](ω)](t)|2dt , (2)

where F[·] and F−1[·] are the Fourier and inverse transforms, respectively.
The “integrate” part of this model approximates the electrical filters present
in realistic receiver subsystems [17].

In what follows, we will omit writing the final distance z = zend. For our
purposes, it is more convenient to write Eq. (2) as:

V =
∫

W (t)|( f ∗ u)(t)|2dt =
∫

W (t)
∣∣∫ f (t − τ )u(τ )dτ

∣∣2
dt . (3)
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Here, f ∗ u is the time-domain convolution of f and u, and W (t) is a
window function: W (t)=1 for t ∈ [T1, T2] and W (t) = 0 otherwise, Eq. (3)
can also be written concisely as V = ‖W ( f ∗ u)‖2. Integrals are complete
unless limits are explicit. The window function is used to specify a
particular bit slot (time interval) of interest when the signal u(·, z) contains a
series of pulses representing a bit sequence.

Noise can cause the received optical power to vary considerably, so that
the detected voltage can be below the threshold value VD . In this case,
a transmitted “1” will be detected as a “0,” i.e., an error will occur. A
standard MC simulation of such events is straightforward. For each trial, one
launches a pulse at z=0, and propagates it to the first amplifier by solving
the deterministic part of equation (1) numerically. One then adds randomly
generated ASE noise to the signal, propagates the signal to next amplifier,
etc. At the end of the transmission line, the optical receiver is applied
to obtain the output voltage. One repeats the entire process for different
noise realizations and uses the voltage statistics to estimate the desired error
probability. Because large deviations are infrequent, methods that can deal
with rare events must be employed.

3. Identifying and simulating rare events with IS

Let X = (X1, X2, . . . , X N ) be an N -dimensional random variable and the
event of interest be defined by a scalar function: g(X) ≤ ρ, where ρ is
a constant (here, g(X) will give the output voltage for a given noise
realization). The probability of the event of interest, P , is expressed as:

P =
∫

Iρ(g(x))p(x)dx , (4a)

where p(x) is the probability density function (PDF) of X, and Iρ(g(X)) = 1
for g(X) ≤ ρ and 0 otherwise. Here, boldface indicates a column vector; a
capital denotes a random variable. An unbiased estimator for P is

P̂ = 1

M

M∑
m=1

Iρ(g(Xm)), (4b)

where the samples {Xm} are drawn from the distribution p(x) [4, 6]. If P is
very small, however, an unreasonable number of samples are necessary to
produce a reliable estimate of P . One can write Eqs. (4) as:

P =
∫

Iρ(g(x))L(x)p∗(x)dx , P̂∗ = 1

M

M∑
m=1

Iρ(g(X∗
m))L(X∗

m) , (5)
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where the samples X∗
m are now drawn from the biasing distribution p∗(x),

and where the quantity L(x) = p(x)/p∗(x) is the likelihood ratio [4, 6].
When an appropriate biasing distribution is used, the IS estimator (5) can
accurately estimate the probability of the rare event of interest much more
efficiently than with straightforward MC methods.

The challenge with implementing IS is to choose a good biasing
distribution. For problems where X = (X1, X2, . . . , X N ) are i.i.d. zero-
mean Gaussian random variables with p(x) ∝ exp(−‖x‖2), one choice is to
translate the distribution’s mean to x∗ using p∗(x) = p(x−x∗), where x∗ is
the most probable location satisfying the constraint, i.e., solves [5, 18]

min ‖x‖2, subject to g(x) ≤ ρ. (6)

Maximizing exp(−‖x‖2) clearly is equivalent to minimizing ‖x‖2. The goal,
of course, is to find the most probable deformation leading to a given output
voltage change. Also, because larger deformations are typically expected to
produce greater voltage changes, we expect the minimum to occur on the
constraint boundary, thus we will replace g(x) ≤ ρ with g(x) = ρ in the
above.

When g(x) is complicated and the dimensionality of x is high, this
optimization problem can be difficult to solve. On the other hand, due to the
random sampling nature of the IS method, a reasonable approximation to x∗

can adequately guide the simulation. We thus propose the following adaptive
method to obtain an approximate solution to Eq. (6):

1. Choose a sequence g(0) = ρ0 >ρ1 > · · · > ρJ−1 > ρJ = ρ of constraint
values, so that ε j = ρ j−1 − ρ j 	 1 for all j = 0, . . . , J .

2. Find the solution to min ‖x‖2 subject to g(x) = ρ0 (it is trivial:
x0 = 0); let j = 1.

3. Compute an (approximate) solution to Eq. (6) using the result of the
previous step, x j−1, as the starting point. (This step is explained in
more detail below.)

4. Stop if j = J ; otherwise, let j= j+1 and go back to step 3.

The main part of the algorithm is to solve the intermediate optimization
problem, Eq. (6), in step 3:

min ‖x j‖2 = min ‖x j−1 + 	x j‖2, subject to g(x j−1 + 	x j ) = ρ j . (7)

Suppose that we have chosen ε j sufficiently small, so that the constraint in
Eq. (7) can be approximated by the linear equation bT

j 	x j = −ε j , where b j

is the gradient of g(x) at x j−1: b j = ∂g/∂x|x=x j−1 . This approximate problem
can then be solved analytically,

	x j = − ε j

‖b j‖2
b j + bT

j x j−1

‖b j‖2
b j − x j−1, (8)
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and therefore

x j = − ε j

‖b j‖2
b j + bT

j x j−1

‖b j‖2
b j . (9)

As a result, this adaptive algorithm allows an explicit approximation to
the solution x∗ of Eq. (6). This is much more efficient than solving the
full optimization problem numerically. In general, the gradient b j could
be computed using numerical differentiation [19], but as will be shown
in Section 4, we can derive an explicit semianalytical expression for the
gradient by exploiting the mathematical structure of Eq. (1).

4. Application to lightwave systems

We apply the method described in the previous section to lightwave
communication systems. In a numerical simulation, the noise term sn(t) at
an amplifier is discretized as a set of independent, identically distributed
zero-mean normal random variables, one for each real and imaginary part of
the signal at the Nt temporal grid points. Let sn be the discrete counterpart
of sn(t) in vector form and XT = [sT

1 , sT
2 , . . . , sT

Na
], where the superscript

stands for matrix transpose. Note that sn is of dimension 2Nt and X is of
dimension 2Nt Na .

When a pulse is present, i.e., a binary “1” is being transmitted, the event
of interest is that the detected voltage V is below a certain threshold value
VD. We need to solve the optimization problem [8, 20],

min
u(t,z)

∫∫ ∣∣∣∣∂u

∂z
− i

2
d(z)

∂2u

∂t2
− i |u|2u

∣∣∣∣
2

dt dz = min
{sn(t)}

Na∑
n=1

‖sn(t)‖2, (10)

subject to V = ‖W ( f ∗ u)‖2 = VD .

The optimization problem equation (10) can be solved either for u(t, z), cor-
responding to the most probable pulse deformation, or {sn(t)}, corresponding
to the most probable noise configuration, and if either is known the other
can be computed from Eq. (1). Here, we will use the method described in
Section 3 to solve the problem in terms of {sn}.

Specifically, we choose V0 = ρ0 > ρ1 > · · · > ρJ−1 > ρJ = VD (where V0

is the voltage detected in the absence of noise), and solve the problem
following the steps described in Section 3. Assuming that the translated
noise mean at step j−1 is {s( j−1)

n (t)}, the optimization problem (7)
becomes
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min
Na∑

n=1

‖s( j)
n (t)‖2 =

Na∑
n=1

‖s( j−1)
n (t) + 	s( j)

n (t)‖2, (11a)

subject to

‖W ( f ∗ u( j))‖2 = ρ j , (11b)

with

∂u( j)

∂z
= i

2
d(z)

∂2u( j)

∂t2
+ i |u( j)|2u( j) +

Na∑
n=1

[
s( j−1)

n (t) + 	s( j)
n (t)

]
(11c)

δ(z − zn), u( j)(0, t) = u0(t),

where u0(t) is the initial condition.
Next, we derive a linear approximation of the constraint in Eqs. (11). The

noise added at each amplifier is small, thus we linearize Eq. (11c) around
the solution when 	s( j)

n (t) = 0, i.e., u( j−1)(t, z). Because the result is now
linear, each amplifier’s contribution becomes independent,

∂

∂z
	un = L[	un], 	un(t, zn) = 	s( j)

n (t), (12a)

for n = 1, . . . , Na , where

L[	u] = i

2
d

∂2	u

∂t2
+ i |u( j−1)|2	u + i(u( j−1))2	u∗. (12b)

The approximate solution of Eq. (11c) thus gives

u( j)(t, zend) = u( j−1)(t, zend) +
Na∑

n=1

	un(t, zend). (13)

Substituting Eq. (13) into Eq. (11b) and linearizing the result yields

2 Re
∫ [

W ( f ∗ u( j−1)(t, zend)
]∗

[
( f ∗

Na∑
n=1

	un(t, zend))

]
dt = −ε j (14)

with ε j=ρ j−ρ j−1. For conciseness, we write Eq. (14) as an inner product:〈
2WFu( j−1),F

Na∑
n=1

	un

〉
=

〈
2F†WFu( j−1),

Na∑
n=1

	un

〉
= −ε j , (15)

where 〈y(t), v(t)〉= Re
∫

y∗(t) v(t) dt , † denotes an adjoint operator (thus,
〈v,F y〉 = 〈F†v, y〉), Fu = f (t) ∗ u(t), and F†u = f (−t)∗ ∗ u(t).

We define the operator 
n, so that 	un(t, zend)=
n	s( j)
n (t) gives the

linear propagation of 	un(t, z) from position zn to the receiver zend as in
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Eq. (4). We then use this and 〈v, 
n	un〉 = 〈
†
nv, 	un〉 in Eq. (15) to

obtain a linear mapping from 	s( j)
n to ε j ,

Na∑
n=1

〈
2
†

nF†WFu( j−1), 	s( j)
n

〉 = −ε j . (16)

The adjoint 

†
nv(t) = 	u′(t, zn) is given by the solution of

∂

∂z
	u′ = −L†[	u′] , 	u′(t, zend) = v(t) , (17a)

where

L†[	u′] = − i

2
d

∂2	u′

∂t2
− 2i |u( j−1)|2	u′ + i(u( j−1))2	u′∗; (17b)

more detail is given in the Appendix. Note 

†
nv(t) = 	u′(t, zn) gives the

perturbation 	u′(t, zn) needed to produce a variation v(t) at z = zend.
An approximation to 


†
n can be found numerically via the SVD [21], but

this is not necessary. Equation (16) can be written more compactly as:

Na∑
n=1

〈
w( j)

n , 	s( j)
n

〉 = −ε j , (18)

where w
( j)
n = 2


†
nF†WFu( j−1); we then use Eq. (9) to give the minimizer

of
∑Na

n=1 ‖s( j)
n (t)‖2 subject to the linear constraint (18):

s( j)
n = − ε j

Na∑
n=1

‖w( j)
n ‖2

w( j)
n +

Na∑
n=1

〈
w

( j)
n , s( j−1)

n

〉
Na∑

n=1
‖w( j)

n ‖2

w( j)
n . (19)

Note the noise mean shift at iteration j depends upon the shift at
iteration j−1, but because each is small the changes at each amplifier are
independent of one another. As a result, the entire path or trajectory of the
biased pulse is shifted by a small amount all at once. This continues until
the most probable noise configuration reaching the voltage threshold VD is
found. The result is then used to guide IS simulations to find the associated
probability [8, 9, 12]. The references give a full description for this portion
of the procedure and thus we do not repeat the details here.

5. Simulation results

To demonstrate and validate our method, we first apply it to a previously
studied system [12], where an averaged, nonlocal governing equation, the
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Figure 2. (Top) The voltage probability distribution of DM solitons (solid) reconstructed
with our method, and result of [12] (dotted) for comparison. (Bottom) The coefficient of
variation (CV) of the IS simulation.

dispersion-managed NLSE [22], was used to guide the IS simulations. This
is only an approximation to Eq. (1); here, we simulate it directly. The total
propagation distance is 4000 km, the average dispersion is 0.15 ps2/km
with a dispersion map strength s = 4 and dispersion map period za = 100
km. The amplifier spacing is also 100 km. The nonlinear coefficient is 1.7
(W km)−1, the fiber loss is 0.21 dB/km, and the transmitted pulses are DM
solitons with 11.8 mW peak power. The noise spontaneous emission factor
is 1.5, and a 10 GHz Gaussian optical filter is employed [15]. The system
parameters can also be expressed in dimensionless units [12].

To employ our method to recover the detected voltage’s full probability
density, we draw samples using several different biasing distributions (i.e.,
with different values of VD) and combine the results using multiple
IS [8, 23]. We used seven biasing distributions targeting VD = 0.5, 0.8,
0.9, 1, 1.1, 1.2, 1.5, each with 10,000 realizations. Figure 2 compares the
normalized voltage distribution found with our method and that obtained
previously [12]. There is a good agreement between the two results. We
also show the coefficient of variation (standard deviation divided by the
mean) of the IS simulation [24] in the bottom of the figure. These results
show that our method is capable of accurately simulating large, rare pulse
deformations without resorting to the averaged equation.

A more challenging example demonstrates the applicability of the method
to multiple, arbitrarily shaped pulses. Specifically, we consider a chirped-
return-to-zero (CRZ) system consisting of a dispersion compensating fiber
(pre-DCF) followed by 75 dispersion map periods and with a final disper-
sion compensating fiber (post-DCF) [25]. Each dispersion map consists of
an amplifier followed by 34 km of D+ fiber and 17.44 km of D− fiber, and
the pre- and post-DCF consist of 51 and 44 km of D+ fiber, respectively,
resulting in a total propagation distance of approximately 4000 km. The
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Table 1
Fiber Specifications

Dispersion Slope Index Coeff. Eff. Area Loss
ps/(nm-km) ps/(nm2-km) m2/W μm2 dB/km

D+ 20.17 0.062 1.7 ×10−20 106.7 0.19
D− −40.8 −0.124 2.2 ×10−20 36.1 0.25

optical fiber specifications are given in Table 1. The dispersion slope is
modeled by adding a third derivative term to Eq. (1) [26]. The amplifiers
have a gain of 10.82 dB and a spontaneous emission factor of 1.2. We use
raised cosine pulses with a chirp parameter A = −0.46,

u(t, z) =
√

Ppeak

2

(
1 + cos

(
π sin

(
π t

T

)))
exp

(
i Aπ cos

(
2π t

T

))
,

where T =100 ps is the bit period, and Ppeak=1 mW is the peak optical
power. The receiver is a 50 GHz Gaussian filter and an integrate-and-dump
detector within each bit period. The numerical simulations used the periodic
bit pattern “01110100” containing all possible 3-bit combinations.

We first compute the most probable pulse deformations. In Fig. 3, we plot
the optimally deformed pulses (toward a decreased voltage at the receiver
after filtering). We then employ an IS simulation to reconstruct the PDF of
the average power for the four pulses in the bit pattern. Initially, all the
four are launched with an average power of 0.348 mW. In the simulation
for each pulse, we bias the samples toward three different voltage variations:
	V = 0, −0.05, and −0.10 mW. Ten thousand samples are used with each
biasing, thus a total of 30,000 samples are used to reconstruct the voltage
PDF for each pulse. Figure 4 shows the results. The voltage PDFs for the
four pulses are relatively close to one another, but the right-most pulse (i.e.,
the isolated one) has a moderately lower probability density in the region
where errors usually occur. This is consistent with the simple hypothesis that
this pulse experiences less distortion from interactions with the others during
propagation because of the added separation between it and the rest of the
bit pattern.

6. Discussion

We have presented an iterative, path-based method to predict large devi-
ations and determine the associated probabilities of such rare events in
nonlinear lightwave systems. We first formulated finding the most probable
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noise configurations leading to large deviations as a constrained optimization
problem. Because a straightforward approach with standard numerical opti-
mization techniques may have difficulties due to the nonlinearly and typical
high dimensionality, we considered a sequence of problems with increasing
pulse deformation. Exploiting the equation’s structure, we can solve each
subproblem semianalytically and construct an approximate solution to the
overall optimization problem. Errors in the approximation can be controlled
by taking sufficiently small increments; in addition, because IS randomly
samples the region around the biasing point, the method appears relatively
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tolerant to such errors and provides good results even when relatively large
steps are taken.

We considered two examples to demonstrate the effectiveness of the
method: a DM soliton system and a CRZ system. In the first example,
we demonstrated good agreement with results obtained previously with an
alternate method using the perturbation theory of DM solitons. The second
example demonstrated that our method applies to arbitrarily shaped and
multiple pulses.

To assess fully the performance of an optical fiber communication (OFC)
system, of course, one should also compute the probability that a “0” is
misdetected as a “1.” While the present method provides a framework for
determining large deviations and rare events for ones, for zeros, it is not
possible to linearize the behavior of the detector if no underlying pulse
is present, and thus the full nonlinear behavior of the detector must be
considered. An extension of the method to the case of zeros will be the
subject of future work.

We also note that the method as currently implemented may have
difficulty if more than one type of pulse deformation or large deviation
occurs with roughly equal probability, leading to possible bifurcations of the
most probable error mode [14]. In such situations, the iterative procedure
described here would need to be modified to incorporate branch switching
techniques from bifurcation theory to detect and follow such changes [27].
This should be possible because our iterative method is at its roots a
continuation method of the type employed in bifurcation theory.
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Appendix: Adjoint of the Linearized NLSE

Let 
 be the linear operator characterizing the propagation of a pulse from
za to zb via the linearized NLSE. Namely, when applied to a field v(t), it
maps v(t) to 	u(t, zb), where 	u(t, z) is governed by

∂

∂z
	u = L[	u] , 	u(t, za) = v(t), (A.1)

where L is given by Eq. (12b). Also, let 
† be the operator mapping a field
y(t) to 	u′(t, za) via

∂

∂z
	u′ = −L†[	u′] , 	u′(t, zb) = y(t) , (A.2)
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where L† is given by Eq. (17b). We will drop the superscript ( j−1) in
Eqs. (12b) and (17b). We will show that 〈y, 
v〉 = 〈
†y, v〉. First, define

�u =
(

Re (u)
Im (u)

)
, �v =

(
Re (v)
Im (v)

)
, 	�u =

(
Re (	u)
Im (	u)

)
, . . . .

Thus, Eqs. (A.1) and (A.2) can be recast as:

∂	�u
∂z

= A	�u , 	�u(t, za) = �v(t) , (A.3)

and

∂	�u′

∂z
= −AT 	�u′ , 	�u′(t, zb) = �y(t) , (A.4)

respectively, where

A =
[ − Im(u2) −(d/2)(∂2/∂t2) − 2|u|2 + Re(u2)

(d/2)(∂2/t2) + 2|u|2 + Re(u2) Im(u2)

]
.

The matrix Green’s functions G(z, t ; za, τ ) and H(z, t ; zb, τ
′) associated with

Eqs. (A.3) and (A.4) solve

Gz = AG , z > za , G(za, t ; za, τ ) = δ(t − τ )I , (A.5a)

− Hz = AT H , z < zb , H (zb, t ; zb, τ
′) = δ(t − τ ′)I , (A.5b)

where I is the identity matrix. Then

	�u(t, z) =
∫

G(z, t ; za, τ ) �v(τ ) dτ , (A.6)

	�u′(t, z) =
∫

H(z, t ; zb, τ
′)�y(τ ′) dτ ′ . (A.7)

We left multiply Eq. (A.5a) by HT and subtract the transpose of Eq. (A.5b)
right multiplied by G to obtain

HT Gz + HT
z G = HT AG − (AT H)T G . (A.8)

We will integrate this with respect to t from −∞ to ∞ and with z
from za to zb (note the left-hand size is a perfect derivative). First,
consider the t integral of the right-hand size and let A = A1 + A2,
where

A1 =
[ − Im(u2) −2|u|2 + Re(u2)

2|u|2 + Re(u2) Im(u2)

]
, A2 =

[
0 − d

2
∂2

∂t2

d
2

∂2

∂t2 0

]
. (A.9)
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Immediately, (AT
1 H)T = HT A1 because A1 is just a matrix. Similarly,

∫
HT A2G dt = d

2

∫ [
h11 h21

h12 h11

] ⎡
⎣− ∂2g21

∂t2 − ∂2g22

∂t2

∂2g11

∂t2
∂2g12

∂t2

⎤
⎦ dt

= d

2

∫ [
∂2h21
∂t2 − ∂2h11

∂t2

∂2h22
∂t2 − ∂2h12

∂t2

] [
g11 g12

g21 g22

]
dt =

∫
(AT

2 H)T G dt . (A.10)

Therefore, integrating Eq. (A.8) with respect to both t and z and using
Eqs. (17b), we find

HT (za, τ ; zb, τ
′) = G(zb, τ

′; za, τ ) . (A.11)

Finally, we can connect the forward and adjoint propagators:

〈y, 
v〉 =
∫

�y T (t)	�u(zb, t)dt =
∫∫

�y T (t) G (zb, t ; za, τ ) �v(τ ) dτ dt

=
∫∫

�v T (τ )GT (zb, t ; za, τ )�y(t) dτ dt

=
∫∫

�v T (τ )H(za, τ ; zb, t)�y(t) dt dτ

=
∫

�v T (τ ) �w(za, τ )dτ =
∫

�w T (za, τ )�v(τ )dτ = 〈
†y, v〉 .
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