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Abstract. Many scientific and engineering problems require one to perform Bayesian inferences
in function spaces, in which the unknowns are of infinite dimension. In such problems, many standard
Markov chain Monte Carlo (MCMC) algorithms become arbitrarily slow under the mesh refinement,
which is referred to as being dimension dependent. In this work we develop an independence sampler
based MCMC method for the Bayesian inferences of functions. We represent the proposal distribution
as a mixture of a finite number of specially parametrized Gaussian measures. We also design an
efficient adaptive algorithm to adjust the parameter values of the mixtures from the previous samples.
Finally we provide numerical examples to demonstrate the efficiency and robustness of the proposed
method, even for problems with multimodal posterior distributions.
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1. Introduction. Nonparametric Bayesian inferences have applications in many
scientific problems, ranging from regression [15] to inverse problems [17, 34]. In those
problems the unknowns that we want to infer are often functions of space or time.
In many practical problems, the posterior distributions do not admit a closed form
and need to be computed numerically. Specifically one first represents the unknown
function with a finite dimensional parametrization, for example, by discretizing the
function on a predetermined mesh grid, and then solves the resulting finite dimensional
inference problem with the Markov chain Monte Carlo (MCMC) simulations. It has
been known that standard MCMC algorithms, such as the random walk Metropolis—
Hastings (RWMH), can become arbitrarily slow as the discretization mesh of the
unknown is refined [31, 33, 6, 26]. That is, the mixing time of an algorithm can
increase to infinity as the dimension of the discretized parameter approaches to in-
finity, and in this case the algorithm is said to be dimension-dependent. To this end,
a very interesting line of research is to develop MCMC algorithms whose acceptance
probabilities are independent of discretization dimensionality. One way to develop
such algorithms is to formulate them directly in the function spaces. For example, a
family of function-space MCMC algorithms were presented in [8] by constructing a
preconditioned Crank—Nicolson (pCN) discretization of a stochastic partial differential
equation that preserves the reference measure.
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Just like its finite dimensional counterparts, the sampling efficiency of the function-
space MCMC can be improved by incorporating the data information in the proposal
design. One way of doing so is to guide the proposal with the local derivative infor-
mation of the likelihood function. Methods in this category include the stochastic
Newton MCMC [25, 28], the operator-weighted proposal method [20], the infinite di-
mensional Metropolis-adjusted Langevin algorithm (MALA) [7, 5], and the dimension-
independent likelihood-informed MCMC [9], just to name a few. An alternative type
of method to improve the efficiency with the data information is the adaptive MCMC
(cf. [1, 2, 32] and the references therein), which automatically adjusts the proposal
as the algorithm proceeds. While the first type of approach utilizes the gradient or
the Hessian of the likelihood function to accelerate the computation, the adaptive
methods do not require such information, which makes the particularly convenient
for problems with black-box models.

In this paper we propose an adaptive MCMC algorithm with independence sam-
pler (IS) [35] for such function space inference problems. IS, also known as the in-
dependent Metropolis—Hastings (MH) [16], or the Metropolized independent sam-
pling [23], is an alternative to the popular RWMH algorithm, which proposes from a
stationary distribution, i.e., one that is independent of the present position. The de-
sign principle for the independence sampler method is rather straightforward: loosely
speaking, one should choose the proposal distribution to be as close to the target
distribution as possible. The basic idea here is to represent the proposal distribution
with a mixture of a finite number of parametrized Gaussian measures and optimize
the parameters as the algorithm proceeds. Our specific parametrization ensures the
algorithm is well-defined in function spaces. As is mentioned earlier, a major ad-
vantage of the proposed method is that it can propose efficiently without using the
derivative information of the likelihood function. Moreover as is demonstrated by our
numerical examples in section 5, our method performs well for multimodal posterior
distributions which can be challenging for many existing algorithms.

The rest of the paper is organized as the following. In section 2 we introduce
the basic setup of the function space Bayesian inference problem. In section 3 we
present the Gaussian mixture based independence sampler for Bayesian inference in
function spaces and show that the acceptance probability associated to the proposal
is independent of discretization dimensionality. The proposal distribution that we
use is parametrized by a finite number of parameters and in section 4 we describe
the adaptive algorithm to adjust the proposal parameters to improve the sampling
efficiency. Section 5 provides several numerical examples of the proposed method.

2. Problem setup. We consider a separable Hilbert space X with inner product
(-,)x. Our goal is to estimate the unknown u € X from data y € Y, where Y is the
data space and y is related to u via the likelihood function

L(u,y) = % exp(—®Y(u)),

where Z is a normalization constant. In what follows, without causing any ambiguity,
we shall drop the superscript y in ®¥ for simplicity. In this work we require that the

functional ® satisfies [8, Assumptions (6.1)], i.e.,
(a) there exists ¢ > 0, @ > 0 such that, for all u € X

0<®(u) < QU+ [Jull%);
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(b) for every r > 0 there is @, > 0 such that, for all u, v € X with
max{|ullx, [[v]x} <,

|®(u) = (v)] < Qrllu—vl|x.

We do not have any restrictions on the space Y.

In the Bayesian inference we assume that the prior ug of u is a (without loss of
generality) zero-mean Gaussian measure defined on X with covariance operator Cj,
ie., o = N(0,Ch). Note that Cy is symmetric positive and of trace class. The range

1

of C¢,
1
E:{u:CgﬂxeX}CX,

which is a Hilbert space equipped with inner product [10],
1 1
e = (GG )

is called the Cameron—Martin space of measure pg. In this setting, the posterior
measure ¥ of u conditional on data y is provided by the Radon—Nikodym derivative,

dut 1

() = 7 ep(-2(w),

(2.1) =

which can be interpreted as the Bayes’ rule in the infinite dimensional setting. Our
goal is to draw samples from the posterior p¥ with MCMC algorithms.

Note that the definition of the maximum a posteriori (MAP) estimator in finite
dimensional spaces does not apply here, as the measures ;¥ and pg are not absolutely
continuously with respect to the Lebesgue measure; instead, the MAP estimator in
X is defined as the minimizer of the Onsager-Machlup functional (OMF) [11, 21],

(22) I(u) = ®(u) + 5 lull%

over the Cameron—Martin space E. In section 5, we shall use OMF as an indicating
quantity to compare the performance of various MCMC algorithms. Finally we quote
the following lemma [10, Chapter 1], which will be useful in next section.

LEMMA 2.1. There exists a complete orthonormal basis {e}reny on X and a se-
quence of nonnegative numbers {ay}ken such that Coer, = ager and > pe ap < 00,
i.e., {ex}tren and {ay}ren being the eigenfunctions and eigenvalues of Cy, respectively.

Without loss of generality, we assume that the eigenvalues {ay}72, are in a de-
scending order.

3. Gaussian mixture based independence sampler. In this section, we
present our Gaussian mixture based independence sampler and show that it is well-
defined in the function space.

3.1. Independence sampler MCMC. We start by briefly reviewing the in-
dependence sampler MCMC algorithm. Given a proposal distribution p, we define
measures

v(du, du') = p(du’)p? (du),
vi(du, du') = p(du)p (du')
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on the product space X x X. When v is absolute continuous with respect to v, we
can define the acceptance probability [36]

;
(3.1) A(u,4') = min {1, %(u,u')} :
where

dvt o dpt . dp
(3.2) d_y(uau)_ w(u)d—ﬂy(u)-

The IS MCMC in a function space proceeds as follows in each iteration:

1. Draw a sample Uproposed from the proposal .

2. Let Unext = Uproposed With probability A(tucurrent, Uproposed) and

Unext = Ucurrent with pl"Obablhty 1- A(ucurrenta uproposed)~
It is obvious that the acceptance probability (3.1) of the algorithm is well-defined

if and only if v is absolutely continuous with respect to v, which requires that s
and pY are equivalent to each other. Since p¥ and po are equivalent, it suffices to
require p and g to be equivalent. Interestingly, the pCN scheme with a specific choice
of parameter values yields a dimension-independent IS whose proposal distribution
is simply the prior. Despite its dimension-independence property, simply proposing
according to the prior is inefficient when the data is highly informative, i.e., the
posterior being far apart from the prior. Next we shall introduce a more efficient
proposal measure than the prior that is to be used in IS MCMC algorithms.

3.2. Gaussian mixture proposals. In finite dimensional Bayesian inference
problems, Gaussian mixture (GM) distributions [27] are often used as the IS proposal
distributions for their flexibility and convenience to draw samples from. We now
extend the use of GM to the infinite dimensional setting. Let {uj}}]:l be a set of
Gaussian measures on X with u; = A((m;,C;) for j = 1,...,J, and we define the
Gaussian mixture proposal as

J
(3.3) pldz) = ijﬂj(dﬂﬂ),

where {w;}7_, are the mixing weights with Z _,wj = 1. Tt is clear that p is equiv-
alent to i as long as each p; is equivalent to po, and moreover the Radon-Nikodym
derivative of p to pg is

J

dﬂj
dﬂo Z

=1

(3.4)

Next we discuss our parametrization of each p;. First recall that, according to
Lemma 2.1, {ex}reny form a complete basis set of X. Our parametrization of p;
is in the form of

oo
(3.5a) mj = ij,kakek,
k=1

(3.5b) C;t=Cyl + Hj,
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where each H; is defined as

(3.5¢) Zhg k{eks )
k=1

and z;, and h; . are coefficients. The following theorem provides a sufficient condition
for p; = A(m;,C;) to be a well defined Gaussian measure on X and equivalent to
Ho-

THEOREM 3.1. Ifxj, hj € la, and hj i > —alk for allk € N, pj = N(mj,Cj) is a
Gaussian measure on X that is equivalent to pg.

Proof. We let {5, 1 }ren be the eigenvalues of Cj, i.e, Cjer, = B, rey for all k € N.
And it is easy to see that
—1 Qe

—1
(3 6) Bjxk (ak + j7k) 1_|_ akhj,k

As xj,h; € lo, g is bounded and thus 377, B 5 < oo. It follows that C; €
LT (X) and p; = A(m;,C;) defines a Gaussian measure on X.

We now show that p; is equivalent to pg. First we introduce u;- = A(0,Cy).
Using (3.6) and hjj > —aik for all k£ € N, we can get

= (Bjk —ak)? agh?
: - h2, < oo,
Z(ﬂ‘k—i—ak)Z Z:l(g+akhjk2—zo‘k ke <00

as limg_0o o, = 0 and h; € lp. By the Feldman-Hajek theorem [10], we have that

L L
s is equivalent to po. Now recall that m; € £ = Cf (X) = C7 (X), and so we have

w; = N(0,Cj) and p; = N (m;, C;) are equivalent, which completes the proof. O

Let us assume for now that the conditions in Theorem 3.1 are satisfied and we
shall verify this assumption later. It is easy to show that

dp; |Co|*/? vz, -1 1
(3.7) ano " = 10, O HO Hx (. Gy mg)x = g . Hyw)x
. 00 an 1 oo 5 9 ):|
= — exp| — = T+ hiku i
kl;[l V B { Z (ﬂm KL ﬁm P

where up = (u,ex) is the projection of u onto ey. Note that the density dy;/duo
actually depends on m; and h;, and thus for convenience’s sake, we define a function
f(,-,-) such that

f(uvxjv hj) = %(u),

dpio
and we then can derive from (3.4) that
dpy 1
du( ):EQXP ij (u,zj,h ,

and the density dp/dp, can be computed accordingly.
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3.3. Minimizing the Kullback—Leibler divergence. Now recall that for the
algorithm to be efficient we need the proposal i to be close to ¥ and a natural choice
is to determine p by minimizing the Kullback—Leibler divergence (KLD) between p¥
and u:

Yy

(3.8) Diculp?ln) = [ 1o B (u)ao,

where p is parametrized with (3.5). Note that z; and h; are set to be of infinite
dimensions in the formulation above. In numerical simulations, however, z; and h;
must be truncated at some finite number K. Such a truncation is also reasonable
from a practical point of view. In fact, one often can realistically assume that the
data is only informative on a finite number of directions [9, 8] in X, and under this
assumption, we only need to keep a finite number of components of each z; and h;.
We emphasize that K, which represents the number of dimensions that are informed
by the data (i.e., the so-called intrinsic dimensionality), should not be confused with
the discretization dimensionality of the problem, i.e., the number of mesh points used
to represent the unknown. Determining the value of K is an important task for our
algorithm and here we choose K with a heuristic approach:

Qg
— < E€,,
e51

where € is a prescribed threshold. In what follows, we shall adopt this finite, K-
dimensional formulation, and thus we have the following optimization problem:

3.9 min D Y||),
> {zj, hi €RE, w;€[0,1]}/_, KL (1[|p)

K:min{kEN

subject to Z;]:l w; = 1. By some elementary calculations, we reduce formula (3.9)
to

{z;, h; €RE, w;€[0,1]}]_,

J
(3.10) min —/log ijf(u,xj,hj) u?(du),
j=1

subject to Z‘-]Zl w; = 1. We now show that the proposal u constructed this way is
well-defined in function space, and to this end we have the following corollary.

COROLLARY 3.2. If {xj, hj,w;}J_, is a solution of (3.10), the resulting p is
equivalent to pg.

Proof. Tt is obvious that if {x;,h;,w;}/_, is a solution of (3.10), z;,h; € lo.
Taking the partial derivative of the objective function in (3.10) with respect to h;
and setting it to be zero yields the following equation:

wi (w5, h5) gy O :/wjf(uwjahj)(akxj7k—Uk)2)duy
Sy wif(u b)) L akhy il wif (u, i, ha)

As the following two integrals are obviously positive,

Svjf(u,xj,hj) A’ >0, and /wjf(uafjahj)(awm - uk)2>duy >0,
Zl:l wlf(uﬂ i, hl) Zl:l wlf(u7xl7 hl)

we have 1+ aghjr > 0. Thus all the conditions of Theorem 3.1 are satisfied and the
corollary follows immediately. 0
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Finally we note that, in the special case where J = 1, namely, the proposal be-
ing simply a Gaussian distribution, our parametrization is similar to the finite rank
representation used in [29, 30]. In fact, the aforementioned works also proposed to ap-
proximate the posterior with a Gaussian distribution by minimizing the KLD between
the two distributions. The major difference is the KLD (recall that it is asymmet-
ric) formulation: the authors of [29, 30] compute the divergence from the Gaussian
approximation to the true posterior, while here we compute the divergence the other
way around. An advantage of the present formulation is that the solution to (3.10)
can be explicitly obtained:

1
(3.11a) v = — [ urdp?,
(€75
1 1
3.11b hy = =
( ) b J oz, —ug)?dpy oy
for k =1,..., K, while in the formulation of [30] the resulting optimization problem

has to be solved with a stochastic optimization algorithm. The explicit solutions (3.11)
are of essential importance in our adaptive algorithm.

4. The adaptive algorithm. In this section we discuss the algorithm to im-
plement the IS method proposed in section 3, starting with an introduction to the
adaptive MCMC.

4.1. Adaptive MCMC. The basic idea of the adaptive MCMC is to repeatedly
adjust the proposal parameters using the information in the previous samples. Here we
are focused on the adaptive algorithms with IS [16, 13, 19, 12], while noting that other
types of adaptive algorithms include the adaptive MH [14], the adaptive MALA [3, 24],
and the adaptive Metropolis-within-Gibbs [32]. Specifically our adaptive algorithm
has the following three key ingredients. First, to enforce the asymptotic ergodicity,
we terminate the adaptation in a finite number of steps. Second, we use a tempered
prerun to obtain the initial parameter values for the iteration. Simply speaking the
technique of tempering is to construct a sequence of intermediate distributions that
converge to the true posterior ¥ and use these intermediate distributions to guide
the MCMC samples to the true posterior. This strategy is particularly useful for
multimodal posterior distributions. Without loss of generality, we assume that the
tempering distributions are augmented by a tempering parameter A,

dp¥?
dpio

o< exp(=A®(u)),

and clearly p¥* = ;¥ when A\ = 1 and the tempering distribution is “wider” than the
true posterior for 0 < A < 1. In practice we can choose a finite number of tempering
parameters {/\i}f;cf‘p, where 0 < Ay < Ay < --- < Ap,,., = 1. We also note that for
problems where the posterior is not too far apart from the prior, tempering may not
be necessary. Finally we estimate and update the proposal parameters after every
fixed number of iterations. The adaptive scheme is summarized as the following:

e Initialization: the total number of iterations Ii,, the number of adapted

iterations l,4p, the number of prerun (tempering) iterations Iliemp, & set of

tempering parameters {)\i}ftj‘l"p, and the number of samples used in each

tempered iteration Niemp, and the number of samples in each iteration Ng.
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e Prerun (optional): let “20) = po; for i =1 : Iyemp perform the following:
1. Run MCMC with proposal U/(iq) to draw a set of Niemp samples from
p¥2i . denoted by S..
2. Update the parameter values with samples S/ obtaining proposal u’(i).
e Iteration: let S = () and p (o) = u’(Immp); for i= 1 to I;o perform the following:
1. Run MCMC with proposal p(;_1) to draw a set of Ng samples from ¥,
denoted by S;. Let S = SUS;.
2. If © < I.gp, update the parameter values with samples S obtaining pro-
posal pu;y; otherwise, let gy = p—1)-

The adaptive algorithm presented above is rather simple; we note, however, that
our method is rather flexible and one can pair it with any desired adaptive IS algo-
rithm. A key step in the adaptive algorithm is to estimate the parameters from the
samples, which is done by solving the sample average estimator of the optimization
problem (3.10):

N J
(4.1) max Zlog ijf(u",xj,hj) ,
j=1

{zj,hjw; }j:1 n=1

subject to ijl wj = 1. Next we discuss two methods to solve (4.1).

4.2. Expectation maximization algorithm. The expectation maximization
(EM) is one of the most popular methods to determine the parameters in mixture
models [27]. Simply put, the EM algorithm iteratively updates the parameter values
in a way that the function value is always increased until convergence is achieved.
Each iteration consists of an expectation-step and a maximization-step. It should be
noted that the EM algorithm is not guaranteed to converge to the optimal solutions
in general [37]. The theory and implementation details of the EM algorithm and its
application to mixture models can be found in the aforementioned references, and
we shall not repeat them here. When applied to our problem, the update formula
in each iteration can be explicitly obtained. In the expectation-step, the member-
ship probability ¢j', namely, the probability that a sample u™ is in the mixture j, is
computed,

w]f(una hjamj)
Z:jjzl wjf(una hja mj)

for each j = 1,...,J and n = 1,..., N; in the maximization-step, the parameter
values are updated using the following equations:

(42) 0 =

1L
(4.3a) Wi = Zq;,
Lo
(4.3b) Tk = N n; quy,

N N -1 1
(4.3¢) hik= > q} <Z @ (o — u’,§)2> — o
n=1 n=1

where u} = (u”, ex). The EM algorithm is arguably the most common method to esti-

mate the parameters of mixtures. However, our numerical tests indicate that in some
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practical problems the EM algorithm is not sufficiently reliable especially when the
sample set only contains a small number of accepted draws. Moreover, our algorithm
frequently updates the proposal parameters, which makes the computationally inten-
sive EM algorithms less attractive from an efficiency perspective. For these reasons,
we propose an alternative method to EM, which estimates the mixture parameters
using clustering.

4.3. Estimating parameters with clustering. Our estimation method with
clustering is largely based on the finite dimensional method developed in [13]. The
idea is rather simple: one first partitions the samples into several clusters and then
fits each cluster with a Gaussian distribution. A difficulty here is that our MCMC
samples are of infinite dimension, which makes clustering challenging. To solve the
problem, we first project the samples onto the K eigenfunctions of the covariance
operator and then cluster the resulting K dimensional data {(u?,...,u%)}Y_; and
up = (u", ey). Specifically we use the k-means algorithm to cluster the data, and the
number of clusters J is determined with the Bayesian information criteria method [27].
In fact we have found in our numerical tests that the algorithm is rather robust against
the number of clusters. We then use the Gaussian distribution parametrized in the
form of (3.5) to fit each cluster, and thanks to (3.11), the parameters values can be
estimated explicitly as

1
(4.4a) Tjk = Z up,
Njak u"EG)j
1 1
(4.4b) hj = _ -,
’ N% Zunegj (up)? — mik o

where O is the jth cluster of samples, N; is the sample size of ©; for j =1,...,J,
and kK = 1,..., K. The mixture weights are simply determined by the fraction of
samples in each cluster. We note that the clustering based method does not generally
yield a solution to (4.1) and thus we regard it as an approximate method to estimate
the parameters. We conclude the section with a pseudo code (Algorithm 4.1) of our
algorithm, and interested readers can use it as a basis for their own implementation.

5. Numerical examples.

5.1. An ordinary differential equation example. Our first example is a
simple inverse problem where the forward model is governed by an ordinary differential
equation

dz(t)
dt

(5.1) = —u(t)x(t)

with a prescribed initial condition. We assume that the solution z(t) is observed at
several times in the interval [0, 7] and we want to infer the unknown coefficient w(t)
for t € [0,T].

In our numerical experiments, we let the initial condition be n(0) =1 and T = 1.
Now suppose that the solution is measured every 7'/20 time unit from 0 to T and
the error in each measurement is assumed to be an independent zero-mean Gaussian
random variable with variance 0.052. In the computation, 100 equally spaced grid
points are used to represent the unknown. Moreover, we assume that the state space
for u is X = L5([0,7T]) and the prior is a zero-mean Gaussian measure in X with an
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Algorithm 4.1 The complete algorithm for the adaptive IS with GM. Iiemp is the

number of tempered iterations. {)\i}f;ﬁ“p are the tempering parameters. Niemp iS

the number of samples used in each tempered iteration. N;o is the total number
of samples drawn by the algorithm. N,qp is the number of samples drawn between
two consecutive parameter updates. Ny is the maximum length of chain before the
adaptation is terminated.

iHPUt : Itemp7 {)\i}{t:cinpa Ntempa Nt017 NmaX7 Nadp~
output: Ny, samples drawn from p¥: {u™})!,
<= po;

for i < 1 to Liemp do

draw u® ~ p;

for n <~ 1 to Niemp do

draw u' ~ p;

draw a ~ U|[0, 1] and compute

YsAi
A <+ min {1, d/zl,u (u) d‘[ii;:\i (u”l)} ;

if A> athen u” < u/; else u” + u"1;

end

cluster {u?, ... uNtemr} into J subsets: O1,...,0 ;

for j < 1to J do
N; < sample size of ©;, w; <= N;j/Nemp;
compute parameters x; and h; using (4.4);
compute p; using (3.7);

end

B o ws

end

draw u® ~ p;

for n+ 1 to N do

draw u’ ~ u;

draw a ~ U[0, 1] and compute

. dp¥ o dpon oy |
A(—mln{l,w(u)m(u ) N

if A > a then u” < v/; else u” + u"1;

if (n < Nmax)&(n mod Naqp = 0) then

cluster {u®,...,u"} into J subsets: O1,...,0; ;

for j < 1to J do
N; < sample size of ©;, w; - N;/n;
compute parameters x; and h; using (4.4);
compute p; using (3.7);

end

p= YT wjp;

end

end
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FiG. 1. (For example 1) The posterior mean computed with the four different MCMC schemes.
The truth is also plotted for comparison.

exponential covariance function:

(5.2) C(t,t') = exp (—@) :

The true coefficient u(t) is a realization from the prior (shown in Figure 1) and the
data is simulated accordingly.

We now draw samples from the posterior of u(t) with four different MCMC
schemes: prior based IS, adaptive IS with Gaussian approximation, adaptive IS with
Gaussian mixtures, and the random walk pCN (RW-pCN). In each MCMC scheme,
3 x 10° draws are generated. In the prior based IS, one simply proposes according to
the prior distribution, and no adaptation is used. In the adaptive IS with Gaussian
approximation, the proposal is restricted to be a single Gaussian (i.e., J = 1), and in
this case clustering is not needed. In both of the adaptive IS methods, the parameters
are updated after every 1000 draws, and the parameter adaptation is terminated in
the last 10° iterations. We do not use tempering in this example. The RW-pCN
algorithm used in this work iterates as follows:

1. Propose tproposed = /1 — S2Ucurrent + Sw, where w ~ pg.
2. Let Unext = Uproposed With probability

a = min{la exp(q)(uproposed) - q)(ucurrent))}a

and let Upext = Ucurrent With probability 1 — a.
In this example we use 8 = 0.1. Note that, in all the numerical examples, we choose
the stepsize 8 so that the resulting acceptance probability is in the range 20% — 30%,
as is recommended in [33].

In Figure 1, we show the posterior mean computed by the four MCMC schemes,
while the truth is also shown for comparison purpose. One can see that the results
of the four algorithms are nearly identical, suggesting that all the algorithms can
estimate the posterior mean to a similar level of accuracy. We then use the OMF as
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Fi1G. 2. (For example 1) The trace plots of the OMF for the four different MCMC schemes.
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Fic. 3. (For example 1) ACF for the four different MCMC methods. Left: ACF of the OMF
plotted as a function of lags. Right: the lag 1 ACF for u at each grid point.

an indicative parameter and show the trace plots of it in Figure 2. We see from the
plots that the two adaptive IS algorithms achieve a much faster mixing rate than the
other two methods. To further compare the efficiency of the methods, we compute
the autocorrelation functions (ACF) of various quantities with the samples drawn by
the four methods, and plot the ACF results in Figure 3. In particular, we plot the
ACF of the OMF as a function of lag in Figure 3 (left) and show the lag 1 ACF for the
unknown u at each grid point in Figure 3 (right). It can be seen from the figure that
our adaptive algorithms with single Gaussian proposal and with mixtures both result
in much lower ACF values than the other two methods. When comparing the two
adaptive algorithms, the mixture proposal outperforms the single Gaussian. For the
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Fi1G. 4. (For example 1) Left: the acceptance rate of the four MCMC schemes. Right: the ESS
at each grid point.

IS algorithms, the acceptance probability is also a useful performance indicator, where
higher acceptance rates are usually preferred, while it is not the case for random walk
algorithms [33]. In Figure 4 (left) we plot the acceptance probability as a function of
iterations for all the methods. For the three IS algorithms, one can see that the two
adaptive algorithms have significantly higher acceptance probability than the prior
based method. Meanwhile, the acceptance probability of IS with mixtures is higher
than that of the one with the single Gaussian. The effective sample size (ESS) is
another common measure of the sampling efficiency of MCMC [18]. ESS is computed
by

N
1427
where 7 is the integrated autocorrelation time and N is the total sample size, and it
gives an estimate of the number of effectively independent draws in the chain. We
computed the ESS of the unknown u at each grid point and show the results in Figure 4
(right). Once again, the plots indicate that the adaptive algorithms produce much
more effectively independent samples than the prior based IS and the RW-pCN, while
the mixture proposal outperforms the single Gaussian one in most of the dimensions.
In summary, in this simple nonlinear inverse problem, we show that our adaptive
algorithms are significantly more efficient than the prior based IS and the RW-pCN.
Meanwhile, the mixture proposal outperforms the single Gaussian one, indicating that
the more flexible mixture representation does improve the efficiency.

ESS

5.2. A bimodal likelihood function example. Our second example is an
artificially constructed bimodal problem. Once again we assume the unknown u €
X = L%([0,1]) and the prior is a zero mean Gaussian measure with the same covari-
ance function equation (5.2) as the first example. We consider a bimodal likelihood
function, given by

1 1
exp(—®(u)) x exp (—§||u — sin(27rt)||§) + exp (—§||u + sin(27rt)||§) ,

and it can be verified that the ®(-) chosen this way satisfies [8, Assumptions (6.1)].
It is easy to see that the posterior distribution should have two modes: one is close
to sin(2nt) and the other is close to — sin(2wt).

We draw samples from the posterior of u(t) with the same four MCMC schemes
used in the first example, and in each MCMC scheme, 5 x 10° draws are generated. In
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Mixture

Fi1G. 5. (For example 2) 100 samples randomly selected from the chain drawn by each method.

both of the adaptive IS methods, the parameters are updated after every 1000 draws,
and the adaptation is terminated in the last 10° iterations, with no tempering used.
In the RW-pCN, we choose $ = 0.5. In all the computations, 100 grid points are used
to represent the unknown function wu.

As has been mentioned, the posterior distribution has two modes and we shall
examine whether the algorithms can capture both of them. In this respect, we ran-
domly select 100 samples from the chain generated by each algorithm and plot them
in Figure 5. We can see that the results of each algorithm can capture the two models
of the posterior. Next we shall compare the efficiency of the four algorithms. As be-
fore, we first show the trace plots of the OMF for the four algorithms in Figure 6 and
one can see that the results of the two adaptive methods and pCN all obtain fairly
good mixing results, while the prior based IS seems to have a much slower mixing
rate than the other three. Figure 7 (left) plots the ACF of the OMF as a function
of lag and Figure 7 (right) shows the lag 1 ACF for the unknown at each grid point.
Both figures indicate that the adaptive IS with mixtures has the best performance in
terms of ACF values. Figure 8 (left) plots the acceptance rate against the number
of iterations, which shows that the three IS algorithms perform very differently: the
prior based IS results in an acceptance rate less than 1%, the adaptive IS with one
Gaussian results in a rate up to 17%, and that of the adaptive IS with mixtures rises
to around 80% as the iteration proceeds. We compute the ESS of each dimension
and show the results in Figure 8 (right), and we see that the ESS of the adaptive IS
with mixtures is significantly higher than that of the other three methods, indicating
that the adaptive IS with mixtures has a substantial advantage in this multimodal
problem.
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F1G. 6. (For example 2) The trace plots of the OMF for the four different MCMC schemes.
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Fic. 7. (For example 2) ACF for the four different MCMC methods. Left: ACF of the OMF
plotted as a function of lags. Right: the lag 1 ACF for uw at each grid point.

Finally to understand the limitation of the proposed method, we test it on another
bimodal likelihood function:

1 1
exp(—®(u)) o exp <—§||u — 2sin(27rt)||§> + exp <—§||u + 2sin(27rt)||§> .

We drew 5 x 10° samples with the mixture based IS algorithm and with the pCN.
We plot the mean of the samples drawn by both methods in Figure 9 (left), and in
9 (right), we plot 100 samples drawn by each algorithms. It can be seen from the
figures that both methods can only capture one mode of the posterior distribution,
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Fi1c. 8. (For example 2) Left: the acceptance rate of the four MCMC schemes. Right: the ESS
at each grid point.
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Fic. 9. (For example 2) Left: the sample mean of the mizture based IS method (solid) and
that of the pCN method (dashed). Right: samples drawn by the mizture IS method and by the pCN
method.

indicating that the problem becomes challenging for our method and the pCN when
the modes of the target distribution are far apart.

5.3. Inverse heat conduction under model uncertainty. Our last example
is the inverse heat conduction (IHC) problems, which consist of estimating tempera-
ture or heat flux density on an inaccessible boundary from a measured temperature
history inside a solid. These problems have been studied over several decades due
to their importance in a variety of scientific and engineering applications [4]. The
IHC problems become nonlinear if the thermal properties are temperature depen-
dent, where the inversion is significantly more difficult than the linear ones. In this
example we consider a one dimensional heat conduction equation

o9 22 [

with initial u(z,0) = u,(z). Here x and ¢ are the spatial and temporal variable, u(z, t)
is the temperature, and c(u) is the temperature dependent thermal conductivity, and
the length of the medium is L, all in dimensionless units. We now assume that a heat
flux is injected through the left boundary (x = 0), yielding a Neumann boundary
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F1c. 10. Schematic diagram of the IHC problem.

condition:

(,%u(O,t) = q(t).

The boundary condition (BC) at = L is subject to uncertainty: with probability
0.8 it is

0
A4 —u(L,t) =
and with probability 0.2 it is
(5.4b) iu(L t)=—u
' ox -7

The interpretation is that the system has two possible states: one with a perfectly
insulted boundary at x = L, and the other with heat diffusion at z = L.

Suppose that we place a temperature sensor in the medium (z = z) and the goal
is to infer the heat flux ¢(¢) for ¢ € [0, T from the temperature history measured by
the sensor in the time interval. The schematic of this problem is shown in Figure 10.
A similar problem without model uncertainty has been studied in [22].

In the simulation, we let L =1, T' = 2, c¢(u) = u?2 + 1, xs = 0.9, and the initial
condition be u,(x) = 0. The temperature is measured 50 times (equally spaced) and
the error in each measurement is assumed to be an independent zero-mean Gaussian
random variable with variance 0.12. We assume the prior on ¢(t) is a stationary
zero-mean Gaussian process with a squared exponential covariance function:

it —t'|?
55) e

where d = 0.3. The “truth flux” ¢(t) is a realization of the prior (shown in Fig-
ure 12) and the data is simulated with the generated flux ¢(t) and the boundary
condition (5.4b). In this problem the likelihood function becomes

du
S 0.8 exp(—®y(u)) + 0.2 exp(— P (u)),
dpio
where @1 (u) corresponds to (5.3) with BC (5.4a) and ®2(u) corresponds to (5.3) with

BC (5.4b).

We draw samples from the posterior of u(t) with the four MCMC schemes used
in the previous examples. In each MCMC scheme, 1.5 x 10° draws are generated. In
both of the adaptive IS methods, the parameters are updated after every 500 draws,
and the adaptation is terminated after 10° draws. To accelerate the convergence,
we use tempering in the first 11 iterations (5,500 draws) with tempering parameter
A=(i—1)/10for i =1,...,11 . In the RW-pCN, we choose 5 = 0.1.

We first show the trace plot of the OMF in Figure 11, and it is quite clear that
the results of the two adaptive methods are better than those of the prior based IS
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Fi1c. 11. (For example 3) The trace plots of the OMF for the four different MCMC' schemes.

+trgth = = Gaussian
] ‘ ‘ — Mixture , ‘ ‘ - ijN
“o 0.5 1 15 2 "o 0.5 1 15 2

Fic. 12. (For example 3) Left: the means of the samples in each cluster of the chain drawn by
the IS with miztures and the true flux. Right: the means of the samples drawn by the adaptive IS
with a single Gaussian, the prior based IS, and the RW-pCN.

and the pCN. Because of the multimodality of the likelihood function, the posterior
may have multiple modes, and to verify this, we apply the K-means method described
in section 4 to cluster the samples drawn by the four methods. The samples of the
adaptive IS with mixtures can be successfully classified into two groups and we plotted
the mean of each group in Figure 12 (left), compared against the true heat flux. The
K-means method, however, fails to separate the samples drawn by the other three
methods, likely because the chains have not reached the target posterior distribution
yet. We plot the means of the samples of the three methods in Figure 12 (right). Like
the previous examples we show the ACF results of the four methods in Figures 13, and
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Fic. 14. (For example 3) Left: the acceptance rate of the four MCMC schemes. Right: the
ESS at each grid point.

the acceptance rates and the ESS in Figures 14. In all the plots, the adaptive IS with
mixtures exhibits the best performance, followed by the IS with a single Gaussian.

6. Conclusions. In conclusion, we have presented an adaptive IS algorithm to
implement Bayesian inference for functions. Namely, we choose a Gaussian mixture
with a particular parametrization as our proposal and adaptively adjust the parameter
values using sample history. We also develop an efficient algorithm based on clustering
to compute the parameter values in each iteration. We demonstrate the efficiency of
the proposed method with numerical examples and in particular we show that it
performs well for multimodal posteriors. We emphasize that the proposed method
is easy to implement, treating the problem as a black box model, and requiring no
information on the mathematical structure of the forward model.

As has been demonstrated by the numerical examples, the mixture proposals can
generally provide faster mixing rates than the single Gaussian, thanks to their higher
flexibility. On the other hand, given that the Gaussian approximation is less com-
plex computationally (without the clustering step), we recommend to use the single
Gaussian approximation in problems where the posterior distributions do not deviate
too much from a Gaussian measure, and to use mixtures for strongly nonGaussian
posteriors.

There are number of possible extensions of the work. First in this work we approx-
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imate the solution to the KLD minimization problem with clustering. It is possible
that if we can modify the standard EM algorithm and use it to solve the optimiza-
tion problem directly, we may obtain a better mixture proposal in each iteration and
improve the sampling efficiency. Second, the intrinsic dimensionality K is of essen-
tial importance for our method, and in the present work, K is determined rather
heuristically. Thus developments of more effective and theoretically justified methods
certainly deserve further studies. Finally, the algorithm developed here is based on
an independence sampler, and we are also interested in extending the ideas to the de-
velopment of adaptive random walk algorithms for functions. We plan to investigate
these problems in the future.
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