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Abstract. We consider a Beckmann formulation of an unbalanced optimal transport (UOT)
problem. The \Gamma -convergence of this formulation of UOT to the corresponding optimal transport
(OT) problem is established as the balancing parameter \alpha goes to infinity. The discretization of
the problem is further shown to be asymptotic preserving regarding the same limit, which ensures
that a numerical method can be applied uniformly and the solutions converge to the one of the OT
problem automatically. Particularly, there exists a critical value, which is independent of the mesh
size, such that the discrete problem reduces to the discrete OT problem for \alpha being larger than this
critical value. The discrete problem is solved by a convergent primal-dual hybrid algorithm and the
iterates for UOT are also shown to converge to that for OT. Finally, numerical experiments on shape
deformation and partial color transfer are implemented to validate the theoretical convergence and
the proposed numerical algorithm.
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1. Introduction. The concept of optimal transport (OT) was first put forward
in 1781 by Monge [30] and was relaxed later by Kantorovich [24] as a convex linear
program. OT has since been extensively applied in various fields, including image pro-
cessing [18, 31], machine learning [34, 1, 21], PDE theory [36, 35], and noise sampling
[13]. We refer readers to [35, 37, 32] for overviews of theoretic and computational OT.
The OT models have been extended to the so-called unbalanced optimal transport
or unnormalized optimal transport (UOT) problems [12, 20, 28, 22] for applications
involving mass distributions with different masses. Moreover, the UOT models can
take into account the weight change even for probability measures so that they can
be used more flexibly [12, 33]. For example, the UOT distance is applied to deal with
the full waveform inverse problem [26] and is used for waveform based earthquake
location [38]. And in [17] a gradient method based on UOT is put forward, which is
employed in the domain adaption problem.
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750 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Let us start with the introduction to the OT problems. Suppose X,Y are two
topological spaces with probability measures \nu 1, \nu 2, respectively. Given a cost function
c : X \times Y \rightarrow \BbbR +, the Kantorovich problem is to find a joint measure \pi (called a
``transport plan"") on the product space X \times Y such that

min
\pi 

\int 
X\times Y

c(x, y)d\pi (x, y)

s.t \pi (A,Y ) = \nu 1(A), \pi (X,B) = \nu 2(B) \forall A\subset X,B \subset Y.

(1.1)

In later discussions, we only focus on the case X = Y =\Omega \subset \BbbR d for a domain \Omega . Let
\scrP (\Omega ) denote the set of probability measures on \Omega and define \scrW p(\Omega ) := \{ \mu \in \scrP (\Omega ) :\int 
| x| pd\mu <\infty \} . Choosing c(x, y) = | x - y| p for p\geq 1, then (1.1) induces a widely used

distance between two measures \rho 0, \rho 1 \in \scrW p(\Omega ), which is the so-called p-Wasserstein
distance Wp,

Wp(\rho 0, \rho 1) =

\biggl( 
inf

\pi \in \Pi (\rho 0,\rho 1)

\int 
| x - y| pd\pi 

\biggr) 1/p

,(1.2)

where \Pi (\rho 0, \rho 1) is the set of all transport plans for \rho 0 and \rho 1. In the case of p = 1,
simplifying the dual problem of the Kantorovich formulation can lead to the following
characterization of the W1 distance:

W1(\rho 0, \rho 1) = inf
\varphi \in Lip1(X)

\int 
\varphi d(\rho 0  - \rho 1).(1.3)

This characterization has important applications in the generative models [5, 14].
The dual problem of (1.3) is given by the flow-minimization model introduced by
Beckmann [3], [35, section 4.2]:

W1(\rho 0, \rho 1) =min

\biggl\{ \int 
\Omega 

| m| dx : m : \Omega \rightarrow \BbbR d, \nabla \cdot \bfitm = \rho 0  - \rho 1

\biggr\} 
.(1.4)

The Kantorovich problem mentioned in (1.1) is often regarded as the static formula-
tion. In [4], Benamou and Brenier proposed a dynamical version of OT which seeks a
geodesic path between the two measures \rho 0 and \rho 1 when \Omega is convex. Suppose \scrM (\Omega )
and (\scrM (\Omega ))d are the spaces of Radon measures and vector measures on \Omega , respec-
tively. Let \rho (\cdot , t)0\leq t\leq 1 \in \scrW p(X) be an absolutely continuous curve connecting \rho 0 and
\rho 1. Then according to [35, Theorem 5.14], there exists a field \bfitw : [0,1] \rightarrow (\scrM (\Omega ))d

such that \bfitw (\cdot , t) \ll \rho (\cdot , t) (hence \bfitw = \rho \bfitv for some vector field \bfitv ) and the following
continuity equation holds:

\partial t\rho (\bfitx , t) +\nabla \cdot \bfitw (\bfitx , t) = 0 on \Omega \times [0,1].(1.5)

Correspondingly, the Wp distance can be recovered by solving the following problem
(see [35] for more details):

W p
p (\rho 0, \rho 1) = inf

\rho ,\bfitw 

\Biggl\{ \int 1

0

\biggl( \int 
\Omega 

| \bfitw (\bfitx , t)| p

\rho p - 1(\bfitx , t)
d\bfitx 

\biggr) 
dt : \partial t\rho (\bfitx , t) +\nabla \cdot \bfitw (\bfitx , t) = 0 (\bfitx , t)\in \Omega 

(1.6)

\times (0,1), \rho (\bfitx ,0) = \rho 0(\bfitx ), \rho (\bfitx ,1) = \rho 1(\bfitx )

\Biggr\} 
.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 751

The Beckmann formulation ofW1 can also be derived from this dynamical formulation.
In fact, by considering \bfitm (\bfitx ) =

\int 1

0
\bfitw (\bfitx , t)dt, one can obtain (1.4).

To take into account the mass change, several UOT problems have been proposed
and they are connected in various ways [2, 9, 33, 19]. In particular, the Wasserstein--
Fisher--Rao (or Kantorovich--Helliger) distance has been proposed in [12, 11, 25, 28]
by adding a source into the dynamics. The static formulation as an extension of
the classical Kantorovich is derived for UOT in [11, 12, 28], using either so-called
semicouplings [11, 12] or the relaxation of the marginal constraints [28].

In this paper, we will focus on the generalization of the 1-Wasserstein distance
given in (1.4). In particular, we focus on the following Beckmann formulation of an
unbalanced OT problem:

W\alpha 
1 (\rho 0, \rho 1) :=min

\biggl\{ \int 
\Omega 

| \bfitm | + \alpha | \eta | dx : \bfitm : \Omega \rightarrow \BbbR d, \nabla \cdot \bfitm = \rho 0  - \rho 1 + \eta 

\biggr\} 
(1.7)

with suitable boundary conditions. More details can be seen in section 3.1. One way
to understand this is through the dynamic formulation of the UOT studied in [11],
which is a generalization of the Benamou--Brenier formulation (1.6). The dynamic
formulation is given by

min
\rho ,\bfitw ,\zeta 

\int 1

0

\biggl[ 
1

p

\int 
\Omega 

| \bfitw (\bfitx , t)| p

\rho p - 1(\bfitx , t)
d\bfitx + \alpha p 1

q

\int 
\Omega 

| \zeta (\bfitx , t)| q

\rho q - 1(\bfitx , t)
d\bfitx 

\biggr] 
dt

s.t. \partial t\rho (\bfitx , t) +\nabla \cdot \bfitw (\bfitx , t) = \zeta (\bfitx , t) on \Omega \times [0,1]

with \rho (\bfitx ,0) = \rho 0(\bfitx ), \rho (\bfitx ,1) = \rho 1(\bfitx ),

(1.8)

where p, q \geq 1 and \alpha > 0 is the weight parameter of the source term. The func-
tional in (1.8) penalizes the transportation with p-norm and the source change with
q-norm, respectively. When p= q \in [1,\infty ), this dynamic formulation gives a distance.

Taking p = q = 1, and similarly letting \bfitm (\bfitx ) =
\int 1

0
\bfitw (\bfitx , t)dt and \eta (\bfitx ) =

\int 1

0
\zeta (\bfitx , t)dt,

the corresponding Beckmann formulation (1.7) can then be derived. One may refer to
Lemma 3.1 for more details. Clearly, in this UOT problem, \rho 0 and \rho 1 do not necessar-
ily have the same mass and the parameter \alpha in problem (1.8) controls the penalization
of the source term. As a last comment, one often requires \Omega to be convex for the dy-
namic formulation (1.6) to give the Wasserstein distances when p > 1. As can be seen,
the Beckmann formulation (1.4) for p= 1 does not require the convexity of \Omega and it
is equivalent to (1.6). This means that the convexity of \Omega is not required to study
the Beckmann formulation and the dynamical formulation for p= 1. Analogously, we
do not require the convexity of \Omega in (1.7).

Our main focus in this paper is the connection between the Beckmann formula-
tion for UOT (1.7) and the Beckmann formulation for OT (1.4) when \rho 0 and \rho 1 are
probability measures, particularly when they are solved numerically using some op-
timization algorithms. Specifically, we aim to study whether the numerical solution
of the UOT one can somehow converge to that for the corresponding OT problem
under suitable optimization algorithms. Note that while we make the assumption
that \rho 0 and \rho 1 are probability measures, the two measures are allowed to be nonneg-
ative measures with equal total mass, for which one can simply scale to probability
measures. Such a problem is closely related to the so-called \Gamma -convergence and some
related results have been investigated in the literature already. In particular, [12]
gives the corresponding result for some static problems of the unbalanced OT via the
\Gamma -convergence, while [22] mentions some numerical evidence of the convergence for the
Wasserstein--Fisher--Rao distance. We focus on the Beckmann formulation because it
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752 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

corresponds to the Earth mover distance and has been widely applied in data science
[27, 29, 15], and more importantly, it is easier for computation and more suitable for
optimization algorithms. Furthermore, with the theoretical guarantee of convergence
from the UOT to the OT problem, unified numerical methods for UOT problems can
also be used for OT problems, and the solutions to UOT converge toward the one to
the OT problem automatically by setting sufficiently large \alpha in (1.7).

Our contributions can be summarized as follows. First, we establish the
\Gamma -convergence between the Beckmann problem (1.7) and (1.4). Then in discrete
settings, we provide an estimate of lower bound of the parameter \alpha for the solution
of UOT being the same as the OT problem, not just the convergence of the optimal
solution. Last, the discrete UOT problem can be solved by a primal-dual hybrid gra-
dient method (a.k.a. the Chambolle--Pock algorithm) [16, 10] and we also give the
corresponding condition of the parameter \alpha for the reduction of the iterates for UOT
to that for OT.

The rest of the paper is organized as follows. First in section 2, we provide the
definitions of the usual \Gamma -convergence and the sequence \Gamma -convergence, and the rela-
tionship between them. Particularly in section 2.2, we summarize some useful lemmas
and theorems for \Gamma -convergence which will be applied in later demonstrations. Then
in section 3, we derive the equivalence between the Beckmann formulations to the
dynamical ones for both UOT and OT at the beginning and prove the existence of
minimizers of these two problems. After that we establish the \Gamma -convergence between
the UOT and OT problems. Later in section 4, the finite convergence in discrete prob-
lems and the asymptotic preserving property are built, and we present the iterates
of a primal-dual hybrid gradient method for both UOT and OT problems and show
the similar convergence between them. At last, in section 5 some numerical exper-
iments on shape deformation and partial color transfer are implemented to validate
the theoretical results and the algorithm.

2. Background on \Gamma -convergence. To investigate the convergence of the
optimization problems and their optimizers, one often makes use of the theory of
\Gamma -convergence [6]. Here we first recall the definitions of the usual \Gamma -convergence.

Definition 2.1. Let (fn) be a sequence of functionals on X. Define

\Gamma - limsup
n\rightarrow \infty 

fn(x) = sup
Nx

limsup
n\rightarrow \infty 

inf
y\in Nx

fn(y),

\Gamma - lim inf
n\rightarrow \infty 

fn(x) = sup
Nx

lim inf
n\rightarrow \infty 

inf
y\in Nx

fn(y),
(2.1)

where Nx ranges over all the neighborhoods of x. If there exists a functional f defined
on X such that

\Gamma - limsup
n\rightarrow \infty 

fn =\Gamma - lim inf
n\rightarrow \infty 

fn = f,(2.2)

then we say the sequence (fn) \Gamma -converges to f .

The benefit of \Gamma -convergence is that any cluster point of the minimizers of a
\Gamma -convergent sequence (fn) is a minimizer of the corresponding \Gamma -limit functional f .
This result can be found in many references like [6] and one may also refer to
Lemma 2.3 later.

The verification of \Gamma -convergence using Definition 2.1 of the optimization prob-
lems in this paper is not that straightforward. Instead, we will make use of the results
of \Gamma seq-convergence studied in [8] to get some sufficient conditions for \Gamma -convergence
in Definition 2.1 on product spaces and we will utilize them in our problems.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 753

2.1. Notation and definitions. We first introduce some definitions and nota-
tion for \Gamma seq-convergence in [8]. Define the operators \scrL (\cdot ) and \scrG (\cdot ) as

\scrL (\epsilon ) =

\Biggl\{ 
sup \epsilon =+1,

inf \epsilon = - 1,
\scrG (\epsilon ) =

\Biggl\{ 
limsup \epsilon =+1,

lim inf \epsilon = - 1.
(2.3)

Let (fn) be a sequence of functions defined on a topological space X and

\scrS (x0) := \{ \{ xn\} \subset X : xn \rightarrow x0\} (2.4)

be the set of sequences that converge to x0. Define the \Gamma seq-limits of (fn) at point
x0 as

\Gamma seq(\BbbN \epsilon 0 ,X\epsilon 1) lim
n

fn(x0) = \scrL (\epsilon 1)
\{ xn\} \in \scrS (x0)

\scrG (\epsilon 0)
n

fn(x
n),(2.5)

where \epsilon i \in \{ +1, - 1\} , i= 0,1.
The relation between \Gamma seq-convergence and the usual \Gamma -convergence is given as

follows, and we include a short proof in the supplement (supplement.pdf [local/web
194KB]) for our presentation to be self-contained.

Proposition 2.2. It holds that

\Gamma seq(\BbbN +,X - ) lim
n

fn =\Gamma - limsup
n\rightarrow \infty 

fn,

\Gamma seq(\BbbN  - ,X - ) lim
n

fn =\Gamma - lim inf
n\rightarrow \infty 

fn.
(2.6)

Consequently, if f := \Gamma seq(\BbbN ,X - )limnfn exists, then (fn) \Gamma -converges to f .

Many functionals in practice are defined on some natural product space. For two
topological spaces X and Y and (fn) defined on the product space X \times Y , we can
similarly define the \Gamma seq-limits of (fn) at point (x0, y0) \in X \times Y for \epsilon i \in \{ +1, - 1\} ,
i= 0,1,2, as

\Gamma seq(\BbbN \epsilon 0 ,X\epsilon 1 , Y \epsilon 2) lim
n

fn(x0, y0) = \scrL (\epsilon 1)
\{ xn\} \in \scrS (x0)

\scrL (\epsilon 2)
\{ yn\} \in \scrS (y0)

\scrG (\epsilon 0)
n

fn(x
n, yn).(2.7)

Here we take the space X \times Y as an example to clarify the notation. Suppose
\epsilon 0 =+1, \epsilon 1 = - 1, \epsilon 2 = - 1; then we have

\Gamma seq(\BbbN +,X - , Y  - ) lim
n

fn(x0, y0) = inf
\{ xn\} \in \scrS (x0)

inf
\{ yn\} \in \scrS (y0)

limsup
n

fn(x
n, yn),(2.8)

where for any given convergent sequence \{ xn\} \in \scrS (x0) and \{ yn\} \in \scrS (y0), the limsup
operator (or lim inf) is taken over the functional value sequence (fn(x

n, yn)) and the
inf (or sup) operator is taken over all the sequence \{ xn\} \in \scrS (x0) and \{ yn\} \in \scrS (y0)
converging to x0 and y0, respectively. Moreover, if the \Gamma seq-limit is independent of
the value of \epsilon , then we omit the sign in the \Gamma seq-limit, i.e., if

\Gamma seq(\BbbN +,X - , Y  - ) lim
n

fn(x0, y0) = \Gamma seq(\BbbN  - ,X - , Y  - ) lim
n

fn(x0, y0),(2.9)

we can write \Gamma seq(\BbbN ,X - , Y  - )limnfn(x0, y0) for simplicity. The notation is similar for
the spaces X and Y .
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2.2. Useful results. In this subsection, we summarize several useful lemmas
and theorems for \Gamma seq-convergence from [8]. In particular, these results provide tools
to check \Gamma -convergence on product spaces. For completeness, in the supplement (sup-
plement.pdf [local/web 194KB]) we give simplified proofs of the lemmas and the the-
orem appearing in this section.

The following lemma states that any cluster point of the minimizers of a
\Gamma -convergent sequence is the minimizer of the corresponding \Gamma -limit functional.

Lemma 2.3. Let X be a topological space, and let (fn) be a sequence of functionals
mapping from X to \=\BbbR = [ - \infty ,+\infty ]. If

\Gamma seq(\BbbN ,X - ) lim
n

fn = f,

then

inf
X

f \geq limsup
n

[inf
X

fn].(2.10)

Moreover, if there exists a sequence (xn) converging to some x0 \in X, with

lim inf
n

fn(x
n) = lim inf

n

\Bigl[ 
inf
X

fn

\Bigr] 
,

then

f(x0) = inf
X

f = lim
n

\Bigl[ 
inf
X

fn

\Bigr] 
.(2.11)

The UOT problem in consideration is naturally defined on a product space and
the functional is of the form J + 1E . We introduce some related results in [8] in this
regard.

Lemma 2.4. Let X,Y be two topological spaces and (fn), (gn) be two sequences of

functionals defined on the product space X \times Y to \=\BbbR +
= [0,+\infty ], and let (x0, y0) \in 

X \times Y . Suppose there exists a, b\in \=\BbbR +
such that

\Gamma seq(\BbbN ,X - , Y ) lim
n

fn(x0, y0) = a,

\Gamma seq(\BbbN ,X,Y  - ) lim
n

gn(x0, y0) = b.

Then it holds that

\Gamma seq(\BbbN ,X - , Y  - ) lim
n
(fn + gn)(x0, y0) = a+ b.

Suppose X is a topological space and E is a set in X, and the indicator function
of E is defined as follows:

1E(x) =

\Biggl\{ 
0 if x\in E,

+\infty otherwise.
(2.12)

The following lemma gives a sufficient condition of a sequence of the set indicator
functions to be \Gamma seq-convergence.

Lemma 2.5. Suppose \{ En\} is a sequence of sets in space X \times Y . If there exists
a set E\infty \subset X \times Y that satisfies two conditions,

\bullet if xn \rightarrow x, yn \rightarrow y and (xn, yn)\in En for infinitely many n, then (x, y)\in E\infty ;
\bullet if (x, y) \in E\infty and xn \rightarrow x, then there exists yn \rightarrow y such that (xn, yn) \in En

for n large enough,
then 1E\infty =\Gamma seq(\BbbN ,X,Y  - )limn1En

.

The following theorem provides us the criterion to check \Gamma -convergence of the
functional of the form J + 1E on product spaces.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 755

Theorem 2.6. Suppose X and Y are two topological spaces. (Jn) is a sequence
of functionals defined on the product space X \times Y and (En) is a sequence of sets in
X \times Y . Suppose that Jn and 1En

are sequential \Gamma -convergent in the following sense:

J\infty =\Gamma seq(\BbbN ,X - , Y ) lim
n

Jn,

1E\infty =\Gamma seq(\BbbN ,X,Y  - ) lim
n

1En
;

then Jn + 1En
is \Gamma -convergent to J\infty + 1E\infty in the sense of Definition 2.1.

Consequently, for every n\in \BbbN +, let (xn, yn) be an optimal pair of the optimization
problem

min
X\times Y

(Jn + 1En).

If xn \rightarrow x\infty in X and yn \rightarrow y\infty in Y , then (x\infty , y\infty ) is an optimal pair of the problem

min
X\times Y

(J\infty + 1E\infty ).

3. Convergence from UOT to OT. In this section, we establish the conver-
gence of the Beckmann formulation of the UOT problem (1.7) to the corresponding
OT problem (1.4) in the sense of \Gamma -convergence.

3.1. Problem descriptions. Fix a bounded domain \Omega \subset \BbbR d with smooth
boundary which is not necessarily convex. Suppose that \rho 0 and \rho 1 are two prob-
ability measures defined on \Omega . To obtain the full description of the mathematical
problems, one needs to specify the no-flux boundary condition \bfitm \cdot \bfitn = 0 on \partial \Omega by
the physical significance. Hence, the Beckmann formulation of the UOT problem is
given by

min
\bfitm ,\eta 

\int 
\Omega 

| \bfitm (\bfitx )| + \alpha | \eta (\bfitx )| d\bfitx 

s.t. \nabla \cdot \bfitm + \rho 1  - \rho 0 = \eta in \Omega ,

\bfitm \cdot \bfitn = 0 on \partial \Omega .

(3.1)

Correspondingly, the Beckmann formulation of the traditional OT problem is analo-
gously given by

min
\bfitm 

\int 
\Omega 

| \bfitm (\bfitx )| d\bfitx 

s.t. \nabla \cdot \bfitm + \rho 1  - \rho 0 = 0 in \Omega ,

\bfitm \cdot \bfitn = 0 on \partial \Omega .

(3.2)

The constraint in (3.1) is understood in the weak sense, i.e.,

 - 
\int 
\Omega 

\bfitm \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

(\rho 1  - \rho 0  - \eta )\varphi d\bfitx = 0 \forall \varphi \in C1
b (

\=\Omega ).(3.3)

The constraint for (3.2) is understood similarly.
Before we start the analysis, let us clarify its connection to the dynamic formula-

tion as announced in the introduction. Recall the UOT problem for the case p= q= 1
in (1.8):

min
\rho ,\bfitw ,\zeta 

\int 
\Omega 

\int 1

0

| \bfitw (\bfitx , t)| + \alpha | \zeta (\bfitx , t)| dtd\bfitx 

s.t. \partial t\rho (\bfitx , t) +\nabla \cdot \bfitw (\bfitx , t) = \zeta (\bfitx , t) in \Omega \times [0,1]

with \bfitw (\bfitx , t) \cdot \bfitn = 0on \partial \Omega \times [0,1],

\rho (\bfitx ,0) = \rho 0(\bfitx ), \rho (\bfitx ,1) = \rho 1(\bfitx ).

(3.4)
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756 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Here, \bfitw (\cdot , t) \in (\scrM (\Omega ))d,0 \leq t \leq 1 is a d-dimensional vector field and \zeta (\cdot , t) \in 
\scrM (\Omega ),0 \leq t \leq 1, is a source term on \Omega . Note that \scrM (\Omega ) is the set of Radon
measures, the dual space of Cb(\Omega ). Also, t \mapsto \rightarrow \rho (\cdot , t) \in \scrM (\Omega ) is a path on \scrM (\Omega ).
Define

\bfitm (\bfitx ) =

\int 1

0

\bfitw (\bfitx , t)dt, \eta (\bfitx ) =

\int 1

0

\zeta (\bfitx , t)dt.(3.5)

Then we have the following lemma.

Lemma 3.1. Under the settings above, the Beckmann formulation of UOT (3.1)
is equivalent to the dynamical UOT problem (3.4). The same conclusion is made for
the OT case.

Proof. On the one hand, for any feasible pair (\bfitw , \zeta ) in (3.4), it holds that\int 
\Omega 

| \bfitm (\bfitx )| + \alpha | \eta (\bfitx )| d\bfitx =

\int 
\Omega 

\bigm| \bigm| \bigm| \bigm| \int 1

0

\bfitw (\bfitx , t)dt

\bigm| \bigm| \bigm| \bigm| + \alpha 

\bigm| \bigm| \bigm| \bigm| \int 1

0

\zeta (\bfitx , t)dt

\bigm| \bigm| \bigm| \bigm| d\bfitx 
\leq 
\int 
\Omega 

\int 1

0

| \bfitw (\bfitx , t)| + \alpha | \zeta (\bfitx , t)| dtd\bfitx ;
(3.6)

therefore one can obtain that

min
\bfitm ,\eta 

\int 
\Omega 

| \bfitm (\bfitx )| + \alpha | \eta (\bfitx )| d\bfitx \leq min
\bfitw ,\zeta 

\int 
\Omega 

\int 1

0

| \bfitw (\bfitx , t)| + \alpha | \zeta (\bfitx , t)| dtd\bfitx .(3.7)

On the other hand, for any \alpha > 0 suppose (\bfitm \alpha , \eta \alpha ) is an optimal pair to problem (3.1).
Then letting \bfitw \alpha (\bfitx , t)\equiv \bfitm \alpha (\bfitx ) and \zeta \alpha (\bfitx , t)\equiv \eta \alpha (\bfitx ) for all t\in [0,1] and defining

\rho \alpha (\bfitx , t) = t\rho 1(\bfitx ) + (1 - t)\rho 0(\bfitx ),

one can get that the triad (\rho \alpha ,w\alpha , \zeta \alpha ) is a feasible solution to problem (3.4). Therefore,

min
\rho ,\bfitw ,\zeta 

\int 
\Omega 

\int 1

0

| \bfitw (\bfitx , t)| + \alpha | \zeta (\bfitx , t)| dtd\bfitx \leq 
\int 
\Omega 

\int 1

0

| \bfitw \alpha (\bfitx , t)| + \alpha | \zeta \alpha (\bfitx , t)| dtd\bfitx 

=min
\bfitm ,\eta 

\int 
\Omega 

| \bfitm (\bfitx )| + \alpha | \eta (\bfitx )| d\bfitx .
(3.8)

Hence, combining the two parts one can conclude that the problems (3.4) and (3.1)
are equivalent.

In the previous formulation, the form | \bfitm (x)| is the Euclidean norm (\ell 2-norm)
of \bfitm , and from now on, we consider the general case of \ell q-norm for \bfitm (\bfitx ) where
1\leq q <+\infty . In other words, we use

| \bfitm (\bfitx )| q :=

\Biggl( 
d\sum 

i=1

| mi(\bfitx )| q
\Biggr) 1/q

, for q \in [1,+\infty ),

to replace the original \ell 2-norm | \bfitm (x)| . Moreover, for convenience in later analysis,
taking \xi := \alpha \eta in problem (3.1) and adding the term \xi to the objective function in
problem (3.2) as a free variable, we obtain the two equivalent UOT and OT problems,
respectively:

min
\bfitm ,\xi 

\int 
\Omega 

| \bfitm (\bfitx )| q+| \xi (\bfitx )| d\bfitx 

s.t. \nabla \cdot \bfitm + \rho 1  - \rho 0 =
1

\alpha 
\xi in \Omega ,

\bfitm \cdot \bfitn = 0 on \partial \Omega ,

(3.9)
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 757

and

min
\bfitm ,\xi 

\int 
\Omega 

| \bfitm (\bfitx )| q+| \xi (\bfitx )| d\bfitx 

s.t. \nabla \cdot \bfitm + \rho 1  - \rho 0 = 0 in \Omega ,

\bfitm \cdot \bfitn = 0 on \partial \Omega .

(3.10)

Then our goal becomes to build a connection between the UOT problem (3.9)
and the OT problem (3.10), by establishing the convergence from problem (3.9) to
(3.10) as \alpha \rightarrow +\infty in the sense of \Gamma -convergence.

3.2. Existence of minimizers. In this subsection, we first show the existence
of minimizers of the above UOT problems. For the convenience of the discussion, we
define the total variation norm of the fields \bfitm and \xi as follows:

\| \bfitm \| :=
\int 
\Omega 

| \bfitm (\bfitx )| qd\bfitx , \| \xi \| :=
\int 
\Omega 

| \xi (\bfitx )| d\bfitx .(3.11)

It is well known that the total variation norm is in fact the dual norm against the
bounded continuous functions since \Omega is bounded.

We first note that the continuity equation constraint depends only on the gradient
in \bfitm . By Helmholtz decomposition, we obtain

\bfitm = - \nabla \Phi +\bfith , \nabla \cdot \bfith = 0,
\partial \Phi 

\partial \bfitn 
= 0, \bfith \cdot \bfitn = 0,(3.12)

where \Phi is a scalar field and \bfith is a field without divergence and the constraint is
imposed on \Phi :\int 

\Omega 

\nabla \Phi \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

\biggl( 
\rho 1  - \rho 0  - 

1

\alpha 
\xi 

\biggr) 
\varphi d\bfitx = 0 \forall \varphi \in C1

b (\=\Omega ).(3.13)

In our setting, the divergence-free condition \nabla \cdot \bfith = 0 should be understood in the
weak sense. Hence, we introduce the following space:

\scrH :=

\biggl\{ 
\bfith \in (\scrM (\Omega ))d :

\int 
\Omega 

\bfith \cdot \nabla \varphi d\bfitx = 0 \forall \varphi \in C1
b (\=\Omega )

\biggr\} 
.

We note that the Helmholtz decomposition always exists if \xi has a bounded total
variation by the lemma below, from [7, Theorem 22, Lemma 23].

Lemma 3.2. For each \xi \in \scrM (\Omega ) with
\int 
| \xi | dx < \infty , there exists a weak solution

\Phi \in W 1,p0(\Omega ) where p0 \in [1, d/(d - 1)) with
\int 
\Phi dx= 0 to the Poisson equation

 - \Delta u= \xi .(3.14)

The solution satisfies

\| \Phi \| W 1,p0 \leq Cq\| \xi \| (3.15)

for some constant Cq > 0 depending on \alpha and \Omega only.

Note that the result in [7] is for \xi \in L1(\Omega ) while we are considering Radon
measures here, although there is no essential difference. By the inequality (3.15), it
yields that the TV norm of \nabla \Phi defined in (3.11) can be controlled as \| \nabla \Phi \| \leq C\| \xi \| .
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758 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Then, for each (\xi ,\bfitm ) satisfying the constraint (3.13), by Lemma 3.2 one can find a
weak solution \Phi with

\int 
\Phi d\bfitx = 0 satisfying

\Delta \Phi = \rho 1  - \rho 0  - 
1

\alpha 
\xi .

Define

\bfith :=\bfitm +\nabla \Phi \in \scrH ,

and one can get that the Helmholtz decomposition of \bfitm exists and is stable.
Hence, the problem (3.9) is reduced to

min
(\xi ,\bfith ,\Phi )

\int 
\Omega 

| \bfith  - \nabla \Phi | q + | \xi (\bfitx )| d\bfitx 

s.t.

\int 
\Omega 

\nabla \Phi \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

\biggl( 
\rho 1  - \rho 0  - 

1

\alpha 
\xi 

\biggr) 
\varphi d\bfitx = 0 \forall \varphi \in C1

b (\=\Omega ),

\bfith \in \scrH .

(3.16)

Similarly, the OT problem (3.10) becomes

min
(\xi ,\bfith ,\Phi )

\int 
\Omega 

| \bfith  - \nabla \Phi | q + | \xi (\bfitx )| d\bfitx 

s.t.

\int 
\Omega 

\nabla \Phi \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

(\rho 1  - \rho 0)\varphi d\bfitx = 0 \forall \varphi \in C1
b (\=\Omega ),

\bfith \in \scrH .

(3.17)

Using these two reduced problems, we can establish the following existence results.

Proposition 3.3. Both (3.9) and (3.10) have global minimizers over \scrM (\Omega ) \times 
(\scrM (\Omega ))d.

Proof. By the reformulation above, we prove the existence results for (3.16) and
(3.17). We will take (3.16) as an example.

First of all, we equip the set \scrM (\Omega ) \times \scrH for (\xi ,\bfith ) with the weak topology:
(\xi n,\bfith n)\Rightarrow (\xi ,\bfith ) if\int 

fd\xi n +

\int 
\bfitg \cdot d\bfith n \rightarrow 

\int 
fd\xi +

\int 
\bfitg \cdot d\bfith \forall f \in C1

b (
\=\Omega ;\BbbR ),\bfitg \in C1

b (
\=\Omega ;\BbbR d).(3.18)

Clearly, the space \scrH is closed in \scrM (\Omega )d under the weak topology. Consider the
functional

(\xi ,\bfith ) \mapsto \rightarrow F (\xi ,\bfith ) :=

\int 
\Omega 

| \bfith (\bfitx ) - \nabla \Phi (\bfitx ; \xi )| q + | \xi (\bfitx )| d\bfitx = \| \bfith  - \nabla \Phi (\cdot ; \xi )\| + \| \xi \| ,(3.19)

where \Phi (\cdot ; \xi ) indicates that \Phi is solved according to the Poisson equation with given \xi .
It is straightforward to verify that F is lower semicontinuous under the topology

for \scrM (\Omega )\times \scrH . In fact, if (\xi n,\bfith n)\Rightarrow (\xi ,\bfith ), one has that

\bfith n  - \nabla \Phi (\cdot ; \xi n)\Rightarrow \bfith  - \nabla \Phi (\cdot ; \xi ).

To see this, for any test vector field \bfitg \in C1
b (

\=\Omega ;\BbbR d), one can also decompose \bfitg as

\bfitg =\nabla \phi + \bfitv , \nabla \cdot \bfitv = 0, \bfitv \cdot \bfitn = 0 on \partial \Omega .(3.20)
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 759

Then, \int 
\Omega 

\nabla \Phi (\cdot ; \xi n) \cdot \bfitg d\bfitx =

\int 
\Omega 

\nabla \Phi (\cdot ; \xi n) \cdot \nabla \phi d\bfitx =

\int 
\Omega 

\biggl( 
1

\alpha 
\xi n + \rho 0  - \rho 1

\biggr) 
\phi d\bfitx (3.21)

 - \rightarrow 
\int 
\Omega 

\biggl( 
1

\alpha 
\xi + \rho 0  - \rho 1

\biggr) 
\phi d\bfitx =

\int 
\Omega 

\nabla \Phi (\cdot ; \xi ) \cdot \bfitg d\bfitx .

Since bounded smooth functions are dense in the space of bounded continuous func-
tions under the topology of uniform convergence (recall that \=\Omega is a bounded set), the
above therefore holds for all \bfitg \in C1

b (
\=\Omega ;\BbbR d).

Consequently,

\| \bfith  - \nabla \Phi (\cdot ; \xi )\| + \| \xi \| \leq lim inf
n\rightarrow \infty 

\| \bfith n  - \nabla \Phi (\cdot ; \xi n)\| + \| \xi n\| .(3.22)

Hence, the lower semicontinuity is established.
It is clear that

F\ast := inf
(\xi ,\bfith )\in \scrM (\Omega )\times \scrH 

F (\xi ,\bfith )> - \infty .

Then, consider a minimizing sequence, (\xi n,\bfith n) such that F (\xi n,\bfith n)\rightarrow F\ast . Then for
this minimizing sequence, one has

sup
n

\| \bfith n  - \nabla \Phi (\cdot ; \xi n)\| + \| \xi n\| <+\infty .

According to (3.15), \| \nabla \Phi (\cdot ; \xi n)\| is also uniformly bounded. Consequently,

sup
n

\| \bfith n\| + \| \xi n\| \leq sup
n

\| \bfith n  - \nabla \Phi (\cdot ; \xi n)\| + \| \nabla \Phi (\cdot ; \xi n)\| + \| \xi n\| <+\infty .(3.23)

The Banach--Alaoglu theorem indicates that there must be a weakly convergent sub-
sequence. Hence, together with the lower semicontinuity, the minimizer exists.

3.3. Convergence. By noticing the conditions in Theorem 2.6, we will regard
\xi and \Phi as independent variables. Define the functional J for all (\xi ,\bfith ,\Phi )\in (\scrM (\Omega )\times 
\scrH )\times W 1,1(\Omega ) by

J(\xi ,\bfith ,\Phi )=

\int 
\Omega 

| \bfith (\bfitx ) - \nabla \Phi (\bfitx )| q + | \xi (\bfitx )| d\bfitx .(3.24)

We equip the space for (\xi ,\bfith ) with the weak convergence of the measures defined in
(3.18),

X := (\scrM (\Omega )\times \scrH , \Rightarrow ) .

As mentioned above, the space \scrH is closed in \scrM (\Omega )d under the weak topology.
Note that this weak topology for measures is closer to the weak* convergence in

functional analysis. Moreover, the topology we choose for the space of \nabla \Phi is the total
variation norm, or the W 1,1 norm of \Phi (assuming \Phi has mean zero)

Y :=W 1,1(\Omega ).

Now, we introduce the set of constraints

E\alpha :=

\Biggl\{ 
((\xi ,\bfith ),\Phi )\in X \times Y :

\int 
\Omega 

\Phi d\bfitx = 0,(3.25)

\int 
\Omega 

\nabla \Phi \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

\biggl( 
\rho 1  - \rho 0  - 

1

\alpha 
\xi 

\biggr) 
\varphi d\bfitx = 0 \forall \varphi \in C1

b (\=\Omega )

\Biggr\} 
.
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760 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Similarly,

E\infty :=

\Biggl\{ 
((\xi ,\bfith ),\Phi )\in X \times Y :

\int 
\Omega 

\Phi d\bfitx = 0,(3.26)

\int 
\Omega 

\nabla \Phi \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

(\rho 1  - \rho 0)\varphi d\bfitx = 0 \forall \varphi \in C1
b (\=\Omega )

\Biggr\} 
.

Problem (3.9) can be reformulated as

min
(\xi ,\bfith )\in X, \Phi \in Y

J(\xi ,\bfith ,\Phi )+ 1E\alpha 
.(3.27)

Similarly, (3.10) is

min
(\xi ,\bfith )\in X, \Phi \in Y

J(\xi ,\bfith ,\Phi )+ 1E\infty .(3.28)

The following theorem states the convergence from (3.9) to (3.10) as \alpha goes to infinity.

Theorem 3.4. Suppose for any \alpha > 0, (\bfitm \alpha , \xi \alpha ) is an optimal solution of the
corresponding UOT problem (3.9). Then

(i) with a decomposition

\bfitm \alpha =\bfith \alpha  - \nabla \Phi \alpha 

such that ((\xi \alpha ,\bfith \alpha ),\Phi \alpha )\in 1E\alpha , there exists some constant \alpha 0 > 0, M > 0 such
that for all \alpha \geq \alpha 0

sup
\alpha 

\| \bfith \alpha \| + \| \nabla \Phi \alpha \| + \| \xi \alpha \| \leq M ;

(ii) for any increasing sequence \{ \alpha I\} going to infinity, where I is an index set,
there exists a convergent subsequence ((\xi \alpha k ,\bfith \alpha k),\Phi \alpha k)\in X\times Y with \alpha k \uparrow +\infty 
such that the limit ((\xi \infty ,\bfith \infty ),\Phi \infty )\in 1E\infty and (\xi \infty ,\bfitm \infty ) = (\xi \infty ,\bfith \infty  - \nabla \Phi \infty )
is a solution of the OT problem (3.10). Moreover, \xi \infty = 0.

To prove this theorem, we first show the \Gamma -convergence of J + 1E\alpha 
to J + 1E\infty .

Lemma 3.5. With the above setup, J + 1E\alpha 
is \Gamma -convergent to J + 1E\infty .

Proof. Here, we verify the two conditions in Theorem 2.6.
We will first show that \Gamma seq(\BbbN ,X - , Y )lim

\alpha 
J(\xi \alpha ,\bfith \alpha ,\Phi \alpha ) = J(\xi ,\bfith ,\Phi ). It suffices to

prove the following two results:

inf
(\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith )

sup
\Phi \alpha \rightarrow \Phi 

limsup
\alpha \rightarrow +\infty 

J(\xi \alpha ,\bfith \alpha ,\Phi \alpha )\leq J(\xi ,\bfith ,\Phi ),

inf
(\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith )

inf
\Phi \alpha \rightarrow \Phi 

lim inf
\alpha \rightarrow +\infty 

J(\xi \alpha ,\bfith \alpha ,\Phi \alpha )\geq J(\xi ,\bfith ,\Phi ).

These two relations, by the sandwich theorem, can ensure that both both the signs
of \BbbN and Y in the \Gamma seq-limit can be omitted.

For any pair ((\xi ,\bfith ),\Phi ) and for any convergent sequence \Phi \alpha \rightarrow \Phi in W 1,1, one can
choose a particular weak convergent sequence \{ (\xi \alpha ,\bfith \alpha )\} such that (\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith ),
\| \xi \alpha \| \rightarrow \| \xi \| and that \| \bfith \alpha  - \nabla \Phi \alpha \| \rightarrow \| \bfith  - \nabla \Phi \| . Such a sequence of (\xi \alpha ,\bfith \alpha ) clearly
exists (for example, one can choose the constant sequence (\xi \alpha ,\bfith \alpha ) = (\xi ,\bfith )). Then,
one has

limsup
\alpha \rightarrow +\infty 

J(\xi \alpha ,\bfith \alpha ,\Phi \alpha ) = limsup
\alpha \rightarrow +\infty 

\biggl( \int 
\Omega 

| \xi \alpha (\bfitx )| d\bfitx +

\int 
\Omega 

| \bfith \alpha (\bfitx ) - \nabla \Phi \alpha (\bfitx )| qd\bfitx 
\biggr) 

= \| \xi \| + \| \bfith  - \nabla \Phi \| = J(\xi ,\bfith ,\Phi ).
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 761

Hence, it holds that

inf
(\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith )

sup
\Phi \alpha \rightarrow \Phi 

limsup
\alpha \rightarrow +\infty 

J(\xi \alpha ,\bfith \alpha ,\Phi \alpha )\leq J(\xi ,\bfith ,\Phi ).(3.29)

Remark 3.6. The strong convergence of \Phi \alpha here is essential to obtain the limit
J(\xi ,\bfith ,\Phi ) as an upper bound. If there is only weak convergence of \nabla \Phi as used in the
proof of Proposition 3.3, such an upper bound cannot be established.

On the other hand, for any weak convergent sequence (\xi \alpha ,\bfith \alpha ) \Rightarrow (\xi ,\bfith ) in X
and \Phi \alpha \rightarrow \Phi in Y , one has \| \xi \| \leq lim inf \| \xi \alpha \| and \| \bfith  - \nabla \Phi \| \leq lim\| \bfith \alpha  - \nabla \Phi \alpha \| .
Consequently,

lim inf
\alpha \rightarrow +\infty 

J(\xi \alpha ,\bfith \alpha ,\Phi \alpha ) = lim inf
\alpha \rightarrow +\infty 

\biggl( \int 
\Omega 

| \xi \alpha (\bfitx )| d\bfitx +

\int 
\Omega 

| \bfith \alpha (\bfitx ) - \nabla \Phi \alpha (\bfitx )| qd\bfitx 
\biggr) 

\geq \| \xi \| + \| \bfith  - \nabla \Phi \| = J(\xi ,\bfith ,\Phi ).

It follows that

inf
(\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith )

inf
\Phi \alpha \rightarrow \Phi 

lim inf
\alpha \rightarrow +\infty 

J(\xi \alpha ,\bfith \alpha ,\Phi \alpha )\geq J(\xi ,\bfith ,\Phi ).(3.30)

Combining the two formulas, one obtains

\Gamma seq(\BbbN ,X - , Y )lim
\alpha 
J(\xi \alpha ,\bfith \alpha ,\Phi \alpha ) = J(\xi ,\bfith ,\Phi ).(3.31)

Next, we will show 1E\infty =\Gamma seq(\BbbN ,X,Y  - )lim
\alpha 
1E\alpha . Using Lemma 2.5, it suffices to

show that
(i) if (\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith ), \Phi \alpha \rightarrow \Phi in W 1,1, ((\xi \alpha ,\bfith \alpha ),\Phi \alpha ) \in E\alpha for infinitely many

\alpha , then ((\xi ,\bfith ),\Phi )\in E\infty ;
(ii) if ((\xi ,\bfith ),\Phi ) \in E\infty and (\xi \alpha ,\bfith \alpha )\Rightarrow (\xi ,\bfith ), then there exists \Phi \alpha \rightarrow \Phi such that

((\xi \alpha ,\bfith \alpha ),\Phi \alpha )\in E\alpha for \alpha large enough.
For (i), we consider the sequence \alpha such that ((\xi \alpha ,\bfith \alpha ),\Phi \alpha )\in E\alpha , then

\int 
\Omega 

\Phi \alpha d\bfitx = 0,

\int 
\Omega 

\nabla \Phi \alpha \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

\biggl( 
\rho 1  - \rho 0  - 

1

\alpha 
\xi \alpha 
\biggr) 
\varphi d\bfitx = 0 \forall \varphi \in C1

b (
\=\Omega ).

(3.32)

Since \varphi \in Cb and \nabla \varphi \in Cb, one clearly has\int 
\Omega 

\bfitm \alpha \cdot \nabla \varphi \rightarrow 
\int 
\Omega 

\bfitm \cdot \nabla \varphi , 0 =

\int 
\Omega 

\Phi \alpha d\bfitx \rightarrow 
\int 
\Omega 

\Phi d\bfitx .

As \xi \alpha \Rightarrow \xi , it is uniformly bounded and

lim
\alpha \rightarrow +\infty 

\int 
\Omega 

1

\alpha 
\xi \alpha \varphi d\bfitx = 0.(3.33)

Hence, it is easy to see that (\xi ,\bfith ,\Phi ) \in E\infty . Note that here lim
\int 
\Omega 
\bfith \alpha \cdot \nabla \varphi d\bfitx =\int 

\Omega 
\bfith \cdot \nabla \varphi d\bfitx using the fact that X is closed under the weak convergence of measures.

For (ii) we consider the following Poisson equation:\left\{     
 - \Delta u=

1

\alpha 
\xi \alpha in \Omega ,

\partial u

\partial \bfitn 
= 0 on \partial \Omega .

(3.34)
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762 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Here the sequence \{ \xi \alpha \} is given in (ii) which weakly converges to \xi . Consequently,
by Lemma 3.2, there exists \phi \alpha with

\int 
\phi \alpha d\bfitx = 0 and

lim
\alpha \rightarrow +\infty 

\|  - \nabla \phi \alpha \| \leq lim
\alpha \rightarrow +\infty 

C

\alpha 
\| \xi \alpha \| = 0.

Defining \Phi \alpha =\Phi +\phi \alpha , one clearly has
\int 
\Phi \alpha d\bfitx = 0, \Phi \alpha \rightarrow \Phi and by the definition

of the weak solution of the Poisson equation that\int 
\Omega 

\nabla \Phi \alpha \cdot \nabla \varphi d\bfitx +

\int 
\Omega 

\biggl( 
\rho 1  - \rho 0  - 

1

\alpha 
\xi \alpha 
\biggr) 
\varphi d\bfitx = 0 \forall \varphi \in C1

b (\=\Omega ),(3.35)

which implies that (\xi \alpha ,\bfith \alpha ,\Phi \alpha )\in E\alpha for all \alpha .

Now, we prove the main result in this section.

Proof of Theorem 3.4. Suppose \bfitm is a feasible solution to problem (3.10). It
is obvious that (0,\bfitm ) is also a feasible solution to problem (3.9) for any \alpha > 0.
Therefore, \int 

\Omega 

| \bfitm \alpha | q + | \xi \alpha | d\bfitx \leq 
\int 
\Omega 

| \bfitm | qd\bfitx <+\infty .

where (\xi \alpha ,\bfitm \alpha ) is an optimal solution of problem (3.10). Then, by Lemma 3.2, there
exists \Phi \alpha \in W 1,1 with

\int 
\Phi \alpha d\bfitx = 0 that is a weak solution to

 - \Delta \Phi \alpha + \rho 1  - \rho 0 =
1

\alpha 
\xi \alpha ,

\partial \Phi \alpha 

\partial n
= 0

with

\| \Phi \alpha \| W 1,1 \leq C\| \rho 0  - \rho 1  - 
1

\alpha 
\xi \alpha \| \leq C

\biggl( 
2 +

1

\alpha 

\int 
| \bfitm | q d\bfitx 

\biggr) 
.

Moreover, define

\bfith \alpha =\bfitm \alpha +\nabla \Phi \alpha .

It is easy to see that \bfith \alpha \in \scrH and consequently, ((\xi \alpha ,\bfith \alpha ),\Phi \alpha )\in 1E\alpha . Moreover,

\| \bfith \alpha \| \leq \| \bfitm \alpha \| + \| \nabla \Phi \alpha \| \leq C

\biggl( 
2 + (1 + \alpha  - 1)

\int 
| \bfitm | q d\bfitx 

\biggr) 
.

The first claim follows if \alpha \geq \alpha 0 > 0.
We now show that for any optimal sequence \{ (\xi \alpha ,\bfitm \alpha )\} with \bfitm \alpha =\bfith \alpha  - \nabla \Phi \alpha as

above, there exists a convergent subsequence (\xi \alpha 
k

,\bfith \alpha k

)\Rightarrow (\xi ,\bfith ) and \Phi \alpha k \rightarrow \Phi .
Using the Banach--Alaoglu theorem we have that any bounded set in X is pre-

compact. Consequently, there is a subsequence (\xi \alpha k ,\bfith \alpha k) \Rightarrow (\xi ,\bfith ) \in X. Moreover,
let \Phi with

\int 
\Phi d\bfitx = 0 be the solution to\left\{    - \Delta \Phi + \rho 1  - \rho 0 = 0 in \Omega ,

\partial \Phi 

\partial \bfitn 
= 0 on \partial \Omega .

(3.36)

Since \xi \alpha k \Rightarrow \xi , \xi \alpha k is thus uniformly bounded. Then as \alpha k \rightarrow +\infty , one has

\| \Phi \alpha k  - \Phi \| W 1,1 \leq C

\alpha k
\| \xi \alpha k\| \rightarrow 0.

Using Lemma 3.5, one obtains \Gamma -convergence of the functional. Using Theo-
rem 2.6 it follows that (\xi ,\bfith ,\Phi ) is a minimizer of J + 1E\infty . Hence, the conclusion
follows. Moreover, since (\xi \infty ,\bfitm \infty ) is an optimal pair of problem (3.10), it is obvious
that \xi \infty should be 0.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 763

4. Convergence in a discrete setting and the asymptotic preserving
property. In this section, we focus on the discretized problems of the Beckmann
formulation for UOT and OT problems. We take \Omega to be a bounded rectangular
domain in \BbbR d. We will show that the convergence from UOT to OT is preserved in the
discrete setting so that the discretization is asymptotic preserving, which guarantees
that a numerical method for the optimization problems can be applied for the discrete
problems in a uniform manner, and the optimizer of the UOT can converge to that for
the OT problem along the limit. Moreover, we show that when \alpha is larger than some
critical value that is only related to the dimension d and the width of the domain
L, and independent to the mesh size h, the minimizer of the discrete UOT problem
is then reduced to that for OT, which we call finite convergence. We also present
the algorithm proposed in [27] and applied to solve both UOT and OT problems and
show that the iterates for UOT will reduce to that for OT as the penalty parameter
\alpha >M for some constant M dependant on the discrete problem merely.

4.1. Discretized problems. We first formulate the discrete UOT and OT prob-
lems. We use the same discrete scheme as [27, 29]. Let \Omega = [0,1]d be a d-dimensional
rectangular domain, and let \Omega h be the discrete meshgrid of \Omega with step size h, i.e.,

\Omega h = \{ h,2h, . . . ,1\} d.(4.1)

LetN = 1/h be the grid size. For a more general case \Omega = [0,L]d, it can be transformed
to \Omega = [0,1]d by scaling. For all x \in \Omega h, x is a d-dimensional vector, where the
ith component xi takes values from \{ h,2h,3h, . . . ,1\} . The discretized distributions
\rho 0h = \{ \rho 0(x)\} x\in \Omega h

, \rho 1h = \{ \rho 1(x)\} x\in \Omega h
, and \eta h = \{ \eta (x)\} x\in \Omega h

are all Nd tensors. The
discretized flux \bfitm h = \{ \bfitm (x)\} x\in \Omega h

is an Nd \times d tensor, which can be regarded as a
map from \Omega h to \BbbR d. Then the discretized problem for (3.1) is

min
mh,\eta h

\sum 
x\in \Omega h

\bigl( 
| \bfitm h(x)| qhd + \alpha | \eta h(x)| hd

\bigr) 
s.t. divh(\bfitm h(x)) - \eta h(x) = \rho 0h(x) - \rho 1h(x) \forall x\in \Omega h,

(4.2)

where the discrete boundary conditions are given such that \bfitm h,i(x - i, xi) = 0 if xi = 1
and \bfitm h,i(x - i, xi  - h) = 0 if xi = h for all i\in \{ 1,2, . . . , d\} , and

\sum 
x\in \Omega h

\eta h(x) = 0. Here
the notion ``-i"" refers to all the components excluding i, i.e.,

x - i = (x1, . . . , xi - 1, xi+1, . . . , xd),

and for any z \in \BbbR 

\bfitm h,i(x - i, z) =\bfitm h,i(x1, . . . , xi - 1, z, xi+1, . . . , xd).

Note that with this discretization, the boundary condition \bfitm \cdot \bfitn = 0 holds at points
(x - i, xi = 0) and (x - i, xi = 1) for all i \in 1,2, . . . , d. And correspondingly, the discrete
divergence operator divh(\cdot ) is defined as

divh(\bfitm h(x)) =

d\sum 
i=1

Dh,i\bfitm h(x),

and for all i\in \{ 1,2, . . . , d\} 

Dh,i\bfitm h(x) =

\left\{     
(\bfitm h,i(x - i, xi))/h, xi = h,

(\bfitm h,i(x - i, xi) - \bfitm h,i(x - i, xi  - h))/h, h < xi < 1,

( - \bfitm h,i(x - i, xi  - h))/h, xi = 1,

(4.3)
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764 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

which makes the discrete approximation consistent with the zero-flux boundary condi-
tion. In the above definition, \bfitm h(x)\in \BbbR d denotes the flow at point x and \bfitm h,i(x)\in \BbbR 
denotes the ith component of \bfitm h(x). Moreover, we define f(\cdot ) =

\sum 
\Omega h

| \cdot | qhd as a dis-
crete \ell q,1 norm on \Omega h; then the problem (4.2) can be reformulated as

min
\bfitm h,\eta h

f(\bfitm h) + \alpha f(\eta h),

s.t. divh(\bfitm h) - \eta h = \rho h.
(4.4)

Similarly, the discrete OT problem (3.2) is given as

min
\bfitm h

f(\bfitm h)

s.t. divh(\bfitm h) = \rho h
(4.5)

with the zero-flux boundary condition in (4.2).

4.2. A primal-dual hybrid algorithm. With the discrete formulation, we
can apply a primal-dual hybrid algorithm [16, 10] to solve both the UOT and OT
problems. Note that this algorithm is also adopted in [27] for the OT problem. We
first give some definitions on the discrete space \Omega h:

\langle \bfitm h,\bfitm 
\prime 
h\rangle h =

\sum 
x\in \Omega h

\bfitm h(x)\bfitm 
\prime 
h(x)h

d, \| \bfitm h\| 2h,2 =
\sum 
x\in \Omega h

| \bfitm (x)| 22hd.

Then for the OT problem (4.5), we solve the min-max reformulation

min
\bfitm h

max
\varphi h

L(\bfitm h,\varphi h) = f(\bfitm h) + \langle \varphi h,div
h\bfitm h  - \rho h\rangle h(4.6)

by the primal-dual hybrid algorithm, whose updating rule is given as

\bfitm k+1
h = argmin

\bfitm h

L(\bfitm h,\varphi 
k
h) +

1

2\mu 
\| \bfitm h  - \bfitm k

h\| 2h,2,

\~\bfitm k+1
h = 2\bfitm k+1

h  - \bfitm k
h,

\varphi k+1
h = argmax

\varphi h

L( \~\bfitm k+1
h ,\varphi k

h) - 
1

2\tau 
\| \varphi h  - \varphi k

h\| 2h,2.

(4.7)

The update is equivalent to

\bfitm k+1
h =Prox\mu f (\bfitm 

k
h  - \mu (divh)\ast (\varphi k

h)),

\~\bfitm k+1
h = 2\bfitm k+1

h  - \bfitm k
h,

\varphi k+1
h =\varphi k

h + \tau (divh( \~\bfitm k+1
h ) - \rho h),

(4.8)

where Prox\mu f is the proximity operator of function \mu f defined as

Prox\mu f (\bfitm 
k
h  - \mu (divh)\ast (\varphi k

h)) = argmin
\bfitm h

\mu f(\bfitm h) +
1

2
\| \bfitm h  - (\bfitm k

h  - \mu (divh)\ast (\varphi k
h))\| 2h,2,

and \mu , \tau are algorithmic parameters and (divh)\ast represents the conjugate operator of
divh.

By the definition of conjugate operator, for all \bfitm h and uh \in \Omega h, we have

\langle divh(\bfitm h), uh\rangle h = \langle \bfitm h, (div
h)\ast (uh)\rangle h.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 765

Then it is easy to check that (divh)\ast = - \nabla h and

\nabla h(uh) = (\partial h,1uh, \partial h,2uh, . . . , \partial h,du),

where each \partial h,iuh is

\partial h,iuh(x1, x2, . . . , xd) =

\Biggl\{ 
(u(x - i, xi + h) - u(x - i, xi))/h, h\leq xi < 1,

0, xi = 1,
(4.9)

for i = 1,2, . . . , d. According to [10], the algorithm is ensured to be convergent if
\mu \tau \| divh\| 2 < 1.

Similarly, we solve the UOT problem (4.2) with the min-max reformulation

min
\bfitm h,\eta h

max
\varphi h

L(\bfitm h, \eta h,\varphi h) = f(\bfitm h) + \alpha f(\eta h) + \langle \varphi h,div
h(\bfitm h) - \eta h  - \rho h\rangle h(4.10)

and by the primal-dual hybrid algorithm as

(\bfitm k+1
h , \eta k+1

h ) = argmin
\bfitm h,\eta h

L(\bfitm h, \eta h,\varphi 
k
h) +

1

2\mu 
(\| \bfitm h  - \bfitm k

h\| 2h,2 + \| \eta h  - \eta kh\| 2h,2),

\~\bfitm k+1
h = 2\bfitm k+1

h  - \bfitm k
h, \~\eta k+1

h = 2\eta k+1
h  - \eta kh,

\varphi k+1
h = argmax

\varphi h

L( \~\bfitm k+1
h , \~\eta k+1

h ,\varphi k
h) - 

1

2\tau 
\| \varphi h  - \varphi k

h\| 2h,2,

(4.11)

which can be written as

\bfitm k+1
h =Prox\mu f (\bfitm 

k
h  - \mu (divh)\ast (\varphi k

h)),

\eta k+1
h =Prox\alpha \mu f (\eta 

k
h + \mu \varphi k

h),

\~\bfitm k+1
h = 2\bfitm k+1

h  - \bfitm k
h, \~\eta k+1

h = 2\eta k+1
h  - \eta kh,

\varphi k+1
h =\varphi k

h + \tau (divh( \~\bfitm k+1
h ) - \~\eta k+1

h  - \rho h).

(4.12)

The algorithm is convergent if \mu \tau \| [divh, - I]\| 2 < 1 and we terminate the algorithm
when the primal-dual gap Rk

n,

Rk
h =

1

\mu 
(\| \bfitm k+1

h  - \bfitm k
h\| 2h,2 + \| \eta k+1

h  - \eta hk\| 2h,2) +
1

\tau 
\| \varphi k+1

h  - \varphi k
h\| 2h,2

 - 2\langle \varphi k+1
h  - \varphi k

h,div
h(\bfitm k+1

h  - \bfitm k
h) - (\eta k+1

h  - \eta kh)\rangle h,
(4.13)

falls below a predefined threshold \epsilon .

4.3. Convergence of the discrete UOT problem. In section 3 we showed
the \Gamma -convergence from UOT to OT in the continuous case. For the discrete problem,
we also have a similar proposition.

Proposition 4.1. Define Xh := \BbbR Nd

and Yh := \BbbR Nd\times d. Taking \xi h := \alpha \eta h in
(3.1) we have that

Jh(\xi h,\bfitm h) :=
\sum 
x\in \Omega h

\bigl( 
| \bfitm h(x)| qhd + | \xi h(x)| hd

\bigr) 
,(4.14)

and we define

E\alpha 
h :=

\biggl\{ 
(\xi h,\bfitm h)\in Xh \times Yh : divh(\bfitm h) - 

1

\alpha 
\xi h  - \rho h = 0

\biggr\} 
,

E\infty 
h :=

\Bigl\{ 
(\xi h,\bfitm h)\in Xh \times Yh : divh(\bfitm h) - \rho h = 0

\Bigr\} 
.

Then we have the \Gamma -convergence from Jh + 1E\alpha 
h
to Jh + 1E\infty 

h
.
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766 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Proof. For the discrete case, the convergence in the space Xh and Yh reduces to
pointwise convergence, and it is obvious that

Jh(\xi h,\bfitm h) = \Gamma seq(\BbbN ,X - 
h , Yh) lim

\alpha 
Jh(\xi h,\bfitm h).(4.15)

Then our goal is to verify that E\alpha 
h and E\infty 

h also satisfy the conditions given in
Lemma 2.5:

(i) If \xi \alpha h \rightarrow \xi h,\bfitm 
\alpha 
h \rightarrow \bfitm h and (\xi \alpha h ,\bfitm 

\alpha 
h) \in E\alpha 

h for infinitely many \alpha , then
(\xi h,\bfitm h)\in E\infty 

h .
(ii) If (\xi h,\bfitm h) \in E\infty 

h and \xi \alpha h \rightarrow \xi h, then there exists \bfitm \alpha 
h \rightarrow \bfitm h such that

(\xi \alpha h ,\bfitm 
\alpha 
h)\in E\alpha 

h for \alpha large enough.
For (i), due to the fact that (\xi \alpha h ,\bfitm 

\alpha 
h)\in E\alpha 

h for infinitely many \alpha , we have

divh(\bfitm \alpha 
h) - 

1

\alpha 
\xi \alpha h  - \rho h = 0.(4.16)

As \xi \alpha h \rightarrow \xi h, the sequence \{ \xi \alpha h\} is uniformly bounded, and divh(\bfitm \alpha 
h) is a simple

matrix-vector multiplication for the discrete problem, then letting \alpha go to infinity in
the equality (4.16) we obtain that

divh(\bfitm h) - \rho h = 0,(4.17)

which leads to (\xi h,\bfitm h)\in E\infty 
h .

For (ii), as (\xi h,\bfitm h)\in E\infty 
h , for any \alpha > 0 and the given sequence \{ \xi \alpha h\} , it suffices

to solve the equations directly:

divh(\delta m\alpha 
h) =

1

\alpha 
\xi \alpha h ,(4.18)

where \delta m\alpha 
h also satisfies the discrete boundary conditions \delta mh,i(x - i, xi  - h) = 0 if

xi = 1 for all i\in \{ 1,2, . . . , d\} . For any u\in ker((divh)\ast ), \nabla hu= 0 yields u\equiv C for some
constant C. Therefore, for all u\in ker((divh)\ast ), we have

\langle \xi \alpha h , u\rangle h =C
\sum 
x\in \Omega h

\xi \alpha h (x)h
d = 0,

which implies \xi \alpha h \bot ker((divh)\ast ). Therefore the linear system (4.18) is soluble for any
\alpha > 0. Moreover, with the condition \xi \alpha h \rightarrow \xi h, it is obvious that the right side in
(4.18) 1

\alpha \xi 
\alpha 
h \rightarrow 0 as \alpha goes to infinity. Hence for each \alpha , we choose the solution that

has the least norm \delta m\alpha 
h (which should be perpendicular to the kernel space of divh)

such that \delta m\alpha 
h \rightarrow 0 as \alpha \rightarrow +\infty . Then define

\bfitm \alpha 
h =\bfitm h + \delta m\alpha 

h

and correspondingly \bfitm \alpha 
h \rightarrow \bfitm h and (\xi \alpha h ,\bfitm 

\alpha 
h)\in E\alpha 

h for any \alpha > 0.
Using Lemma 2.5 we obtain that 1E\infty 

h
= \Gamma seq(\BbbN ,Xh, Y

 - 
h )lim

\alpha 
1E\alpha 

h
, and using

Theorem 2.6 one can conclude that Jh + 1E\alpha 
h
is \Gamma -convergent to Jh + 1E\infty 

h
.

The \Gamma -convergence for discrete problems indicates that the minimizers, which are
bounded obviously, would have a convergent subsequence with the limit being the
minimizer of the discrete OT problem.

In fact, for the discrete problem, we can show a stronger convergence for the
minimizers of the two problems, as shown in the following theorem.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 767

Theorem 4.2. Suppose \Omega = [0,L]d where d is the dimension of the space and L
is the length of the interval in each dimension. Let \Omega h = [h,L]dh = \{ h,2h, . . . ,L\} d be
the discrete meshgrid of \Omega defined in (4.1) and Nh= L. If \alpha > dL

2 , then the optimal
\eta \ast h of the discrete UOT problem equals to 0. Consequently, the minimizer reduces to
that for OT.

Proof. Different from before, here we will use the optimal conditions to show the
result. Using the Lagrangian multiplier and omitting the scaling hd, the discrete UOT
problem (4.4) is equivalent to the following min-max problem:

min
\bfitm h,\eta h

max
\varphi h

\sum 
x\in \Omega 

(| \bfitm h(x)| q + \alpha | \eta h(x)| ) + \langle \varphi h,div
h(\bfitm h) - \eta h  - \rho h\rangle ,(4.19)

where the inner product \langle \cdot , \cdot \rangle = 1
hd \langle \cdot , \cdot \rangle h. Suppose (\bfitm \ast 

h, \eta 
\ast 
h,\varphi 

\ast 
h) is an optimal solution

to (4.19); then by the first-order optimal conditions, for each point x \in \Omega h we have
that \left\{     

0\in \partial | \bfitm \ast 
h(x)| q  - \nabla h(\varphi 

\ast 
h(x)),

0\in \alpha \partial | (\eta \ast h(x)|  - \varphi \ast 
h(x),

0 = divh(\bfitm \ast 
h(x)) - \eta \ast h(x) - \rho h(x).

(4.20)

Here \partial | \bfitm \ast 
h(x)| q and \partial | (\eta \ast h(x)| represent the subgradients of \ell q-norm of vector \bfitm \ast 

h(x)
and the absolute value of \eta \ast h(x), respectively. From the second condition we obtain
that for any point (xi1 , xi2 , . . . , xid)\in (h, L]dh,

 - \alpha \leq \varphi \ast 
h(xi1 , xi2 , . . . , xid)\leq \alpha .

To show \eta \ast h = 0, without loss of generality, we suppose that there exists a point
(xi1 , xi2 , . . . , xid) in [h,L]dh such that \eta \ast h(xi1 , xi2 , . . . , xid) > 0; then by the second
condition we have

\varphi \ast 
h(xi1 , xi2 , . . . , xid) = \alpha .

Notice that for any q \in [1,+\infty ), the subgradient of \partial | \bfitm \ast 
h(x)| q is defined as

\partial | \bfitm \ast 
h(x)| q =

\bigl\{ 
v\in \BbbR d : | v| q\prime \leq 1, v\top \bfitm \ast 

h(x) = | \bfitm \ast 
h(x)| q

\bigr\} 
,

where 1/q + 1/q\prime = 1 and for q = 1, | v| q\prime implies L\infty -norm of vector v. Then by the
first condition in (4.20), we have that for each x\in \Omega h,

| \nabla \varphi \ast 
h(x)| q\prime \leq 1,

which indicates that the absolute value of each component of \nabla \varphi \ast 
h(x) is also less

than 1. More precisely, we have the following different situations:
\bullet For h< xik <L, at the point (x - ik , xik) and (x - ik , xik  - h) we can get that\Biggl\{ 

\nabla h(\varphi 
\ast 
h(x - ik , xik))\in \partial | (\bfitm \ast 

h(x - ik , xik)| q,
\nabla h(\varphi 

\ast 
h(x - ik , xik  - h))\in \partial | \bfitm \ast 

h(x - ik , xik  - h)| q,
(4.21)

which leads to\left\{     
\varphi \ast 
h(x - ik , xik + h) - \varphi \ast 

h(x - ik , xik)

h
\in \partial | \bfitm \ast 

h,k(x - ik , xik)| ,

\varphi \ast 
h(x - ik , xik) - \varphi \ast 

h(x - ik , xik  - h)

h
\in \partial | \bfitm \ast 

h,k(x - ik , xik  - h)| .
(4.22)
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768 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

\bullet For xik =L, at the point (x - ik , xik  - h) we can get that

\nabla h(\varphi 
\ast 
h(x - ik , xik  - h))\in \partial | \bfitm \ast 

h(x - ik , xik  - h)| q,

i.e.,

\varphi \ast 
h(x - ik , xik) - \varphi \ast 

h(x - ik , xik  - h)

h
\in \partial | \bfitm \ast 

h,k(x - ik , xik  - h)| .(4.23)

\bullet For xik = h, at the point (x - ik , xik) we can get that

\nabla h(\varphi 
\ast 
h(x - ik , xik))\in \partial | \bfitm \ast 

h(x - ik , xik)| q,

i.e.,

\varphi \ast 
h(x - ik , xik + h) - \varphi \ast 

h(x - ik , xik)

h
\in \partial | \bfitm \ast 

h,k(x - ik , xik)| .(4.24)

For all the cases we get that (if it exists)\left\{     
 - 1\leq \varphi \ast 

h(x - ik , xik) - \varphi \ast 
h(x - ik , xik  - h)

h
\leq 1, k= 1,2, . . . , d,

 - 1\leq \varphi \ast 
h(x - ik , xik + h) - \varphi \ast 

h(x - ik , xik)

h
\leq 1, k= 1,2, . . . , d.

(4.25)

Similarly, we can continue to use the first condition at all the points (x - ik , xik  - h)
and (x - ik , xik + h) for k= 1,2, . . . , d (if it exists) and get the restriction of \varphi \ast 

h at any
point on the meshgrid [h, L]dh:

\alpha  - dL= \alpha  - dNh\leq \varphi \ast 
h(x\~i1 , x\~i2 , . . . , x\~id)\leq \alpha \forall (x\~i1 , x\~i2 , . . . , x\~id)\in [h, L]dh.(4.26)

On the other hand, as \rho 0h and \rho 1h are equal mass, from the third condition we get\sum 
x\in \Omega h

\eta \ast h(x) =
\sum 
x\in \Omega h

(Ah\bfitm 
\ast 
h) - 

\sum 
x\in \Omega h

\rho h = 0.

For \eta \ast h(xi1 , xi2 , . . . , xid) > 0, there must exist another point (xj1 , xj2 , . . . , xjd) in the
space \Omega h such that \eta \ast h(xj1 , xj2 , . . . , xjd) < 0. Then by the second condition, we get
\varphi \ast 
h(xj1 , xj2 , . . . , xjd) = - \alpha . Then for \alpha > dL/2, we have

\varphi \ast 
h(xj1 , xj2 , . . . , xjd) = - \alpha <\alpha  - dL,

which is contradiction to the condition (4.26). Therefore the optimal \eta \ast h \equiv 0 on the
space \Omega h and \bfitm \ast 

h is a solution to the OT problem.

Remark 4.3. Note that the condition given in the theorem is only sufficient; in
practice the exact threshold of \eta \ast h \equiv 0 tends to be smaller than dL/2. Moreover,
though we only prove for \Omega = [0,L]d, the theorem holds for the general triangular
case \Omega h = [a1, b1]\times [a2, b2]\times \cdot \cdot \cdot [ad, bd] and the corresponding condition of \alpha should
be changed as \alpha > dmaxi\{ bi  - ai\} /2.

The above result indicates that the Beckmann formulation is advantageous as the
usual discretization is asymptotic preserving, which means that the convergence of
UOT to OT can be preserved as \alpha \rightarrow \infty . This property is beneficial in the sense that
when a numerical method is applied to the discretization problems, the numerical
method can reduce to the one for OT as \alpha \rightarrow \infty automatically.

In fact, as for the iterations (4.8) and (4.12) in the primal dual algorithm, with
some restriction to the parameter \alpha , we can get the connection between them, which
is stated as the following theorem.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 769

Theorem 4.4. Suppose in (4.8) and (4.12), \mu and \tau are set the same and satisfy
the convergence condition \mu \tau \| [divh, - I]\| 2 < 1. Then there exists a constant M > 0
such that for all \alpha >M , we have that \eta kh \equiv 0 on \Omega h for k large enough. Correspond-
ingly, the subsequent iterates of UOT (4.12) reduce to those of OT (4.8).

Proof. By the equivalence of norms in finite dimensional space and the conver-
gence analysis in [23] it leads to

lim
k\rightarrow +\infty 

\sum 
x\in \Omega h

\bigl( 
| \eta kh(x) - \eta \ast h(x)| + | \varphi k

h(x) - \varphi \ast 
h(x)| 

\bigr) 
= 0,

where (\bfitm \ast 
h, \eta 

\ast 
h,\varphi 

\ast 
h) is a group of optimal solutions to the UOT problem (4.4). There-

fore combining Theorem 4.2, for any \alpha > dL
2 we have \eta \ast h \equiv 0 and (\bfitm \ast 

h,\varphi 
\ast 
h) is a pair of

optimal solutions to the OT problem (4.5). Correspondingly,

lim
k\rightarrow +\infty 

\sum 
x\in \Omega h

\bigl( 
| \eta kh(x)| + | \varphi k

h(x) - \varphi \ast 
h(x)| 

\bigr) 
= 0,(4.27)

which indicates that

lim
k\rightarrow +\infty 

\| \eta kh\| h,\infty + \| \varphi k
h  - \varphi \ast 

h\| h,\infty = 0,(4.28)

where the norm \| u\| h,\infty is defined as

\| u\| h,\infty = max
x\in \Omega h

| u(x)| , for \forall u\in \BbbR (N+1)d .

Equivalently, one has that for any \epsilon > 0, there exists an integer N > 0 such that for
any k >N ,

\| \eta k - 1
h \| h,\infty + \| \varphi k - 1

h  - \varphi \ast 
h\| h,\infty < \epsilon .(4.29)

Note that for the step \eta kh in (4.12), at each point x\in \Omega h we have

\eta kh(x) = Prox\alpha \mu f (\eta 
k - 1
h (x) + \mu \varphi k - 1

h (x))

= argmin
\eta h

| \eta h| +
1

2\alpha \mu 
\| \eta h  - (\eta k - 1

h (x) + \mu \varphi k - 1
h (x))\| 2h,2

= sign(\eta k - 1
h (x) + \mu \varphi k - 1

h (x)) \cdot max
\bigl\{ 
| \eta k - 1

h (x) + \mu \varphi k - 1
h (x)|  - \alpha \mu ,0

\bigr\} 
.

(4.30)

Define

M :=max

\biggl\{ 
dL

2
,\| \varphi \ast 

h\| h,\infty 
\biggr\} 

and for any \alpha > M , let \epsilon \leq min\{ 1, \mu \} (\alpha  - M) in (4.29). Then for any k > N we
obtain that

| \eta k - 1
h (x) + \mu \varphi k - 1

h (x)| \leq \| \eta k - 1
h \| h,\infty + \mu \| \varphi k - 1

h \| h,\infty 
\leq \| \eta k - 1

h \| h,\infty + \mu \| \varphi k - 1
h  - \varphi \ast 

h\| h,\infty + \mu \| \varphi \ast 
h\| h,\infty 

\leq max\{ 1, \mu \} (\| \eta k - 1
h \| h,\infty + \| \varphi k - 1

h  - \varphi \ast 
h\| h,\infty ) + \mu \| \varphi \ast 

h\| h,\infty 
\leq max\{ 1, \mu \} \epsilon + \mu \| \varphi \ast 

h\| h,\infty \leq max\{ 1, \mu \} \epsilon + \mu M \leq \alpha \mu ,

(4.31)

which indicates that \eta kh(x) \equiv 0 for any x \in \Omega h. And correspondingly, the iterates of
UOT (4.12) reduce to those of OT (4.8) for k large enough.
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770 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

Fig. 1. \rho 0h.

Fig. 2. \rho 1h.

5. Numerical experiments. In this section we use two examples, shape de-
formation and color transfer problems, to illustrate the application of UOT and OT
problems using the primal-dual hybrid algorithm discussed above.

I. Shape deformation The first example is used to illustrate the convergence
of the UOT problem to the OT problem. Particularly, we take d = 2, \Omega h = [0,1]2

and the discrete distributions \rho 0h, \rho 
1
h are the silhouettes of cat images of the same

mass [27], as shown in Figures 1 and 2. The size of both images is 256\times 256 and the
algorithm is terminated when the primal-dual gap Rk

h < 10 - 6 or the iteration number
reaches 300000.

\bullet Convergence with \bfitalpha . We tune the value of \alpha from 0.01 to 1 with an
interval of 0.01 and get an optimal solution (\bfitm \alpha , \eta \alpha ) for each \alpha in the UOT
problem. Also we can obtain an optimal solution \bfitm ot of the OT problem. As
Theorem 4.2 states, the solution of the discrete UOT problem (4.4) converges
to the solution of the discrete OT problem (4.5) as \alpha gets larger, i.e., \bfitm \alpha \rightarrow 
\bfitm ot and \eta \alpha \rightarrow 0. Figure 3 shows the difference in mdif = | \bfitm \alpha  - \bfitm ot| h,2 and
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 771

Fig. 3. The figure shows the difference in normal y-axis (left) and log y-axis (right). Here we
choose N = 256. It can be seen that both m\mathrm{d}\mathrm{i}\mathrm{f} and \eta \mathrm{d}\mathrm{i}\mathrm{f} go to 0 as \alpha gets sufficiently large. In
particular when \alpha = 0.6, m\mathrm{d}\mathrm{i}\mathrm{f} = 3.2011 \times 10 - 8 and \eta \mathrm{d}\mathrm{i}\mathrm{f} = 0, and when \alpha is larger than 0.6061,
\eta \itd \iti \itf = 0 and m\itd \iti \itf = 0, which is consistent to the results proved in Theorems 4.2 and 4.4.

Table 1
The value of | \eta \ast \mathrm{d}\mathrm{i}\mathrm{f}| h,2 with different \alpha and different N(or h).

N = 128 N = 256 N = 512 N = 1024

\alpha = 0.1 0.3621 0.3583 0.3570 0.3563

\alpha = 0.4 0.0296 0.0288 0.0285 0.0283
\alpha = 0.6 0.1301 \times 10 - 4 0.1048 \times 10 - 4 0.1369 \times 10 - 4 0.1515 \times 10 - 4

\alpha = 0.63 0.1248 \times 10 - 7 0 0 0

\alpha = 1.0 0 0 0 0

\eta dif = | \eta \alpha | h,2 with different \alpha . For \alpha = 0.6, mdif = 3.2011\times 10 - 8 and \eta dif = 0,
and when \alpha is larger than some constant between 0.6 and 0.7, \eta dif = 0 and
mdif = 0, which is consistent with the results proved in Theorems 4.2 and 4.4.
In particular, we fine tune \alpha from 0.59 to 0.61 with interval equal to 10 - 4,
and when \alpha overrides 0.6061, both \bfitm dif and \eta dif come to 0, which indicates
that \eta \alpha = 0 and the UOT degenerates to OT with \bfitm \alpha =\bfitm ot.

\bullet Independence to the size of meshgrid \bfith . Notice that in Theorem 4.2,
the convergence of UOT to OT is unrelated to the choice of grid size h for
\alpha > dL/2; the optimal solution of UOT is always convergent to OT. We note
that here dL/2 = 1. In the experiments we choose four different sizes of images
with 128\times 128, 256\times 256, 512\times 512, 1024\times 1024, and the length is unified
to 1, i.e., Nh= L= 1. For different \alpha = 0.1,0.4,0.6,0.63,1.0, the results are
listed in Table 1. As we can see, for any fixed \alpha , | \eta \ast dif| h,2 remains almost the
same and when \alpha is larger than 0.63, which is smaller than dL/2 = 1, all
| \eta \ast dif| h,2 equal to 0 for different N .

II. Color transfer Besides the transformation between shape images, we also
provide an application of the UOT model for color transfer between three-channel
images.

The given target and source images are first transferred to the CIE-lab space
(l, a, b), where the l-space represents the luminance of the image, and a and b are
chromaticity coordinates. We fix the l-space as it is related to the lightness and
normalize a- and b-components into [0,1]. Then both a- and b-components are divided
into 32 intervals and the color histograms are obtained on these intervals respectively.
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772 ZHE XIONG, LEI LI, YA-NAN ZHU, AND XIAOQUN ZHANG

For both a- and b-components, we solve both UOT and OT problems to get the
optimal flux m\ast 

h. Then we can compute the velocity field with a value in a-space and
b-space through the connection in Lemma 3.1 as follows:

v(t;x) =
m\ast 

h(x)

t\rho 1(x) + (1 - t)\rho 0(x)
:=

m\ast 
h(x)

\mu t(x)
,(5.1)

where t is virtual time and x\in [0,1] is the partition position. In practice, the supports
of \rho 0 and \rho 1 are not always the same. To ensure the existence of v(t;x) and eliminate
the singularity of v(t;x) caused by small \mu t, we add a small perturbation \epsilon on \mu t, i.e.,

v\epsilon (t;x) =
m\ast 

h(x)

t\rho 1(x) + (1 - t)\rho 0(x) + \epsilon 
=

m\ast 
h(x)

\mu t(x) + \epsilon 
.(5.2)

For each x0 sampled from \rho 0, the corresponding trasported x1 in \rho 1 can be ob-
tained by solving the following ODE:\Biggl\{ 

\.x(t) = v\epsilon (t;x(t)), t\in (0,1),

x(0) = x0,
(5.3)

and x(1) is the target distribution.
By the one-step forward Euler method, we obtain the formula

x(tk) = x(tk - 1) +
m\ast 

h(x(tk - 1))

\mu tk - 1
(x(tk - 1)) + \epsilon 

for k= 1,2, . . . ,N,(5.4)

where tk = k\Delta t and N\Delta t= 1.
Following this procedure, we transport the a and b components of every pixel

in the target image to the corresponding one in the new image. Figure 4 shows the
results of color transfer for three pair of images of size 512 \ast 512.

Fig. 4. In each row, the first two columns are the target and source images, respectively. The
last four are the results by color transferring with different \alpha = 0.05,0.1,0.2,0.5, respectively. As the
value of \alpha increases, the color distribution of the target image is partially transferred.
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THE CONVERGENCE OF UNBALANCED OPTIMAL TRANSPORT 773

6. Conclusions. In this paper, we established the convergence from the Beck-
mann formulation of UOT to that of OT in both continuous and discrete settings. We
proposed to apply a primal-dual hybrid algorithm for solving the UOT problem, and
we provided a lower bound for the regularization parameter \alpha of UOT for its solution
reducing to the one of OT problem. Finally, we provided some applications of the
UOT model and illustrated the convergence numerically.

Acknowledgment. We thank the Student Innovation Center at Shanghai Jiao
Tong University for providing us with the computing services.
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