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Abstract
We consider a susceptible, infected, removed (SIR) system where the transmission
rate may be temporarily reduced for a fixed amount of time. We show that in order
to minimize the total number of fatalities, the transmission rate should be reduced
on a single contiguous time interval, and we characterize this interval via an integral
condition.We concludewith a few numerical simulations showing the actual reduction
obtained.
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1 Introduction

The SIR model was introduced by R. Ross and W. Hammer to model the spread
of infectious diseases (see Kermack et al. 1927; Brauer and Castillo-Chavez
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2012; Weiss 2013). In this model, we let S denote the fraction of individuals
that are susceptible to the disease, I the fraction of individuals that are infec-
tious, and R the fraction of individuals that are removed. Removed individuals
are those who have contracted the disease and have either recovered and acquired
immunity, or have died. The evolution of these three quantities is modelled by

∂t S = −βSI , (1.1a)

∂t I = βSI − γ I , (1.1b)

∂t R = γ I . (1.1c)

Here β is rate at which infectious individuals transmit the disease to the susceptible
population, and γ is the rate at which infectious individuals recover.

Typically β and γ are assumed to be model constants. However, there are situations
where one may be able to temporarily alter these constants. One example of this is the
current COVID-19 outbreak. Here non-pharmaceutical interventions such as quaran-
tines and social distancing were employed to temporarily reduce the transmission rate
(see for instance Ferguson et al. 2020; Rampini 2020; Maier and Brockmann 2020;
Laaroussi and Rachik 2020).

In order to study this scenario, we assume that the transmission rate β is piecewise
constant, and can take on one of two values: the normal transmission rate, βn , and a
reduced transmission rate, βq < βn , when quarantines / social distancing measures
are in effect. While these measures greatly reduce and may even completely stop the
spread of the outbreak, for societal reasons one may not be able to impose them for
extended periods of time. This leads to a natural and interestingmathematical question:

Given a fixed limit T on the length of time social distancing / quarantines may
be imposed, how should they be scheduled in order to minimize the total num-
ber of fatalities? Should the social distancing / quarantines be imposed in one
contiguous interval, or broken up into multiple intervals? Should it be imposed
early, when very few individuals are infected, or later when the infection levels
are higher?

To study this mathematically, we assume that a constant fraction of individuals who
contract the disease will die. 1 In this case, minimizing the total number of fatalities
is equivalent to minimizing R(∞) = limt→∞ R(t). Consequently, we will formulate
all our results directly in terms of R(∞). We remark that R(∞) = 1− S(∞) without
social distancing/quarantines can be computed by the conservation of I + S− γ

βn
log S

(see the Proof of Lemma 2.1).
Formally, in equations (1.1a)–(1.1c) the set of times when social distanc-

ing/quarantines are in effect may be an arbitrary measurable set. However, it is only
practical to impose and lift quarantines finitely many times, and thus we restrict our

1 While this assumption is used in many situations, it does not always apply. For instance, during the
COVID-19 pandemic the fatality rate was roughly constant when the number of infected individuals was
small. However, when this number increased beyond the health-care capacity, the fatality rate almost
doubled.
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attention to this situation. Themain result of this paper shows that in order to minimize
R(∞), it is always better to impose social distancing/quarantines in a single contigu-
ous window of time, as opposed to splitting it up into multiple intervals (of the same
total length). Moreover, the best time window to impose social distancing/quarantines
is often close to the time when the infection peaks, and we characterize this time
window analytically. This is stated precisely below.

Theorem 1.1 Fix T > 0 and let T be the collection of all sets τ ⊆ [0,∞) such that τ
is a finite union of intervals with total length T . Given τ ∈ T define βτ : [0,∞) → R

by

βτ (t) =
{

βq t ∈ τ,

βn t /∈ τ,

for some constants 0 < βq < βn, and γ > 0. Let Sτ , I τ , Rτ be the solution to

∂t S
τ = −βτ Sτ I τ , ∂t I

τ = βτ Sτ I τ − γ I τ , ∂t R
τ = γ I τ , (1.2)

with fixed initial data I τ (0) = I0 ∈ (0, 1), Sτ (0) = 1 − I0, Rτ (0) = 0. Then, the set
of times τ ∈ T that minimizes Rτ (∞) is always a single continuous interval of length
T , and at least one of the following hold:

(1) The minimizing interval τ is [0, T ].
(2) The minimizing interval τ is characterized by the integral condition

∫
τ

γ − βn Sτ

I τ
dt = 0. (1.3)

If βn ≤ γ , then the first case above always holds. If instead βn > γ , then there exists
ε0 > 0 such that the second case above holds for all I0 ∈ (0, ε0).

Remark From the proof we will see that the ε0 above can be estimated by

ε0 ≈ 1

βqT max
{
1, e(βq−γ )T

} (
1 − γ

βn

)
.

Recall that the basic reproduction number, denoted byRn
0, is defined to be the ratio

βn/γ . When Rn
0 ≤ 1 the transmission rate is slower than the recovery rate, and the

infection doesn’t spread. In this case the fraction of the population that is infected
decreases monotonically. Theorem 1.1 states that the total number of infected people
is minimized if social distancing/quarantines are imposed at time t = 0, and this is
not unexpected.

The more interesting case above is when Rn
0 > 1. In this case βn > γ , and the

infectionwill spread through the population.Onemight nowwonderwhether it ismore
advantageous to impose social distancing/quarantines early when very few people are
infected, or if its better to wait until a larger fraction of the population is infected, or if
one should split up the quarantine into many short intervals. Theorem 1.1 guarantees
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that then the most effective fixed length quarantine is a always a single contiguous
time interval. Moreover, when the second assertion of Theorem 1.1 holds, this interval
contains the time when the infection peaks. To see this, note that equation (1.3) and
the fact that S is decreasing implies that βn Sτ − γ is positive at the start of τ , and
negative at the end of τ . Thus, from (1.1b) we see that the disease is spreading at the
start of τ , attains its peak sometime during the time interval τ , and is dying out at
the end of τ . Hence the time interval τ that minimizes Rτ (∞) must include the point
when the number of infected individuals attains its peak. (See Fig. 2 for a simulation
illustrating this).

We also remark that when βn > γ and I0 ≥ ε0, either conclusion (1) or (2) in
Theorem 1.1 may hold, and we can not determine which one. It is easy to see that if
the population already has herd immunity (i.e. I0 ≥ 1 − γ /βn = 1 − 1/R0), then
the first conclusion in Theorem 1.1 must necessarily hold. When I0 ∈ (ε0, 1− 1/R0)

then either conclusion (1) or (2) may hold, and we can not apriori determine which.

Discussion and further questions

Before proceeding with the proof of Theorem 1.1, we now provide a brief summary
of related results and open questions that merit further study.

First we note that Theorem 1.1 can be reformulated more generally as an optimal
control problem. Namely, consider the case where adjusting the severity of the quar-
antine results in a variable transmission rate β = β(t). There is however a social and
economic cost associated to imposing a quarantine measures, and this cost increases
with the severity of the quarantine. Of course, not imposing a quarantine results in
more infected individuals and there is a social and economic cost associated with their
care. Combining these, we can quantify the total cost over the course of the infection
as

C(t)
def=

∫ ∞

0

(
cq (βn − β(t)) + ci (I (t))

)
dt,

where cq and ci are increasing functions representing the costs associated to imposing
quarantines, and the care of infected individuals respectively.

One can now study how the cost function C can be minimized, subject to various
practical constraints. The constraint we study in this paper requires β to be piecewise
constant, only take on the values βq or βn and

∫ ∞
0 (βn − β) dt = T (βn − βq). Under

this constraint, Theorem 1.1 finds the optimal β minimizing the cost function C with
cq = 0 and ci (x) = x .

Another constraint studied by Miclo et al. (2020) is to only consider solutions for
which I (t) ≤ Ī0, for some exogenously specified level Ī0 ∈ (0, 1]. Here Ī0 represents
the health care capacity, above which the mortality rate may be dramatically higher.
Under this constraint with the cost functions cq(x) = x+ and ci (x) = 0, Miclo et al.
(2020) show that the quarantine policy that minimizes C is one where the infection
grows unchecked until I = Ī0, after which one imposes a quarantine and adjusts
the severity to hold I (t) = Ī0 until herd immunity is achieved. Recently, due to the
COVID19 pandemic, many authors have studied various other costs and policies both
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numerically and analytically, and we refer the reader to Behncke (2000), Alvarez et al.
(2020), Kissler et al. (2020), Kruse and Strack (2020) and Toda (2020).

Another aspect thatmerits further study is a spatially-dependent system considering
diffusion and population demography. In this case the SIR system becomes a family
of reaction diffusion systems (Fitzgibbon et al. 2001, 2004; Laaroussi and Rachik
2020). In this setting one may naturally formulate an analog of Theorem 1.1 with the
additional spatial component: given an upper bound on the product of the total time the
quarantine is imposed and the size of the region it is imposed on, what is the optimal
quarantine policy that minimizes the total number of fatalities? This, however, is much
harder to analyze and depends intrinsically on the spatial geometry, and we do not
know if there will be a simple description of the optimal quarantine policy.

A third most important factor not considered in this paper is that of heterogeneous
populations. In a large group of humans there are various factors (such as social habits,
or inherent tolerance) that contribute towards variance of the population. One accounts
for this by using a heterogeneous SIR model which divides the population into several
homogeneous groups. Counter-intuitively, in this case, a more severe quarantine can
result in a higher fraction of the population being infected (see Britton et al. 2020);
an effect that is impossible to observe in a homogeneous population.

Numerous authors (see for instance Chikina and Pegden 2020b; Rampini 2020;
Acemoglu et al. 2020) have also observed numerically that for heterogeneous popu-
lations quarantine measures that are targeted to each group are an order of magnitude
more effective than un-targeted ones. Theorem 1.1 can again be naturally formulated
in this setting. The proof, however, does not generalize, and we presently are unable
to analytically characterize the optimal quarantine strategy in this case.

Finally, we mention one novel feature that is unique to the recent COVID19 out-
break: asymptomatic carriers – individuals who transmit the disease but show no
symptoms. Modeling their behavior is a newly developing, active area of study and
we refer the reader to Maier and Brockmann (2020), Chen et al. (2020) and Ganyani
et al. (2020). At present we do not know how best to model their behavior and how to
reformulate Theorem 1.1 to capture their effect.

Plan of this paper

In Sect. 2 we state two lemmas required to prove Theorem 1.1, and prove Theorem 1.1
modulo these lemmas. In Sect. 3 we prove both these lemmas. Finally, in Sect. 4 we
perform a few numerical simulations to illustrate Theorem 1.1.

2 Proof of Theorem 1.1

Our aim in this section is to prove Theorem 1.1. The first step is to restrict our attention
to social distancing/quarantines imposed on a contiguous interval, and show that the
condition (1.3) is necessary. Fix S0 ∈ (0, 1), and set I0 = 1 − S0. Given any τ ∈ T ,
we will subsequently denote Sτ , I τ , Rτ to be the solution to (1.2) with initial data
Sτ (0) = S0, I τ (0) = I0, Rτ (0) = 0.
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Given any S0, I0 ∈ (0, 1) with S0 + I0 ≤ 1, define

Q(S0, I0, T ) =
∫ T

0

γ − βn Sq(t)

Iq(t)
dt, (2.1)

where Sq , Iq solve (1.1a)–(1.1b) with β = βq and initial data Sq(0) = S0 and Iq(0) =
I0. The necessity of (1.3) for contiguous intervals τ can now be stated as follows.

Lemma 2.1 Let t0 ≥ 0 and τ = [t0, t0 + T ].
(1) Suppose Q(Sτ (t0), I τ (t0), T ) > 0 and t0 > 0. Given δ ∈ (0, t0), define σ = σδ =

[t0 − δ, t0 + T − δ]. Then, for all sufficiently small δ, we must have Rσ (∞) <

Rτ (∞). Moreover, if Sτ (t) = Sσ (t ′) for some t > t0 + T , t ′ > t0 + T − δ and
sufficiently small δ, then we must have I σ (t ′) < I τ (t).

(2) On the other hand, suppose Q(Sτ (t0), I τ (t0)) < 0. Now given any δ > 0, define
σ = σδ = [t0 + δ, t0 + δ + T ]. Then, for all sufficiently small δ, we must have
Rσ (∞) < Rτ (∞). Moreover, if Sτ (t) = Sσ (t ′) for some t > t0 + T and t ′ >

t0 + T + δ and sufficiently small δ, then we must have I σ (t ′) < I τ (t).

Next we show that Rτ (∞) attains a minimum, and this minimum is attained when
τ is a single contiguous interval. Note that the set of all τ ∈ T consisting ofm disjoint
intervals can be identified with the set Tm ⊆ R

2m−1 defined by

Tm =
{

(t1, 	1, . . . , tm−1, 	m−1, tm)
∣∣0 ≤ ti < ti + 	i < ti+1,

m−1∑
i=1

	i < T

}
. (2.2)

Indeed, we identify the ordered tuple (t1, 	1, . . . , tm−1, 	m−1, tm) with the set τ ⊆
[0,∞) defined by

τ =
(
m−1⋃
1

[ti , ti + 	i ]
)

∪
⎡
⎣tm, T −

m−1∑
j=1

	 j

⎤
⎦ .

Let T̄m denote the closure of Tm ⊆ R
2m−1, and define Bm−1 = T̄m −Tm . Note that

through the above identification, the set Bm−1, represents a set of times τ ∈ T with
m −1 (or less) disjoint intervals of total length T . We will now show that even though
T̄m is an unbounded set, the function τ �→ R∞(τ ) attains a minimum on T̄m , and this
minimum must be attained on Bm−1.

Lemma 2.2 If m > 1, then the infimum of Rτ (∞) over all τ ∈ T̄m is attained at some
point τ ∈ Bm−1.

Momentarily postponing the proofs of Lemmas 2.1 and 2.2 , we prove Theorem 1.1.

Proof of Theorem 1.1 Note that T can be viewed as an increasing union of the Tm’s. By
repeatedly applying Lemma 2.2, we see that for any m ≥ 1, the minimizer of Rτ (∞)

over all τ ∈ T consisting of m intervals or less must be attained when τ is a single
contiguous interval. In this case, Lemma 2.1 forces the condition (1.3) to be satisfied,
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unless τ = [0, T ]. This proves that either assertion (1) or assertion (2) in Theorem 1.1
must hold.

For the last part of the theorem, suppose first βn ≤ γ . Since Sτ < 1 and I τ > 0
this forces Q(Sτ (t0), I τ (t0), T ) > 0 for all t0 ≥ 0. Thus condition (1.3) can not be
satisfied by any interval τ ∈ T , and hence the first assertion of Theorem 1.1 must
hold.

Finally, it only remains to show that when βn > γ , there exists ε0 > 0 such that if
I (0) ∈ (0, ε0) then (1.3) holds for the minimizing interval τ . Since we already know
that one of the two conclusions (1) or (2) in Theorem 1.1 must hold, it suffices to show
that the conclusion (1) does not hold. To do this, by Lemma 2.1 it suffices to show that
Q(1 − ε, ε, T ) < 0 for all ε ∈ (0, ε0).

To see Q(1 − ε, ε, T ) < 0, observe that (1.1b) implies

I τ (t) = ε exp

(∫ t

0
(βq S

τ (t) − γ ) ds

)
≤ ε max

{
1, e(βq−γ )T

}
,

for all t ≤ T . Consequently,

Sτ (t) = (1 − ε)e−βq
∫ t
0 I (s)ds ≥ (1 − ε)e

−βqεT max
{
1,e(βq−γ )T

}
,

for all t ≤ T . Since γ /βn < 1 by assumption, the above implies that Sτ (t) ≥ γ /βn for
all t ∈ τ , provided ε0 is sufficiently small. This forces Q(1−ε, ε, T ) < 0, concluding
the proof of Theorem 1.1. �

3 Proof of Lemmas

This section is devoted to the proofs of Lemmas 2.1 and 2.2 .WebeginwithLemma2.1.

Proof of Lemma 2.1 Note that as t → ∞, I τ (t) → 0, and hence Rτ (∞) = 1−Sτ (∞).
Since Sτ + I τ + Rτ = 1, minimizing Rτ (∞) is the same as maximizing Sτ (∞). In
order to do this we study the behavior of Sτ as a function of I τ . Note first that when
β, γ are constants, solutions to (1.1a)–(1.1b) conserve the quantity

I + S − γ

β
log S.

This can readily be checked by differentiating and checking ∂t (I + S − γ
β
log S) = 0.

Thus, when no quarantine is imposed, one can compute S(∞) by solving the tran-
scendental equation

S(∞) − γ

β
log S(∞) = 1 − γ

β
log S0.

In our case β is not constant and there is no such explicit equation determin-
ing Sτ (∞). However, β is piecewise constant, and so I τ + Sτ − γ

βn
log Sτ must be
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constant on every connected component of the complement of τ . Hence, we consider
the family of curves C = {


c
∣∣c ∈ R

}
, where


c
def=

{
(S, I ) ∈ [0, 1]2∣∣S + I − ρn log S = c, S + I ≤ 1

}
, and ρn

def= γ

βn
.

Note ρn above is simply the reciprocal of the basic reproduction numberR0 = βn/γ .
Each of the curves 
c meet the line I = 0 at most twice (see Fig. 1). The intersec-

tion when S > ρn correspond to unstable equilibria, and so as t → ∞, (Sτ (t), I τ (t))
will approach some point (Sτ (∞), 0) with Sτ (∞) < ρn . Thus, in order to maxi-
mize Sτ (∞), we look for curves 
c that meet the segment {I = 0, S ≤ ρn} at an
S-coordinate that is as large as possible. Implicitly differentiating S − ρn ln S = c we
see that dc

dS < 0, and so smaller values of c will lead to larger values of Sτ (∞).
We will now prove the first assertion in Lemma 2.1. The proof of the second

assertion is similar. Choose t0 > 0, assume Q(Sτ (t0), I τ (t0), T ) > 0 and let σ =
[t0 − δ, t0 + T − δ] for some small δ ∈ (0, t0). For notational convenience, define

(Sτ
0 , I τ0 )

def= (Sτ (t0), I
τ (t0)), (Sτ

1 , I τ1 )
def= (Sτ (t0 + T ), I τ (t0 + T )),

(Sσ
0 , Iσ0 )

def= (Sσ (t0 − δ), Iσ (t0 − δ)), (Sσ
1 , Iσ1 )

def= (Sσ (t0 + T − δ), Iσ (t0 + T − δ)),

and let

cτ
def= Sτ

1 + I τ
1 − ρn ln S

τ
1 , cσ

def= Sσ
1 + I σ

1 − ρn ln S
σ
1 .

We first claim

cσ − cτ = −δβq(ρq − ρn) I
τ
0 I

τ
1 Q(Sτ

0 , I τ
0 , T ) + O(δ2). (3.1)

Once (3.1) is established, our assumption on Q implies cσ < cτ . Using the argument in
the previous paragraph, this in turn will imply Sσ (∞) > Sτ (∞) and hence Rσ (∞) <

Rτ (∞) as desired.
To prove (3.1), define the functions gn and gq by

gn(x)
def= −x + ρn log x and gq(x)

def= −x + ρq log x . (3.2)

Using the fact that

I σ (t) = gq(S
σ (t)) + I σ

0 − gq(S
σ
0 ) and I τ (t ′) = gq(S

τ (t ′)) + I τ
0 − gq(S

τ
0 ),

(3.3)

for all t ∈ σ and t ′ ∈ τ , we note

cσ − cτ = I σ
1 − gn(S

σ
1 ) − (

I τ
1 − gn(S

τ
1 )

)
= I σ

0 + (ρq − ρn) log S
σ
1 − gq(S

σ
0 ) − (

I τ
0 + (ρq − ρn) log S

τ
1 − gq(S

τ
0 )

)
= (I σ

0 − I τ
0 ) − (gq(S

σ
0 ) − gq(S

τ
0 )) + (ρq − ρn)

(
log Sσ

1 − log Sτ
1

)
. (3.4)
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We now estimate each term on the right.
The first two terms can be estimated quickly. Indeed equation (1.2) shows

(Sσ
0 , I σ

0 ) = (Sτ
0 , I τ

0 ) + δ

(
βn S

τ
0 I

τ
0 ,

(
−1 + ρn

S0

)
βn S

τ
0 I

τ
0

)
+ O(δ2), (3.5)

and hence

I σ
0 − I τ

0 =
(

−1 + ρn

S0

)
βn S

τ
0 I

τ
0 δ + O(δ2) (3.6)

gq(S
σ
0 ) − gq(S

τ
0 ) =

(
−1 + ρq

Sτ
0

)
βn S

τ
0 I

τ
0 δ + O(δ2). (3.7)

The crux of the matter is the last term. For this, let �S = Sσ
1 − Sτ

1 and note
that (1.1a) and (3.3) imply

T =
∫ t0+T

t0
dt = −

∫ t0+T

t0

∂t Sσ

βq Sσ I σ
dt =

∫ Sσ
0

Sσ
1

ds

βqs
(
gq(s) + I σ

0 − gq(Sσ
0 )

) .

Using (3.5)–(3.7) and the above we see

T =
∫ Sσ

0

Sσ
1

ds

βqs
(
gq(s) + I σ

0 − gq(Sσ
0 )

)
=

∫ Sτ
0+δβn Sτ

0 I
τ
0

Sτ
1+�S

ds

βqs
(
gq(s) + I τ

0 − gq(Sτ
0 ) − (ρq − ρn)βn I τ

0 δ
) + O(δ2)

=
∫ Sτ

0

Sτ
1

ds

βqs
(
gq(s) + I τ

0 − gq(Sτ
0 )

) − �S

βq Sτ
1 I

τ
1

+ δβn

βq

+ δ

∫ Sτ
0

Sτ
1

(ρq − ρn)βn I τ
0

βqs(gq(s) + I τ
0 − gq(Sτ

0 ))2
ds + O(δ2)

Using (1.1a) and (3.3) this simplifies to

T =
∫ t0+T

t0
dt − �S

βq Sτ
1 I

τ
1

+ δ

(
βn

βq
+ (ρq − ρn)βn I

τ
0

∫ t0+T

t0

dt

I τ (t)

)
+ O(δ2),

and hence

�S = δβn S
τ
1 I

τ
1

(
1 + (ρq − ρn)βq I

τ
0

∫ t0+T

t0

dt

I τ

)
+ O(δ2). (3.8)
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Now, using (3.6), (3.7) and (3.8) in (3.1) we see

cσ − cτ = (ρq − ρn)

(
�S

Sτ
1

− βn I
τ
0 δ

)
+ O(δ2)

= δβn(ρq − ρn)I
τ
0 I

τ
1

((
1

I τ
0

− 1

I τ
1

)
+ βq(ρq − ρn)

∫ t0+T

t0

dt

I τ

)
+ O(δ2).

(3.9)

Since

1

I τ
0

− 1

I τ
1

=
∫ I τ

1

I τ
0

di

i2
=

∫ t0+T

t0

βq Sτ − γ

I τ
dt,

we see

cσ − cτ = δβq(ρq − ρn)I
τ
0 I

τ
1

∫ t0+T

t0

βn Sτ − γ

I τ
dt + O(δ2),

proving (3.1) as claimed. As explained earlier, this will prove Rσ (∞) < Rτ (∞) as
desired.

It remains to show that if for some t > t0 + T and t ′ > t0 + T − δ we have
Sτ (t) = Sσ (t ′), then we must have I σ (t ′) < I τ (t). To see this, we consider the
phase portrait the curve I σ vs Sσ for times t ′ ≥ t0 + T − δ, and phase portion of the
curve I τ vs Sτ for times t ≥ t0 + T . Since the times we consider are after the end
of the intervals τ and σ , both these curves must be members of C. We already know
Rσ (∞) < Rτ (∞), and hence Sσ (∞) > Sτ (∞). This means that in the I vs S plane,
the curve parametrized by (Sσ (t ′), I σ (t ′)) for t ′ > t0 + T − δ must lie below the
curve parametrized by (Sτ (t), I τ (t)) for t > t0 + T . Thus if Sτ (t) = Sσ (t ′) for some
t > t0 + T , t ′ > t0 + T − δ, we must have I σ (t ′) < I τ (t). This finishes the proof. �

An immediate corollary to Lemma 2.1 is that if the minimizer τ ∈ T is not a
contiguous interval, then the integral condition (1.3) must be satisfied on the last
contiguous interval in τ .

Lemma 3.1 Suppose τ = ⋃m
i=1[ti , ti + 	i ], with 0 < ti < ti + 	i < ti+1, and∑

	i = T . Let τ ′ = ⋃m−1
i=1 [ti , ti + 	i ], and Qm = Q(Sτ ′

(tm), I τ ′
(tm), 	m).

(1) If Qm > 0 then there exists δ ∈ (0, tm − tm−1 − 	m−1) such that for

σ = τ ′ ∪ [tm − δ, tm − δ + 	m]

we have Rσ (∞) < Rτ (∞).
(2) If Qm < 0 then there exists δ > 0 such that for

σ = τ ′ ∪ [tm + δ, tm + δ + 	m]

we have Rσ (∞) < Rτ (∞).
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Fig. 1 Various curves 
c in the S-I plane with R0 = 2.4. Only the portion of the curves that intersect the
region S ≥ 0, I ≥ 0, 1 − S − I ≥ 0 are shown

Proof ApplyingLemma2.1with T = 	m with initial data Sτ (tm−1+	m−1), I τ (tm−1+
	m−1) immediately yields Lemma 3.1. (Note, while the convention Rτ (0) = 0 was
used throughout Sect. 2, it is not required for Lemma 2.1, and was not used in the
proof of Lemma 2.1. Thus our application of Lemma 2.1 above is valid.) �

Our next result establishes an “order preserving” property of solutions to (1.2).
Fix δ > 0 and S0, I0 ∈ (0, 1) with S0 + I0 ≤ 1. Let τ = [0, T ], and consider the
following two solutions to (1.2). The first, denoted by S, I , with initial data (S0, I0),
and the second, denoted by (Sδ, I δ) with initial data (S0, I0 − δ). In the S-I plane,
must the curve (Sδ, I δ) lie below that of (S, I )?

Onemight, at first sight, think this is certainly true. However, since βτ depends on t ,
the system (1.2) is not autonomous, and so it is possible for the curves (Sδ, I δ) and
(S, I ) to cross each other. Various such non-monotonicity phenomena were studied in
Chikina and Pegden (2020a). We will also provide a simple example of this shortly.

Fortunately, it turns out that if additionally we assume Q(S0, I0, T ) = 0, then
(Sδ, I δ) must eventually lie below the curve (S, I ). This is all we need in the proof,
and is stated as our next lemma.

Lemma 3.2 Let S0, I0 ∈ (0, 1)with S0+ I0 ≤ 1, and δ ∈ (0, I0). Let τ = [0, T ], (S, I )
solve (1.2) with initial data S(0) = S0, I (0) = I0, and let (Sδ, I δ) solve (1.2) with
initial data Sδ(0) = S0, I δ(0) = I0 − δ. If Q(S0, I0, T ) = 0, then for all sufficiently
small δ we must have Rδ(∞) < R(∞). (Here R = 1− S− I , and Rδ = 1− Sδ − I δ .)

Proof Let S1 = S(T ), I1 = I (T ), Sδ
1 = Sδ(T ), and I δ

1 = I δ(T ). We will first show

I1 + S1 − ρn log S1 > I δ
1 + Sδ

1 − ρn log S
δ
1 (3.10)

if and only if

βq
(
ρq − ρn

)
I (T )

∫ T

0

1

I (t)
dt < 1. (3.11)
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To see this, define

c1 = I1 + S1 − ρn log S1, and cδ
1 = I δ

1 + Sδ
1 − ρn log S

δ
1

We claim

cδ
1 − c1 = δ

(
βq(ρq − ρn)I1

∫ T

0

1

I (t)
dt − 1

)
+ O(δ2), (3.12)

from which the equivalence of (3.10) and (3.11) immediately follows.
The proof of (3.12) is very similar to the proof of Lemma 2.1. Let gq be defined

by (3.2), and let c0 = I0 − gq(S0). Since I − gq(S) is conserved, we note

I (t) = gq(S(t)) + c0, and I δ(t) = gq(S
δ(t) + c0 − δ,

for all t ∈ [0, T ]. From (1.1a), we see

−
∫ T

0

∂t S

S I
= βqT = −

∫ T

0

∂t Sδ

Sδ I δ
,

and hence

∫ S0

S1

ds

s(gq(s) + c0)
=

∫ S0

Sδ
1

ds

s(gq(s) + c0 − δ)
.

Taylor expanding as in the proof of Lemma 2.1 immediately shows

�S
def= Sδ

1 − S1 = δS1 I1

∫ S0

S1

ds

s(gq(s) + c0)2
+ O(δ2) = δβq S1 I1

∫ T

0

dt

I
+ O(δ2).

Consequently,

cδ
1 − c1 = −δ + (ρq − ρn)(log S

δ
1 − log S1) = −δ

ρq − ρn

S1
�S + O(δ2),

from which (3.12) follows. This establishes the equivalence of (3.10) and (3.11).
Now we use this equivalence to prove Lemma 3.2. Using (3.9) we see that

Q(S0, I0, T ) = 0 is equivalent to

1

I0
− 1

I1
+ βq(ρq − ρn)

∫ T

0

dt

I
= 0. (3.13)
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This implies

βq(ρq − ρn)I1

∫ T

0

dt

I
= 1 − I1

I0
< 1 (3.14)

as desired. �
Remark Before proceeding further, we provide an example showing that Lemma 3.2
is false if we drop the assumption that Q(S0, I0, T ) = 0. To do this note that in the
above proof we establish the equivalence between (3.10) and (3.11) without using the
assumption that Q(S0, I0, T ) = 0. Thus, if we produce an example where (3.11) is
false, then (3.10) will also be false, which is what we want.

To construct this example, suppose ρn is very small, and ρq < 1. Choose T such
that S(T ) = ρq , and let τ = [0, T ]. By making I0 sufficiently small, T can be made
arbitrarily large. We choose I0 large enough so that

T >
1

βq(ρq − ρn)
.

Now for t ≤ T , note (1.1b) implies

∂t I = βq I (S − ρq) > 0.

Hence the left hand side in (3.11) can be estimated by

βq
(
ρq − ρn

)
I (T )

∫ T

0

1

I (t)
dt ≥ βq

(
ρq − ρn

)
T > 1,

by our choice of I0. This in turn implies (3.10) is false, and hence Rδ(∞) > R(∞)

for all sufficiently small δ, contrary to the conclusion of Lemma 3.2.

Next, to prove of Lemma 2.2, we need a few elementary properties of (1.2).

Lemma 3.3 Given τ ∈ T , let (Sτ , I τ ) solve (1.2)with initial data I τ (0) = I0 ∈ (0, 1)
and Sτ (0) = 1 − I0.

(1) For every τ ∈ T , the function t �→ Sτ (t) is strictly decreasing, and I τ (∞) = 0.
(2) There exists T∗ = T∗(βn, γ, T , I0) such that for every τ ∈ T , we have

0 < Sτ (t) <
γ

βn
, for all t > T∗.

(3) For every m ≥ 1, the functions τ �→ Rτ (∞) is continuous on T̄m. Moreover,
Rτ (∞) = 1 − Sτ (∞) ∈ (0, 1).

Proof of Lemma 3.3 From (1.2) we see that Sτ , I τ > 0 for all t > 0. This implies
∂t Sτ < 0, showing Sτ is a decreasing function. Since τ is always a bounded set,
(Sτ , I τ ) satisfy (1.1a)–(1.1b) with constant β for all large time. In this case it is well
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known that I τ decreases exponentially to 0 (see for instance Weiss 2013; Brauer and
Castillo-Chavez 2012).

For the second assertion, note that Sτ (t) < 1 for all t > 0. Thus if βn ≤ γ we
are done. Now we suppose βn > γ . In this case if 1 − I0 < γ/βn , then we simply
choose T∗ = 0. If not, suppose for some T0 ≥ 0 we have Sτ (T0) ≥ γ /βn . Since Sτ

is decreasing, this implies Sτ (t) ≥ γ /βn for all t ≤ T0. Using (1.2) we see that this
means

∂t I
τ ≥

{
0 t ∈ [0, T0] − τ,

−γ I τ t ∈ [0, T0] ∩ τ.

Since the total length of τ is T , this implies

I τ (t) ≥ I0e
−γ T for all t ≤ T0.

Using this in (1.2) shows that

Sτ (t) ≤ (1 − I0) exp
(
−t I0e

−γ T
)

for all t ≤ T0.

Since by assumption Sτ (T0) ≥ γ /βn , this implies

T0 ≤ eγ T

I0
log

(
βn(1 − I0)

γ

)
def= T∗.

Since T∗ is independent of τ , we obtain the second assertion of the lemma.
Finally it remains to prove that τ �→ Rτ (∞) is continuous on T̄m . To fix notation,

identify τ with a subset of [0,∞) using (2.2). By standard ODE theory we know that
the function τ �→ (Sτ (tm + 	m), I τ (tm + 	m)) is continuous. After time tm + 	m , we
note that (Sτ , I τ ) satisfy (1.1a)–(1.1b) with β = βn . In this case it is know that

Sτ (∞) = Sτ (tm + 	m) exp

(
−βn

γ

[
Sτ (tm + 	m) + I τ (tm + 	m) − Sτ (∞)

])
.

The implicit function theorem now shows τ �→ Sτ (∞) is continuous. Since I τ (∞) =
0, and Sτ + I τ + Rτ = 1, this in turn implies τ �→ Sτ (∞) is continuous on T̄m . �

Finally, we need to rule out the possibility that the infimum of Rτ (∞) over Tm is
attained at ∞. This is our next Lemma.

Lemma 3.4 Let T∗ be as in Lemma 3.3, and let τ = ∪n
i=1[ti , ti + 	i ] ∈ T for some

n ≥ 1. Fix 	 > 0. For any t ≥ max {tn + 	n, T∗}, define σ(t) = τ ∪ [t, t + 	] ∈ T .
The function t �→ Rσ(t)(∞) is increasing in t.

Proof Note that for t > T∗, wemust have Sσ(t)(t) ≤ ρn . Hence, by (2.1) wemust have
Q(Sσ(t)(t), Rσ(t)(t), 	) > 0. Now by Lemma 2.1 part (1), we see that Rσ(t−δ)(∞) <

Rσ(t) for all sufficiently small δ, finishing the proof. �
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With the above tools, we are now ready to prove Lemma 2.2.

Proof of Lemma 2.2 Let T∗ be as in Lemma 3.3.
Fix any T ∗ > T + T∗. Define T ∗

m ⊆ Tm by

T ∗
m

def=
{

(t1, 	1, . . . , tm−1, 	m−1, tm)
∣∣0 < ti < ti + 	i < ti+1,

m−1∑
i=1

	i < T , tm < T ∗
}

.

As before, we identify τ ∈ T ∗
m with τ = (∪m−1

i=1 [ti , ti+	i ])∪[tm, tm+T−∑m−1
j=1 	 j ] ∈

T . Let T̄ ∗
m denote the closure of Tm in R

2m−1. Note that for any τ ∈ T̄m , if the last
contiguous interval in τ starts after time T∗, then Lemma 3.4 implies that shifting this
interval to the left decreases R(∞). Moreover, if more than one contiguous interval
in τ starts after T∗, then repeatedly applying Lemma 3.4 shows that they can bemerged
and shifted left to decrease R(∞), and tm can be shifted to be smaller than T ∗. This
implies

inf
τ∈T̄m

Rτ (∞) = inf
τ∈T̄ ∗

m

Rτ (∞).

Since τ �→ Rτ (∞) is continuous (Lemma 3.3), and T ∗
m is compact, the infi-

mum must be attained. Hence, there exists τ = (t1, 	1, . . . , tm, 	m) ∈ T̄m such that
Rτ (∞) = infτ∈T̄m Rτ (∞).

We now claim that when m > 1, we must have τ ∈ Bm−1. To prove this it suffices
to show that τ /∈ Tm . Suppose, for sake of contradiction, that τ ∈ Tm . Let τ ′ and
Qm be as in Lemma 3.1. Since τ minimizes Rτ (∞) by assumption, Lemma 3.1
implies that Qm = 0. Then, Sτ (t) > ρn for all t ∈ [tm−1, tm−1 + 	m−1) so that
Q(Sτ (tm−1), I τ (tm−1), 	m−1) < 0. Let δ > 0 be small and define σ ′ by

σ ′ =
(
m−1⋃
i=1

[ti , ti + 	i ]
)

∪ [tm−1 + δ, tm−1 + δ + 	m−1].

By continuity of solutions, there must exist t ′m > tm−1+δ+	m−1 such that Sσ ′
(t ′m) =

Sτ ′
(tm) when δ is small enough. Define σ = σ ′ ∪ [t ′m, t ′m + 	m], and observe that

by Lemma 3.1 we must have I σ (t ′m) = I σ ′
(t ′m) < I τ (tm). Now, since Qm = 0,

Lemma 3.2 implies that Rσ (∞) < Rτ (∞) for small δ, as the gap between I σ (t ′m) and
I τ (tm) tends to zero when δ → 0 by continuity. Thus we have produced σ ∈ T such
that Rσ (∞) < Rτ (∞), contradicting our assumption. This finishes the proof. �

4 Numerical simulations

We conclude this paper with numerical simulations showing how significant the reduc-
tion in R(∞) is. We will also fix the time window when social distancing/quarantines
are in effect to be 30 days (i.e. T = 30). Choose γ = 1/14, corresponding to a
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Fig. 2 Left: I , R vs t both with a 30 day, optimally scheduled, quarantine and without any quarantine.
Right: The value of R(∞) versus the time when a 30 day quarantine is started

Fig. 3 Minimum value of R(∞) when a 30 day quarantine is optimally imposed. The figure on the left
plots R(∞) vs Rq

0 for a few different values of Rn
0. The figure on the right is a hot/cold plot of R(∞)

where Rn
0 varies along the horizontal axis, andRq

0/Rn
0 varies along the vertical axis

recovery time of 14 days, and consider a disease for which R0 = 2.1 normally, and
R0 = 0.8 when social distancing/quarantines are in effect. Figure 2 (left) shows how
the fraction of infected and removed individuals evolves with time. In this case we
see that R(∞) reduces from 0.82 when no quarantine is imposed to 0.70 when a 30
day contiguous quarantine is optimally imposed. As expected, we see that the optimal
quarantine starts a little before the (unquarantined) infection levels peak, and ends a
little after it. Since the population attains herd immunity exactly when the infection
levels peak, the unquarantined population attains herd immunity sometime during the
optimal quarantine.

For comparison, we also plot how R(∞) varies based on the start of a 30 day
quarantine (Fig. 2, right). Here we see that when the quarantine is started too early, or
too late, it has almost no impact on the value of R(∞).

Finally, in Fig. 3 we show how R(∞) varies when a 30 day quarantine is opti-
mally imposed. The two parameters we vary are Rn

0, the basic reproduction number
under normal circumstances, and Rq

0 , the basic reproduction number when quaran-
tines/social distancing are imposed. Here we see that the reduction in R(∞) is larger
when Rn

0 is smaller.
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