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a b s t r a c t

In this paper, we study traveling wave solutions and peakon weak solutions of the modified Camassa–
Holm (mCH) equation with dispersive term 2kux for k ∈ R. We study traveling wave solutions through
a Hamiltonian system obtained from the mCH equation by using a nonlinear transformation. The typical
traveling wave solutions given by this Hamiltonian system are unbounded or multi-valued. We provide a
method, called patching technic, to truncate these traveling wave solutions and patch different segments
to obtain patched bounded single-valued peakon weak solutions which satisfy jump conditions at
peakons. Then, we study some special peakon weak solutions constructed by the fundamental solution
of the Helmholtz operator 1 − ∂xx, which can also be obtained by the patching technic. At last, we study
some length and total signed area preserving closed planar curve flows that can be described by the mCH
equation when k = 1, for which we give a Hamiltonian structure and use the patched periodic peakon
weak solutions to investigate loops with peakons.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with traveling wave solutions and
peakon weak solutions to the following nonlinear partial differen-
tial equation:

mt + 2kux + [(u2
− u2

x )m]x = 0, m = u − uxx,

x ∈ R, t > 0. (1.1)

This equation is referred to as the modified Camassa–Holm (mCH)
equationwith cubic nonlinearity, whichwas introduced by several
different authors [1–4].When k = 0, sometimes themCH equation
is also called the cubic Camassa–Holm equation or the Fokas–
Olver–Rosenau–Qiao equation. The parameter k ∈ R characterizes
the magnitude of the linear dispersion. The mCH equation is a wa-
terwave equation and a suitable approximation of the incompress-
ible irrotational Euler system. The functions u and m represent,
respectively, the velocity of the fluid and its potential density [4].
The weak solutions can be non-zero or even unbounded as |x| →

∞. If aweak solution is periodicwith period ℓwhere 0 < ℓ < +∞,
then it can be regarded as a weak solution of the mCH equation on
the torus Tℓ := [−ℓ/2, ℓ/2) ∼= R/(ℓZ). We also denote Tℓ = R
when ℓ = +∞ for convenience.
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When ℓ < +∞, the fundamental solution G(x) for the
Helmholtz operator 1 − ∂xx is given by

G(x) =

{
cosh(x+ℓ/2)
2 sinh(ℓ/2) , for x ∈ [−ℓ/2, 0),
cosh(x−ℓ/2)
2 sinh(ℓ/2) , for x ∈ [0, ℓ/2),

(1.2)

and when ℓ = +∞, we have

G(x) =
1
2
e−|x|, for x ∈ R. (1.3)

The velocity function u can be written as a convolution ofmwith G

u(x, t) = G ∗ m =

∫
Tℓ

G(x − y)m(y, t)dy, x ∈ Tℓ.

For smooth solutions to the mCH equation (1.1), there are two
conserved quantities (called Hamiltonian functionals of the mCH
equation)

H0 =

∫
Tℓ

mudx,

H1 =
1
4

∫
Tℓ

Ä
u4

+ 2u2u2
x −

1
3
u4
x + 4ku2

ä
dx. (1.4)

(1.1) can be written in the bi-Hamiltonian form [3,5],

mt = −((u2
− u2

x )m)x = J
δH0

δm
= K

δH1

δm
,

https://doi.org/10.1016/j.physd.2018.10.005
0167-2789/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.physd.2018.10.005
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2018.10.005&domain=pdf
mailto:yugao@hit.edu.cn
mailto:leili2010@sjtu.edu.cn
mailto:jliu@phy.duke.edu
https://doi.org/10.1016/j.physd.2018.10.005


16 Y. Gao, L. Li and J.-G. Liu / Physica D 390 (2019) 15–35

where

J = −∂xm∂−1
x m∂x − k∂x, K = ∂3

x − ∂x

are compatible Hamiltonian operators. (If the Hamiltonian oper-
ators J and K are compatible, then any constant coefficient linear
combination αJ+βK is also a Hamiltonian operator.) The Hamilto-
nian pair J, K is non-degenerate in the sense that one of the associ-
ated Poisson structure is symplectic. According to the fundamental
theorem of Magri [6], any bi-Hamiltonian system associated with
a non-degenerate Hamiltonian pair induces a hierarchy of com-
muting Hamiltonians and flows, and, provided there are enough
functionally independent Hamiltonians, is therefore completely
integrable. ThemCH equation (1.1) is a complete integrable system
and it possesses a Lax pair and may be solved by means of the
inverse scattering transform (IST) method [4].

In this paper, one of our main purposes is to introduce a patch-
ing technic as described below to construct peakonweak solutions
from traveling wave solutions to the mCH equation (1.1), so that
we can change unbounded or multi-valued solutions into single-
valued bounded weak solutions. To this end, we first give some
jump conditions (see Theorem 2.1) for piecewise smooth weak
solutions to (1.1). Then, we study traveling wave solutions in the
form u(x, t) = φ(x − ct) = φ(ξ ) (ξ := x − ct) with traveling
speed c ∈ R. Under the traveling wave assumption, Eq. (1.1) can
be reduced to a third order autonomous ODE (see (3.1)). After a
first integral, this third order ODE can be reduced to a second order
ODE (see (3.2)). Then, after some transformation this second order
ODE can be rewritten as a Hamiltonian systemwith a Hamiltonian
H (see (3.6)). Then, we study the structure of level sets of H in
the phase plane (see Proposition 3.2). We show that traveling
wave solutions to the mCH equation can be constructed from
level sets of H (see Proposition 3.3). Consider a level set H = h
for some constant h. There are two particular cases for solutions
corresponding to H = h: the case k ≤ 0 and the case k > 0.
When k ≤ 0 and h is big enough, there is a trajectory in the phase
plane given by H = h extending to infinity (see Theorem 3.1) and
this corresponds to a single-valued traveling wave solution to (1.1)
that satisfies lim|ξ |→+∞ |φ(ξ )| = +∞. For the case k > 0, the
trajectories in the phase plane given by H = h are some closed
curves and when the traveling speed c < 0 or h big enough for
c > 0, these closed curves yield multi-valued (see Definition 3.2)
periodic traveling wave solutions (see Theorem 3.1).

When k > 0, the patching technic is used to obtain a patched
single-valued periodic traveling peakon weak solution from a
multi-valued periodic traveling wave solution. Briefly speaking,
we truncate the level set H = h by curves φ2

−
1
3v

2
= c

in phase plane. The two intersection points on the same branch
of φ2

−
1
3v

2
= c glue together and form a patched single-

valued periodic traveling wave weak solution with peakon(s). This
truncating method guarantees that the jump condition is satisfied
at the peakons and hence a weak solution (see Picture 8). In this
paper, thismethod is called ‘the patching technic’which can also be
used to obtain patched bounded traveling peakon weak solutions
for the case k ≤ 0.

By the patching technic, we can obtain some special peakon
weak solutions of the form

u(x, t) = pG(x − ct), m(x, t) = pδ(x − ct), x ∈ R, t ≥ 0, (1.5)

where p ̸= 0 is a constant describing the amplitude of a peakon
and the traveling speed is given by c =

1
6p

2 (see Remark 4.2). (1.5)
is a peakonweak solution to the dispersionlessmCH equation (1.1)
(with k = 0) in R and it was also obtained in [5]. On the periodic
domain Tℓ (ℓ < +∞), the mCH equation also has peakon weak
solutions with similar form as (1.5) but the traveling speed is given
by (see Proposition 4.1)

c =
1
4
p2
î
coth2

Å
ℓ

2

ã
−

1
3

ó
.

As ℓ → ∞, this speed is consistent with the speed 1
6p

2 in R.
Notice that a solution given by (1.5) satisfies m(x, t) = 0 in the
smooth region of u and the superposition of such solutions gives
a new solution in the smooth region. Hence, the superposition
of N such solutions with different traveling speeds can form an
N-peakon weak solution if the jump conditions are satisfied along
the trajectories of peakons (see Proposition 4.2).

When k < 0, there are peakon weak solutions similar to (1.5)
of the form (see Proposition 4.3)

u(x, t) = pG(x − ct) −
√

−k, m(x, t) = pδ(x − ct) −
√

−k. (1.6)

When ℓ < ∞, the traveling speed is given by

c =

îp
2
coth
Å

ℓ

2

ã
−

√
−k
ó2

−
p2

12
,

and when ℓ = +∞, it is given by

c =

Äp
2

−
√

−k
ä2

−
p2

12
.

This kind of peakon weak solutions can also be obtained by the
patching technic (see Remark 4.4). Notice that in the whole space
R, this kind of solutions will not vanish as x → ∞.

For the case k > 0, the mCH equation (1.1) does not have
peakon weak solutions of the form similar as (1.5) or (1.6) (see
Proposition 4.4). However, the mCH equation (1.1) with k > 0 has
peakon weak solutions in other forms, which can be obtained by
the patching technic (see Fig. 8).

Specially, when k = 1, the mCH equation (1.1) can be used to
describe planar curve flows which preserve arc-length [5]. In this
paper, we show that in periodic case, the mCH equation (k = 1)
describes some dynamics of closed plane curves whose length and
total signed area (defined by (5.4)) are both preserved. This prop-
erty is also shared with the modified Korteweg–de Vries equation.
Moreover, we give a Hamiltonian structure for the curve dynamics
(see Proposition 5.1) and use the patched peakon weak solutions
to investigate loops with peakons (see Fig. 11).

For more results about local well-posedness and blow-up be-
haviors of the strong solutions to (1.1), one can refer to [7,8,5,9,10].
In [11], Zhang used amethod of dissipative approximation to prove
the existence and uniqueness of global entropyweak solutions u in
W 2,1(R) for the dispersionless mCH equation (1.1) (k = 0). In [12],
a sticky particle model is provided and a solution to this model
yields a sticky N-peakon weak solution which is a superposition
of N peakons in the form (1.5). By some space–time BV estimates,
the mean field limit of this model gives a global weak solution u to
the dispersionless mCH equation in R and u, ux are space–time
BV functions. When k > 0, Matsuno [13] studied multi-soliton
solutions to (1.1) in R by using the Hirota bilinear transformation
method [14]. Both smooth and singular multi-soliton solutions are
studied. The underlying structure of the associated tau-functions
constituting the N-soliton solution is the same as that of the
N-soliton solution of a model equation for shallow-water waves
introduced by Ablowitz et al. [15] (see [13, Section 2]).

Let us remark that the traveling wave solutions to one-
dimensional nonlinear shallow water models and the Camassa–
Holm (CH) equation [16] (with dispersive term 2kux, k ∈ R)

ut − uxxt + 3uux + 2kux = 2uxuxx + uuxxx, x ∈ R, t > 0, (1.7)

have been thoroughly discussed in literature (see [17–20] for ex-
amples). In [17], a class of peaked traveling wave solutions of the
form u(x, t) =

∑
∞

n=1 ane
−n|x−qt| was constructed for a nonlinear

shallow water models, and the stability of these solutions was
also proved. The authors of [18–20] studied the traveling wave
solutions of the CH equation (1.7), another classical model from
shallow water problems. The idea of studying traveling wave so-
lutions of CH equation using level sets of the Hamiltonian for a
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reduced system appeared in [18], and part of our idea is indeed
motivated by [18]. The Hamiltonian we used (Eq. (3.5)) is of fourth
degree and introduces many challenging issues compared with
the quadratic one used in [18]. Lenells [19] did a thorough work
in classifying all the weak traveling wave solutions to the CH
equation. A patching and gluing idea also appeared in [19] for the
CH equation, where the composite wave is obtained by jointing
cuspons or peakons with the same speed at their crests. Note that
one of the main aims of our patching technic is to obtain bounded,
single-valued solutions to the mCH equation from unbounded or
multi-valued ones, while the composite waves in [19] are not out
of this consideration. Furthermore, the segments we use are from
any kind of solutions (not necessarily cuspons or peakons), and the
joint points are not necessarily the crests.

The rest of this article is organized as follows. In Section 2,
we give the definition of weak solutions to the mCH equation
(1.1) and obtain some jump conditions for piecewise smooth weak
solutions. In Section 3,we deduce anODE system to study traveling
wave solutions to (1.1). Traveling wave solutions are given by
the level set of the first integral of the ODE system. Then, we
construct peakon weak solutions from traveling wave solutions by
the patching technic. In Section 4,we showa special class of peakon
weak solutions to (1.1) when k ≤ 0. These peakon weak solutions
can also be obtained by the patching technic given in Section 3.
In Section 5, we give some criteria for preserving length and total
signed area for closed curve flows. Moreover, we show that some
length and total signed area preserving curve flows in R2 can be
described by the mCH equation with k = 1. These curve flows
have a Hamiltonian structure. Lastly, we use the patched traveling
peakon solutions in Section 3 to investigate loops with peakons.

2. Jump conditions for piecewise smooth weak solutions

The physical solutions of (1.1) are usually piecewise smooth and
contain some non-smooth points. Due to the non-smooth points,
these solutions must be understood in the weak sense. In this
section, we first introduce the definition of weak solutions and
obtain jump conditions for piecewise smoothweak solutions to the
mCH equation (1.1). Our patching technic in Section 3.3 is based on
these jump conditions.

Definition 2.1. For ℓ < +∞ and u0 ∈ W 1,∞(Tℓ), a function

u ∈ L∞(0, T ;W 1,∞(Tℓ)) ∩ C([0, T );H1(Tℓ)),

is a weak solution of the mCH equation (1.1) subject to initial data
u(x, 0) = u0(x) if

⟨u, ϕ⟩ := L(u, ϕ) +

∫
Tℓ

u0ϕ(x, 0)dx −

∫
Tℓ

u0ϕxx(x, 0)dx = 0 (2.1)

where

L(u, ϕ) :=

∫ T

0

∫
Tℓ

u(ϕt − ϕxxt )dxdt

+

∫ T

0

∫
Tℓ

(2ku + u3
+ uu2

x )ϕxdxdt

−
1
3

∫ T

0

∫
Tℓ

u3ϕxxxdxdt −
1
3

∫ T

0

∫
Tℓ

u3
xϕxxdxdt.

holds for all ϕ ∈ C∞
c ([0, T ) × Tℓ) . If T = +∞, we call u as a global

weak solution of the mCH equation.
When ℓ = +∞ (Tℓ = R) and u0 ∈ W 1,∞

loc (R), we say a function

u ∈ L∞(0, T ;W 1,∞
loc (R)) ∩ C([0, T );H1

loc(R)),

is a weak solution of the mCH equation (1.1) subject to initial data
u(x, 0) = u0(x) if (2.1) holds for all ϕ ∈ C∞

c ([0, T ) × R).

It is straightforward to check that the definition is consistent.
In other words, a weak solution on Tℓ can be identified as a weak
solution on Tnℓ for n = 1, 2 . . . or R if we extend the function
periodically. Reversely, a periodic weak solution on R with period
ℓ, (or a periodic weak solution on Tℓ1 with smaller period ℓ <
ℓ1) can be regarded as a weak solution on Tℓ. This consistency
allows us to identify the periodicweak solutions to (1.1) withweak
solutions on Tℓ.

Now, we state and prove the following results about jump
conditions in this section.

Theorem 2.1. Assume 0 < ℓ < +∞. Suppose the region Tℓ ×[0, T ]

is divided by N (no intersection) curves {(xi(t), t) : 0 ≤ t ≤ T }
N
i=1

into N non-overlap open area {Ui}
N
i=1, where N is a positive integer.

The boundary between Ui and Ui+1 is xi(t) and xN (t) is the boundary
between UN and UN+1 = U1. Assume that ui ∈ C3(Ui)∩ C1(Ūi) solves
the mCH equation with ui(x, 0) = u0(x) in Ui and mi = ui − ∂xxui for
1 ≤ i ≤ N. Denote

vi
ℓ(t) := ∂xui(xi(t), t), vi

r (t) := ∂xui+1(xi(t), t)

and assume the following two limits exist⎧⎨⎩ lim
x→xi(t)−

mi

î
u2
i − (∂xui)2 − x′

i(t)
ó

=: Ai
ℓ(t),

lim
x→xi(t)+

mi+1

î
u2
i+1 − (∂xui+1)2 − x′

i(t)
ó

=: Ai
r (t).

Then, the function u satisfying u|Ui= ui is a weak solution to the mCH
equation subject to u(x, 0) = u0(x) if the following conditions are
satisfied:

1. u ∈ C(Tℓ × [0, T )).
2. For each i, it holds that⎧⎪⎪⎨⎪⎪⎩

d
dt

xi(t) = u(xi(t), t)2 −
1
3
[vi

ℓ(t)]
2
−

1
3
vi

ℓ(t)v
i
r (t)

−
1
3 [v

i
r (t)]

2,
d
dt

[vi
ℓ(t) − vi

r (t)] = Ai
ℓ(t) − Ai

r (t)

(2.2)

or

vi
ℓ = vi

r , Ai
ℓ = Ai

r . (2.3)

When ℓ = +∞ (Tℓ = R), we have the same jump conditions.

Proof. By the fact ui ∈ C1(Ūi) and Condition 1, it is clear that

u ∈ L∞(0, T ;W 1,∞(Tℓ)) ∩ C([0, T );H1
loc(Tℓ)).

For the Condition 2, we first assume (2.2). Take ϕ(x, t) ∈

C∞
c ([0, T ) × Tℓ). For initial data, we have∫
Tℓ

u0ϕ(x, 0)dx −

∫
Tℓ

u0ϕxx(x, 0)dx =

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx

+

N∑
i=1

ϕ(xi(0), 0)(vi
ℓ(0) − vi

r (0)), (2.4)

where x0 = xN . From Definition 2.1, we have

L(u, ϕ) =

∫ T

0

∫
Tℓ

u(ϕt − ϕxxt )dxdt

+

∫ T

0

∫
Tℓ

(2ku + u3
+ uu2

x )ϕxdxdt

−
1
3

∫ T

0

∫
Tℓ

u3ϕxxxdxdt −
1
3

∫ T

0

∫
Tℓ

u3
xϕxxdxdt. (2.5)
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With some calculations, we obtain∫ T

0

∫
Tℓ

u(ϕt − ϕxxt )dxdt =

∫ T

0

∫
Tℓ

uϕtdxdt

+

N∑
i=1

∫ T

0

∫ xi(t)

xi−1(t)
uxϕxtdxdt

=

∫ T

0

N∑
i=1

(vi
ℓ(t) − vi

r (t))ϕt (xi(t), t)dt

+

N∑
i=1

∫∫
Ui

mi(x, t)ϕtdxdt (2.6)

and

−
1
3

∫ T

0

∫
Tℓ

u3ϕxxxdxdt −
1
3

∫ T

0

∫
Tℓ

u3
xϕxxdxdt

=

N∑
i=1

∫ T

0
(vi

ℓ − vi
r )ϕx(xi(t), t)

d
dt

xi(t)dt

−

N∑
i=1

∫∫
Ui

(2uu2
x + u2uxx − u2

xuxx)ϕxdxdt, (2.7)

where we used the jump condition (2.2) for the last step. On each
Ui,uxx agreeswith (ui)xx, which is a continuous function. Combining
(2.5), (2.6) and (2.7) gives

L(u, ϕ) =

N∑
i=1

∫∫
Ui

mi(x, t)ϕtdxdt

+

N∑
i=1

∫∫
Ui

(2ku + mi(u2
− u2

x ))ϕxdxdt

+

N∑
i=1

∫ T

0

î
(vi

ℓ(t) − vi
r (t))ϕt (xi(t), t)

+ (vi
ℓ(t) − vi

r (t))ϕx(xi(t), t)
d
dt

xi(t)
ó
dt

= : I1 + I2 + I3.

For I1 + I2, we have

I1 + I2 =

N∑
i=1

∫∫
Ui

Ä
miϕt + (2ku + mi(u2

− u2
x ))ϕx

ä
dxdt

=

N∑
i=1

∫∫
Ui

Ä
(miϕ)t + ((2ku + mi(u2

− u2
x ))ϕ)x

ä
dxdt

=

N∑
i=1

∮
∂Ui

−miϕdx + (2kui + mi(u2
i − u2

ix))ϕdt.

The boundary integral on t = 0 together with the initial value
terms yields

−

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx.

The integral on t = T is zero since ϕ vanishes there. By the
continuity of u and the jump condition, we then find

I1 + I2 = −

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx

+

N∑
i=1

∫ T

0

î
mix′

i−1(t) − mi(u2
i − u2

ix)
ó
ϕ

⏐⏐⏐
x=xi−1

dt

−

N∑
i=1

∫ T

0

î
mix′

i(t) − mi(u2
i − u2

ix)
ó
ϕ

⏐⏐⏐
x=xi(t)

dt

= −

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx +

N∑
i=1

∫ T

0
ϕ(xi(t), t)(Ai

ℓ − Ai
r )dt.

By the fact

I3 =

N∑
i=1

∫ T

0
(vi

ℓ(t) − vi
r (t))

d
dt

ϕ(xi(t), t)dt,

(2.4) and Condition 2, we have:

L(u, φ) = −

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx

+

N∑
i=1

∫ T

0

d
dt

î
ϕ(xi(t), t)(vi

ℓ(t) − vi
r (t))
ó
dt

= −

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx

−

N∑
i=1

ϕ(xi(0), 0)(vi
ℓ(0) − vi

r (0))

= −

∫
Tℓ

u0ϕ(x, 0)dx +

∫
Tℓ

u0ϕxx(x, 0)dx.

Therefore, by Definition 2.1, u is a weak solution.
For the second condition, if we instead assume (2.3), we find

L(u, ϕ) =

N∑
i=1

∫∫
Ui

mi(x, t)ϕtdxdt

+

N∑
i=1

∫∫
Ui

(2ku + mi(u2
− u2

x ))ϕxdxdt

= −

N∑
i=1

∫ xi(0)

xi−1(0)
mi(x, 0)ϕ(x, 0)dx

= −

∫
Tℓ

u0ϕ(x, 0)dx +

∫
Tℓ

u0ϕxx(x, 0)dx.

Hence it is also a weak solution.
For the caseTℓ = R (ℓ = +∞), the proof is similar andwe omit

it. □

3. Traveling wave solutions of the mCH equation

Consider traveling wave solutions of the form u(x, t) = φ(ξ ),
where ξ := x − ct and c ∈ R is a traveling speed. Hence, m =

u − uxx = φ − φ′′. Then, the mCH equation is reduced to the
following ODE:

c(φ′′′
− φ′) + 2kφ′

+
(
(φ − φ′′)(φ2

− (φ′)2)
)′

= 0. (3.1)

Integrating once yields the following equation

(c − φ2
+ (φ′)2)φ′′

− cφ + 2kφ + φ(φ2
− (φ′)2) = g, (3.2)

where g is an integrating constant.
If φ is a solution for g , then −φ is a solution for −g . Therefore,

the structure of solutionswith positive g will be the same as that of
the solutions for negative g . Hence, we assume from here on that

g ≥ 0. (3.3)
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Introducing v = φ′, from (3.2) we can deduce the following first
order system⎧⎪⎨⎪⎩

dφ
dξ

= v,

dv
dξ

=
g − 2kφ

c − φ2 + v2 + φ.

(3.4)

Hence, we have

dφ
dv

=
v(c − φ2

+ v2)
g − 2kφ + φ(c − φ2 + v2)

,

which implies

(cv + v3)dv − (g − 2kφ + cφ − φ3)dφ −
1
2
d(φ2v2) = 0.

Hence, the first integral of System (3.4) is given by

H =
(φ2

− v2)2

4
−

1
2
c(φ2

− v2) + kφ2
− gφ. (3.5)

Changing of variable dξ = (c − φ2
+ v2)dτ , we have the following

Hamiltonian system⎧⎪⎨⎪⎩
dφ
dτ

=
∂H
∂v

= v(c − φ2
+ v2),

dv
dτ

= −
∂H
∂φ

= g − 2kφ − φ(φ2
− v2

− c).
(3.6)

Because Systems (3.4) and (3.6) have the same first integral
H , the two systems have the same topological phase portraits
except the hyperbola φ2

− v2
− c = 0. The level sets of H

are solution trajectories of System (3.6) and hence give traveling
wave solutions of the mCH equation (except the hyperbola φ2

−

v2
= c). In the following, we first discuss the critical points and

level sets of the first integral H . Then, we deduce traveling wave
solutions from level sets ofH . At last, we provide a patching technic
to construct single-valued traveling peakon weak solutions from
traveling wave solutions given by level sets of H .

3.1. Critical points and level sets

The critical points of System (3.6) in the phase plane are im-
portant for determining the structures of the level sets of H . The
following observation enables us to classify the critical points of
System (3.6) and the proof is provided in Appendix A.

Lemma 3.1. Suppose the Hessian of H is non-degenerate at a critical
point (φ∗, v∗) of System (3.6). Then, (φ∗, v∗) is a local extremum of
H if and only if it is a center point of System (3.6) in the phase plane
while it is a saddle point of H if and only if it is saddle point in the
phase plane of System (3.6).

As mentioned in the above, Systems (3.4) and (3.6) have the
same topological phase portraits except the hyperbola curves φ2

−

v2
= c. The critical points on curves φ2

− v2
= c for system (3.6)

can be summarized as follows (weonly consider k ̸= 0here and the
k = 0 case is simple) and the proof is again provided inAppendixA:

Proposition 3.1. When g2
− 4k2c < 0, there is no critical point on

φ2
− v2

= c. When g2
− 4k2c > 0, there are two critical points for

System (3.6) on φ2
−v2

= c. If k > 0, they are center points. If k < 0,
they are saddle points.

The critical points on φ2
− v2

= c do not give stationary
solutions to System (3.4), but they determine the local structures
of the level sets near them. Other critical points of (3.6) are also
critical points of (3.4), and they correspond to stationary solutions
of System (3.4) or constant traveling wave solutions of the mCH

equation. The critical points of System (3.6) that are not on φ2
−

v2
= c are of the form (φ∗, 0) (φ2

∗
̸= c), where

−φ3
∗

− (2k − c)φ∗ + g = 0. (3.7)

At this time, we have

∂2H
∂v∂φ

(φ∗, 0) = 0,
∂2H
∂φ2 (φ∗, 0) = 3φ2

∗
+ 2k − c,

∂2H
∂v2 (φ∗, 0) = c − φ2

∗
.

HenceÄ ∂2H
∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 = (3φ2

∗
+ 2k − c)(φ2

∗
− c)

= −(c + 4k)φ2
∗

+ 3gφ∗ − c(2k − c).

By choosing different c, k and g , (φ∗, 0) can be either a center point
or a saddle point.

We do not plan to give a thorough discussion for these critical
points. The discussion is straightforward. For example, in the case
g = 0 and c − 2k > 0, there are three critical points with v = 0:
(0, 0) and (±

√
c − 2k, 0).

For (0, 0), we haveÄ ∂2H
∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 = c(c − 2k).

It is a saddle point if c > 0 while a center point if c < 0. Similarly,
for (±

√
c − 2k, 0), we haveÄ ∂2H

∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 = −4k(c − 2k).

They are center points if k > 0 and saddle points if k < 0.
The critical points on the one hand may give stationary solu-

tions and on the other hand determine local structures of level sets.
To obtain a sense of the structures of the level sets, we sketch some
typical level sets of H for k = −1, k = 0 and k = 1. The curve
φ2

−
v2

3 = c (solid line) and φ2
− v2

= c (dashed line) are also
plotted for more information and these curves are important for
the patching technic in Section 3.3.

Below, we fix parameters (c, g, k) and consider those h values
such that the level setH = h containsmore than one point. Denote

Σ ⊂ {(φ, v) : H(φ, v) = h} (3.8)

as a connected component that has more than one point. In this
paper, without mentioning explicitly, the parameters (c, g, k) are
fixed but arbitrary. To relate the connected component Σ to trav-
eling wave solutions of the mCH equation, we first study the
structure of Σ .

Denote the upper half and lower half of the phase plane respec-
tively by

P+ := {(φ, v) : v ≥ 0} and P− := {(φ, v) : v ≤ 0}. (3.9)

We give some lemmas that are useful to study the structure of Σ .

Lemma 3.2. Assume Σ is a connected component of level set H = h
for some constant h ∈ R. Then, Σ intersects with v = 0 for at most
four points. If Σ intersects with v = 0, then Σ is symmetric about
v = 0.

The first claim follows from the fact that H is a polynomial of
degree four. The proof of this lemma is simple and we omit it.

Lemma 3.3. Denote P1 := {(φ, v) : φ2
− v2

− c ≤ 0} and
P2 := {(φ, v) : φ2

− v2
− c ≥ 0}. Assume (k, g) ̸= (0, 0). Consider
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the two branches of H = h given by

Γ+ := {(φ, v) : v2
= φ2

− c +

√
c2 − 4(kφ2 − gφ − h)},

Γ− := {(φ, v) : v2
= φ2

− c −

√
c2 − 4(kφ2 − gφ − h)}. (3.10)

Then, the following statements hold:
(i) Γ+ ⊂ P1 and Γ− ⊂ P2.
(ii) If Γ+ and Γ− are connected, then the joint is on the hyperbola

φ2
−v2

= c and they can be connected at most four points. IfΓ+ (Γ−)
intersects φ2

− v2
= c at a point with v ̸= 0, then it connects to Γ−

(Γ+).
(iii) Assume Γ+ ∩ P+ is not empty. Then, this arc is the graph of

a function v = v(φ). And any endpoint of Γ+ ∩ P+ must be: (a) on
v = 0, (b) onφ2

−v2
= c with v ̸= 0, or (c) at infinity. This statement

is also true for Γ+ ∩ P− and Γ− ∩ P±.

Proof. Step 1. Statement (i) is obvious.

Step 2. For Statement (ii), assume (φ0, v0) ∈ Γ+ ∩ Γ− is a point
where Γ+ and Γ− are connected. By the definitions of Γ+ and Γ−,
we have

c2 − 4(kφ2
0 − gφ0 − h) = 0 and φ2

0 − v2
0 = c,

which means the joint is on the hyperbola φ2
− v2

= c. Since
(k, g) ̸= (0, 0), there are at most two φ0 such that c2 − 4(kφ2

0 −

gφ0 − h) = 0. Each φ0 gives two values of v0 (at most). Hence, the
two components can be connected at most four points.

Next, assume Γ+ intersects φ2
− v2

= c at a point (φ1, v1) with
v1 ̸= 0. Hence,φ2

1 −c = v2
1 > 0 and

√
c2 − 4(kφ2

1 − gφ1 − h) = 0,
which implies (φ1, v1) ∈ Γ−. Similar arguments are performed if
Γ− intersects with the hyperbola.

Step 3. For Statement (iii), consider the curve Γ+ in P+. It is the
graph of function

v(φ) =

»
φ2 − c +

√
c2 − 4(kφ2 − gφ − h).

Assume D is the largest domain that v(φ) is defined on. If ∂D
contains some points φ̃, then we have v(φ̃) = 0 or√

c2 − 4(kφ̃2 − gφ̃ − h) = 0. Otherwise, there is a neighborhood
such that we can extend the domain, contradicting with the fact
thatD is the largest domain. The same argument applies toΓ+ ∩P−

and Γ− ∩ P±. □

Now, we are able to conclude the structure of the connected
component Σ .

Proposition 3.2. Suppose Σ is a connected component of a level set
of H = h that does not contain (φ0, 0) with φ2

0 = c. Then, one of the
following two statements holds:

(i) Σ = Γ and Γ is a simple curve that is either a closed loop, or
with both sides tending to infinity in the phase plane.

(ii) Σ = ∪
N
i=1Γi, with Γi being a simple curve as described in (i) If

Γi ∩Γj ̸= ∅ for i ̸= j, then any p ∈ Γi ∩Γj is a critical point of System
(3.6).

If the two sides of Γi tend to infinity, then both |v| and |φ| tend to
infinity. Moreover, for Σ ∩ P+ (Σ ∩ P−) containing more than one
point, it can be represented by a graph of some function v = f (φ) if
and only if Σ does not intersect φ2

− v2
= c.

The claims in Proposition 3.2 are clear by Lemma 3.3, but the
complete proof is tedious and we put it into Appendix B.

Remark 3.1. By using the Poincare–Bendixson Theorem, we can
conclude that if Σ is bounded and does not pass through a critical
point, it must be a simple loop. When k > 0, from (3.10) we can
tell that the level set of H = h is bounded for any h ∈ R. Hence, the
connected component of level sets H = h when k > 0 is a simple

loop (see Fig. 3), if it contains more than one point and does not
pass through a critical point.

3.2. Traveling wave solutions

From here on, we will use the same notation Γ to represent
a simple curve in the connected component Σ as described in
Proposition 3.2 that does not pass through a point (φ0, 0) with
φ2
0 = c. Due to v =

dφ
dξ , we have

dξ =
1
v
dφ. (3.11)

To be convenient, we consider those simple curves Γ for which we
can define a period

T :=

∫
Γ

1
v
dφ, (3.12)

where the orientation of Γ is chosen such that T ∈ [0, ∞]. Note
that it is possible that T = ∞.

Remark 3.2. Requiring that T is defined excludes some U-shaped
curves, as shown in Figs. 1(b) and 2(b). T cannot be defined for
such a curve with any orientation. For example, consider the
U-shaped curve Γ in P+ from Fig. 2(b), with clockwise orientation.
Γ = γ1 ∪ γ2, γ1 ⊂ Γ+ and γ2 ⊂ Γ−. It is clear that

∫
γ1

1
v
dφ = +∞

and
∫

γ2

1
v
dφ = −∞. Hence, T =

∫
γ1∪γ2

1
v
dφ is not defined on such

a curve.

There are some key points on Γ that need careful investigation.
For a point (φ, v), we denote

Γδ(φ, v) := Γ ∩ B((φ, v), δ), δ > 0, (3.13)

with the same orientation as Γ . The following two lemmas tell us
the behaviors of the solutions given by Γ near some key points:

Lemma 3.4. Suppose Γ passes through (φ∗, 0) and (φ∗, 0) is not a
critical point, then Γ is perpendicular with v = 0 axis at (φ∗, 0) and
for δ > 0 small enough, we have∫

Γδ (φ∗,0)

1
v
dφ < ∞.

Proof. Suppose (φ∗, 0) is such a point. Note that ∇H(φ∗, 0) =

(∂φH, ∂vH)
⏐⏐⏐
(φ∗,0)

̸= 0 since there is no critical point on Γ . At

(φ, v) = (φ∗, 0), we have

∂vH(φ∗, 0) = −v(φ2
− v2) + cv

⏐⏐⏐
(φ∗,0)

= 0.

Hence, ∂φH ̸= 0 and by the implicit function theorem we can
solve φ in terms of v near (φ∗, 0) as φ = φ(v). Hence, φ(0) = φ∗,
φ′(0) = 0. Taylor expansion implies that 1/v ∼ |φ − φ∗|

−1/p

where p ≥ 2. Hence,
∫

1
v
dφ is integrable near this point. □

There may be some trajectories that connect saddles. We have
the following lemma.

Lemma 3.5. Suppose (φ∗, v∗) ∈ Γ is a non-degenerate critical point
of (3.6). If v∗ ̸= 0, then the critical point is on φ2

− v2
= c and there

exists δ > 0 such that∫
Γδ (φ∗,v∗)

1
v
dφ < ∞.

If v∗ = 0 and φ2
∗

̸= c, then for any δ > 0⏐⏐⏐⏐⏐
∫

Γδ (φ∗,v∗)∩{v≥0}

1
v
dφ

⏐⏐⏐⏐⏐ =

⏐⏐⏐⏐⏐
∫

Γδ (φ∗,v∗)∩{v≤0}

1
v
dφ

⏐⏐⏐⏐⏐ = ∞.
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Fig. 1. Level sets of H with different parameters c, g and h for k = −1. The black solid lines are φ2
−

v2

3 = c and the dashed lines are φ2
− v2

= c. (a) and (c) are for g = 0
in which case the level sets are symmetric about both φ and v axis. (b) and (d) are for g > 0 where the level sets are skewed.

Fig. 2. Level sets of H with different parameters c, g and h for k = 0. The hyperbolas (solid lines and dashed lines) are the same as in Fig. 1. (a) and (c) are for g = 0, while
(b) and (d) are for g > 0. In Figure (b), there are components that are ‘U’ shaped with both branches extending to infinity on one side of v = 0. In Figure (d), there is a
component that forms a loop.

Proof. Note that (φ∗, v∗) must be a saddle point. If v∗ ̸= 0,
from (3.6) we can see that this critical point must be on the curve
φ2

−v2
− c = 0. It is clear that

∫
1
v
dφ is integrable near the critical

point.
If v∗ = 0 and φ2

∗
− v2

∗
− c ̸= 0, then (φ∗, v∗) is also a critical

point of System (3.4). The existence and uniqueness theorem of
System (3.4) holds in the neighborhood of this critical point. As a

result,∆ξ =
∫

1
v
dφ must be infinite near this critical point because

the critical point corresponds to a stationary solution of System
(3.4). □

Now, let us define the multi-valued solution to the mCH equa-
tion for our convenience of discussion here.
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Fig. 3. Level sets of H with different parameters c, g and h for k = 1. The hyperbolas (solid lines and dashed lines) are the same as in Fig. 1. (a) and (c) are for g = 0, while
(b) and (d) are for g > 0. We can see that all the simple curve (a curve that does not cross itself) forms a closed loop (see Theorem 3.1 for rigorous proof).

Definition 3.1. For any a, b ∈ R, denote J = (a, b). We say
sgn(J) := sgn(b − a) and x ∈ J if x ∈ (min(a, b),max(a, b)).
For a function u defined on (min(a, b),max(a, b)), we also say it
is defined on J and define the integral on J as∫
J
udξ = sgn(J)

∫ max(a,b)

min(a,b)
udξ .

Definition 3.2. We say u : R × [0, T ] → 2R, (x, t) ↦→ u(x, t) is a
multi-valued solution to (1.1) subject to initial data u(x, 0) = u0(x)
if there exist signed intervals Jn(t) = (an(t), bn(t)), n ∈ Z, (see
Fig. 4) and a single-valued function un(·, t) defined on each Jn(t)
with γn(t) = {(x, un(x, t)), x ∈ Jn(t)} such that

• an, bn ∈ C1
[0, T ], bn(t) = an+1(t), limn→−∞ an(t) = −∞,

limn→+∞ bn(t) = +∞

• γn are non-intersecting and ∀t ∈ [0, T ], ∪nγ̄n = {(x, u) : x ∈

R, u ∈ u(x, t)}.
• ∥un∥W1,∞(Jn(t)) is bounded as functions of t . For any [a, b] ×

[t1, t2] ⊂ {(x, t) : x ∈ Jn(t)}, it holds un ∈ C(t1, t2;H1([a, b])).
un(bn(t), t) = un+1(an+1(t), t).

• It holds that ∀ϕ ∈ C∞
c ([0, T ), C∞

c (R)):∫ T

0

∑
n

∫
Jn

u(ϕt − ϕxxt )dxdt

+

∫ T

0

∑
n

∫
Jn

(2ku + u3
+ uu2

x )ϕxdxdt

−
1
3

∫ T

0

∑
n

∫
Jn

u3ϕxxxdxdt −
1
3

∫ T

0

∑
n

∫
Jn

u3
xϕxxdxdt

= −

∑
n

∫
Jn(0)

u0ϕ(x, 0)dx +

∑
n

∫
Jn(0)

u0ϕxx(x, 0)dx.

With similar computations as in the proof of Theorem 2.1, we
find

Fig. 4. A typical multi-valued solution u(x, t) (Definition 3.2) at a fixed time t . The
intervals (an, bn)(n = 1, 2, . . . , 5) are demonstrated on the x-axis. In the picture,
b1 > a1 , b2 < a2 = b1 and b3 > a3 = b2 etc.

Lemma 3.6. Use the same notations as in Definition 3.2 and assume
that t ↦→ ui(·, t) solves the mCH equation on the region {(x, t) :

x ∈ Ji(t) = (ai(t), bi(t))} classically for i ∈ Z. Let mi(x, t) =

ui(x, t) − ∂xxui(x, t) for x ∈ Ji(t) and xi(t) := ai(t). If the jump
conditions (2.2) or (2.3) are satisfied where

vi
r (t) := lim

x∈Ji,
x→ai(t)

∂xui(x, t), vi
ℓ(t) := lim

x∈Ji−1,

x→bi−1(t)

∂xui−1(x, t)

and

Ai
r := lim

x∈Ji,
x→ai(t)

mi
[
u2
i − (∂xui)2 − a′

i(t)
]
,

Ai
r := lim

x∈Ji−1,

x→bi−1(t)

mi−1
[
u2
i−1 − (∂xui−1)2 − a′

i(t)
]
,

then u is a multi-valued solution as in Definition 3.2

We now relate the simple curves Γ to traveling wave solutions
of the mCH equation:
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Fig. 5. The curves (both dashed lines and solid lines together) in this figure make
up a connected component (φ2

− v2
= 0) of level set H = 0 for g = k = 0 and

c ̸= 0. Γ = Γ1 ∪ Γ2 is a simple curve as stated in Statement (ii) of Proposition 3.3.
(φ∗, 0) = (0, 0) is a saddle point that divides Γ into Γ1 and Γ2 . Γ1 gives a solution
φ1(ξ ) = A1eξ to the mCH equation and Γ2 gives φ2(ξ ) = A2e−ξ for some constants
Ai > 0, i = 1, 2 and ξ ∈ R.

Proposition 3.3. Suppose Γ is a simple curve described in
Proposition 3.2 that does not contain (φ0, 0) with φ2

0 = c. Let T be
defined by (3.12) and we assume T > 0.

(i) If Γ does not pass any critical point on v = 0, then Γ

corresponds to a traveling wave solution u(x, t) = φ(ξ ) to the mCH
equation (1.1), where ξ = x−ct. And ifΓ does not cross φ2

−v2
= c,

then u is a single-valued solution. Moreover, u is a periodic traveling
wave solution if and only if Γ is a closed loop.

(ii) If there are critical points of the form (φ∗, 0) dividing Γ into
several segments as Γ = ∪iΓi (see Fig. 5), then each Γi corresponds
to a non-periodic traveling wave solution u(x, t) = φ(ξ ) for −∞ <
ξ < ∞ where ξ = x − ct.

Proof. Proof for Statement (i)

Step 1. Preparations.
We assume first that Γ does not pass through any critical point

on v = 0. Fix A0 = (φ0, v0) ∈ Γ , and use Γ (A0, (φ, v)) to mean the
subcurve of Γ from A0 to (φ, v) with the same orientation as when
we define T in Eq. (3.12). We define

ξ =

∫
Γ (A0,(φ,v))

1
v
dφ. (3.14)

In the case T ∈ (0, ∞) (or Γ is a loop), this expression is defined
for all ξ ∈ R if we orbit around the loop repeatedly. This integral
then gives a set value mapping φ : R → 2R, ξ ↦→ φ(ξ ) provided
T > 0.

Assume φ2
− v2

= c divides Γ into several arcs (may be one
segment). From Statement (ii) of Lemma 3.3, we know there are
at most five such arcs with four joint points. Moreover, each arc is
contained in Γ+ or Γ−. Hence, dξ has a definite sign in each arc. If
the sign of dξ =

1
v
dφ is different on two arcs, we get amulti-valued

solution, which happens if one arc is below strictly under the other
in P+ or P−.

The functions (φ(ξ ), v(ξ )) solve System (3.4) on each arc and
therefore u(x, t) solves the mCH equation in the classical sense,
where

u(x, t) = φ(ξ ) and x − ct = ξ .

Step 2. For the case when Γ ∩ {(φ, v) : φ2
− v2

= c} = ∅, dξ
has a definite sign and we have a single-valued function.

Step 3. The case for Γ ∩ {(φ, v) : φ2
− v2

= c} ̸= ∅.

In this case, wemay have amulti-valued function.We only have
to check the jump conditions across the hyperbola φ2

− v2
= c.

Assume A = (φA, vA) ∈ Γ ∩ {(φ, v) : φ2
− v2

= c}. The jump for
u(x, t) happens at

x − ct = ξA =

∫
Γ (A0,A)

1
v
dφ.

Hence, the jump line in x, t plane is given by xA(t) = ct + ξA. We
have

vℓ = vr = vA and
d
dt

xA(t) = c,

which agree with the wave speed. Notice that m = u − uxx =

φ − φ′′
= φ −

dv
dξ . By System (3.4), we have

lim
ξ ̸=ξA,ξ→ξA

m(u2
− ∂xu2

− x′

A(t)) = lim
ξ ̸=ξA,ξ→ξA

(φ − φ′′)(φ2
− v2

− c)

= g − 2kφA.

The jump condition (2.3) is verified. Hence, u(x, t) is a weak solu-
tion to the mCH equation.

Step 4. Periodicity.
If Γ is a closed loop, we have 0 < T < ∞. The solution is

therefore periodic traveling wave solution.
When Γ is not a closed loop, both sides of Γ tend to infinity. By

definition of Γ± (3.10), we have |v| ∼ |φ| as |φ| → ∞. This means
ξ extends to−∞ on one side and extends to+∞ on the other side
by formula (3.14). This yields a solution defined on R which is not
a periodic solution.

Proof for Statement (ii)
Now assume there are critical points of the type (φ∗, 0) on Γ .

If Γ is a loop, both ends of a segment are such critical points. If Γ

is an open curve extending to infinity, then the endpoints of each
segment are either such critical points or infinity. By Lemma 3.5,
the integrals at the two ends of such a segment are infinity. Hence,
the function similarly given by (3.14) is defined on R. That it is a
solution can be verified similarly as the first case. □

Next, we give a theorem to describe the typical traveling wave
solutions to the mCH equation (1.1) given by level sets of H . When
k > 0, the typical solutions are multi-valued periodic traveling
wave solutions. And when k ≤ 0, the typical solutions are un-
bounded and single-valued, defined on R.

We have the following theorem.

Theorem 3.1. Consider System (3.6). Assume S = {(φ, v) :

H(φ, v) = h} is nonempty and does not pass through any critical
point.

(i) If k > 0 for any traveling speed c ∈ R, each simple curve in S
is a loop in the phase plane of System (3.6). There exists h0 > 0 such
that for c < 0 or c ≥ 0, h > h0, there is a loop Γ ⊂ S that gives a
multi-valued traveling wave solution of the mCH equation. If T > 0,
this solution is a periodic solution on R. (See Fig. 6(a) and (b).)

(ii) If k ≤ 0, for any traveling speed c ∈ R, there exists h0 such that
when h > h0, there is a simple curveΓ ⊂ S with both sides tending to
infinity which corresponds to a single-valued traveling wave solution
to the mCH equation globally on R and lim|ξ |→∞ |φ(ξ )| = +∞. (See
Fig. 6(c) and (d).)

Proof. Γ± are given by (3.10). Set

f (φ) := c2 − 4(kφ2
− gφ − h) = c2 − 4k

Ä
φ −

g
2k

ä2
+

g2

k
+ 4h.

If S is nonempty, there exists φ ∈ R such that

f (φ) ≥ 0 and φ2
− c +

√
f (φ) ≥ 0.
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Fig. 6. Illustration of Theorem 3.1. Typical simple curves Γ and the corresponding traveling wave solutions . A closed loop when k > 0 in phase plane (a) corresponds
to a multi-valued periodic traveling wave solution in (b). A simple curve when k ≤ 0 in phase plane (c) corresponds to a traveling wave solution (d). (a), (b) are for (i) in
Theorem 3.1 and (c), (d) are for (ii) in Theorem 3.1.

(i) For k > 0, any level set is bounded. Indeed, φ must be
bounded to ensure f (φ) ≥ 0. Hence, (φ, v) is defined in a bounded
set of the phase plane.

By Proposition 3.2, for each simple curve inside a connected
component of S must be a loop. When c < 0 or h >

4kc−c2−4g
√
c

4
(c ≥ 0), Γ+ intersects with φ2

− v2
= c at a point with

v ̸= 0. Choose Γ to be the simple curve that passes through this
intersection. By Proposition 3.3, Γ gives a traveling wave solution.
If T > 0, it is clearly a periodic traveling wave solution on R. By
Lemma 3.3,Γ− ∩Γ ̸= ∅. SinceΓ does not pass through any critical
point,Γ− is belowΓ+ and the solution is multi-valued by the proof
of Proposition 3.3.

(ii) Consider that k = 0. We find that

v2
= φ2

− (c ±

√
c2 + 4(gφ + h)).

When g = 0, if we choose h such that c2 + 4h > 0. Γ+ and
Γ− do not intersect. Also, there is a connected component in Γ+

above v = 0 which is a function graph and extends to infinity.
Since dξ =

1
v
dφ > 0 on this component. T is defined and T ≥ ∞.

Hence it is a solution defined on R
When g > 0, consider h >

(|c|−c)2−(c2+4g
√

|c|)
4 . Then,

v2
= φ2

− c −

√
c2 + 4gφ + 4h = 0

has a root atφ0 satisfyingφ2
0 −c > 0 andφ2

−c−

√
c2 + 4gφ + 4h

> 0 for all φ > φ0.

Γ :=

¶
(φ, v) : φ ≥ φ0, v

2
= φ2

− c −

√
c2 + 4gφ + 4h

©
yields a single-valued solution defined onR and lim|ξ |→∞ |φ(ξ )| =

∞ by Proposition 3.3.
Consider k < 0, it is clear that when h > −

g2
4k , the term in the

square root is always positive and Γ+,

v2
= φ2

− c +

√
c2 − 4(kφ2 − gφ − h),

does not cross φ2
−v2

= c and φ2
−c+

√
c2 − 4(kφ2 − gφ − h) >

0 for all φ. Γ = Γ+ ∩ P+ (or Γ = Γ+ ∩ P−) is a simple curve as
described in Proposition 3.2, which gives a single-valued solution
defined on R and limξ→∞ |φ(ξ )| = ∞ by Proposition 3.3. □

Besides the typical solutions mentioned in Theorem 3.1, there
are also some other different kinds of solutions. Let us make some
complementary discussions.

1. For k > 0, the typical solutions obtained in Theorem 3.1 are
multi-valued periodic traveling wave solutions (see
Fig. 6(b)). There are also single-valued periodic traveling
wave solutions to the mCH equation. For example, if k = 1,
g = 2, c = 4, the level set H = −4.1 does not intersect
φ2

− v2
= c and it gives a classical periodic solitary wave

solution to the mCH equation.
2. For k ≤ 0, there may exist a simple curve Γ that is a loop,

which gives a periodic solution to the mCH equation. See
Fig. 1(a) (single-valued) and Fig. 2(d) (multi-valued).

3. The special case k = 0 and g = 0 is very important for our
discussion in Section 4.

H =
1
4
(φ2

− v2)2 −
1
2
c(φ2

− v2). (3.15)

The level sets are given by

φ2
− v2

= A, for some A ∈ R.

If A < 0, the two curves of φ2
− v2

= A corresponding to
two strictly monotonic solutions to the mCH equation (see
Fig. 6(c),(d)):

φ(ξ ) = ±
√

−A sinh(ξ + d) for some constant d ∈ R.

If A > 0, we solve that

φ(ξ ) = ±
√
A cosh(ξ + d) for some constant d ∈ R.

The case A = 0 is very interesting as it passes through
the critical point (0, 0) which is a saddle point when the
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traveling speed c ̸= 0. The time spent near (φ, v) = (0, 0)
now is infinity. Later in Section 4, we obtain peakon weak
solutions (see Remark 4.2) by the patching technic.

3.3. Patched traveling peakon weak solutions

By Theorem 3.1, the typical solutions for k > 0 are multi-
valued periodic solutions while the typical solutions for k ≤ 0
are single-valued solutions which tend to infinity as |ξ | → ∞.
In this subsection, we introduce the patching technic to obtain
patched bounded single-valued weak solutions from these two
types of solutions. Therefore, our method is also a way to change
‘bad solutions’ into ‘good solutions’.

First, we present a patching criterion to construct a patched
periodic weak solution by connecting smooth solutions given by
level sets of H .

Proposition 3.4. Fix any k ∈ R, c ∈ R and g ≥ 0. Suppose curves

γ +
⊂ {(φ, v) : H = h, v ≥ 0}, γ −

⊂ {(φ, v) : H = h′, v ≤ 0},
for some h and h′,

are function graphs of two continuous functions v = f +(φ), v =

f −(φ) for φ ∈ [φ1, φ2] (φ1 < φ2) (see Fig. 7(a)). Denote points
A+

: (φ1, v
+

1 ) = (φ1, f +(φ1)) and B+
: (φ2, v

+

2 ) = (φ2, f +(φ2)),
A−

: (φ1, v
−

1 ) = (φ1, f −(φ1)) and B−
: (φ2, v

−

2 ) = (φ2, f −(φ2)).
If γ + and γ − do not pass through critical points and the end points

A+, B+, A− and B− satisfy:

(φi)2 −
1
3

Ä
(v+

i )2 + v+

i v−

i + (v−

i )2
ä

= c, i = 1, 2, (3.16)

then Γ = γ +
∪B+B−

∪γ −
∪A−A+ gives a patched periodic traveling

peakon weak solution with wave speed c (see Fig. 7(b)), where PQ
represents the line segment between two points P and Q .

Proof. Let Γ be oriented clockwise. We use Γ (A+, (φ, v)) to mean
the part of Γ from A+ to (φ, v) with the same orientation as Γ . The
relation

ξ =

∫
Γ (A+,(φ,v))

1
v
dφ (3.17)

then gives a mapping ξ ↦→ φ(ξ ). First note that
∫
A−A+

1
v
dφ = 0 =∫

B+B−

1
v
dφ. On γ +, since 1/v > 0 and dφ > 0, we have dξ > 0.

Similarly, dξ > 0 on γ −. Hence, φ(ξ ) is a single-valued mapping.
Since the arcs do not pass through critical points, T defined by
(3.12) satisfies

T =

∫
Γ

1
v
dφ ∈ (0, ∞).

Hence, φ(ξ ) is a periodic function. Denote T1 =
∫

γ +

1
v
dφ and

consider

u(x, t) =

ß
u1(x − ct) = φ(x − ct), x − ct = ξ ∈ (0, T1);
u2(x − ct) = φ(x − ct), x − ct = ξ ∈ (T1, T ),

and mi = ui − ∂xxui for i = 1, 2. The functions u1 and u2 solve
the mCH equation in the classical sense respectively for ξ ∈ (0, T1)
and ξ ∈ (T1, T ). We only have to verify that the jump conditions
are satisfied at the joints A+A− and B−B+, corresponding to x−ct =

ξ = 0 and x − ct = ξ = T1, or (x1(t), t), (x2(t), t) where

x1(t) = ct, x2(t) = T1 + ct.

From the conditions (3.16), one can easily verify that condition in
(2.2) is satisfied. Hence, the patched function is a periodic traveling
peakon weak solution. □

One possible way to construct the arcs γ + and γ − in
Proposition 3.4 is to cut curves from the same level set H = h.
Below we show that the hyperbola φ2

−
1
3v

2
= c can be used to

cut these two arcs from the level set H = h so that the condition
for endpoints (3.16) is satisfied automatically.

Corollary 3.1. Fix k ∈ R and c ∈ R. Suppose γ ⊂ {(φ, v) : H =

h}∩P+ is the graph of a function v = f (φ) that does not pass through
any critical point. Assume the endpoints of γ , denoted as A+ and B+,
are either on the hyperbola φ2

−
1
3v

2
= c or on the v = 0 axis. Let

γ̃ be the reflection of γ about v = 0 with corresponding endpoints
A−, B−. Then the loop Γ = γ ∪B+B−

∪ γ̃ ∪A−A+ gives a patched pe-
riodic traveling peakon weak solution of the mCH equation with wave
speed c.

Proof. Assume A+
= (φ1, v

+

1 ) and B+
= (φ2, v

+

2 ). Due to the
symmetric of γ and γ̃ , we have A−

= (φ1, −v+

1 ) and B−
=

(φ2, −v+

2 ). If A+, B+ are on the hyperbola φ2
−

1
3v

2
= c , we know

A− and B− are also on the hyperbola. At this time, (3.16) is satisfied
and the result follows.

Consider that some endpoint, for example A+, is on v = 0.
Then, A+

= A−. Hence, γ ∪ γ̃ is actually a connected arc of the
level set, which forms a strong solution. The jump only happens
at B+B− and the jump conditions can be verified similarly as in
Proposition 3.4. □

Now, for any traveling speed c ∈ R and any k ∈ R, we prove the
existence of the patched periodic traveling peakon weak solutions
corresponding to Corollary 3.1. And then give a figure to illustrate
it (See Fig. 8).

Theorem 3.2. For any fixed traveling speed c ∈ R and any fixed
k ∈ R, there is a h0 (depending on k, c and g) such that for any h > h0,
there is an arc in the level set H = h satisfying the conditions in
Corollary 3.1. Consequently, there are patched single-valued periodic
traveling peakon weak solutions with speed c.

Proof. We just consider the following function graph v = f1(φ) in
Γ+

v =

»
φ2 − c +

√
c2 − 4(kφ2 − gφ − h).

Consider

D = {φ ∈ R : c2 − 4(kφ2
− gφ − h) ≥ 0}.

When k = 0, D is an interval of R. When k < 0 and h > −g2−kc2
4k ,

we have D = R. When k > 0 and h > −g2−kc2
4k , D is an interval of

R. Next, we assume h big enough such that D is an interval of R.
The domain of v = f1 is given by

Df1 = {φ ∈ D : φ2
− c +

√
c2 − 4(kφ2 − gφ − h) ≥ 0}.

For each φ̃ in {φ : φ2
≤ c}, we can find a h1(φ̃) such that

φ̃2
− c +

»
c2 − 4(kφ̃2 − gφ̃ − h1(φ̃)) ≥ 0.

Since {φ : φ2
≤ c} is a compact set, there exists h1 > 0 such that

for all h > h1, Df1 = D is an interval of R.
We now show that there exists h0 ≥ h1 so that whenever

h > h0, v = f1(φ) intersects with φ2
−

1
3v

2
= c at two points

φ1, φ2 and [φ1, φ2] ⊂ D.
Consider the following function

f (φ) = 3(φ2
− c) − (φ2

− c +

√
c2 − 4(kφ2 − gφ − h)).

We claim that there is h2 such that ∀h ≥ h2, ∃M1 > 0,
[−M1,M1] ⊂ D, f (±M1) > 0. In the case k < 0, when h0 is large
enough, D = R, and the claim is clear since f (φ) grows like 2φ2. In
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Fig. 7. A sketch to illustrate Proposition 3.4.

Fig. 8. In phase plane (a), the closed loop ÕabO (solid line) corresponds to multi-valued periodic traveling wave solution ÕabO (solid line) in (b). This multi-valued solution
was also given in [13, Section 3], where it was called symmetric singular soliton. By the patching technic, we truncate the closed loop in the phase plane (a) at A+ and A− and

obtain a new closed loop ȮA+A−O (dashed line) corresponding to a patched single-valued periodic traveling wave weak solution ȮA+A−O with a peakon A+(A−) (dashed
line) in (b). The points A+ and A− are obtained by the interaction between the level set H = 0 and the hyperbola φ2

−
1
3 v2

= c = 2 in phase plane. In (b), they glue together
and form a peakon A+(A−) where the jump condition (2.2) is satisfied (see Corollary 3.1 for more details). The case for (c) and (d) is similar, where B+ , B− glue together and
form a peakon at bottom while C+ , C− glue together and form a peakon at the top.

the case k = 0, if g = 0, D = R. If g > 0, φ ≥ φc = −
c2+4h
4g . It

is clear that f (φc) grows like 2h2. Hence, when h is large enough,
picking M1 = |φc | suffices. If k > 0, the critical values are φ±

c =

(g ±

√
g2 + 4h + c2)/2k. As h increases, D = [φ−

c , φ+
c ] increases

and f (φ±
c ) increases to infinity. The claim is also true if we choose

M1 = min(|φ−
c |, |φ+

c |).
Now, we compute

f (0) = −2c −

√
c2 + 4h < 0.

When c > 0, we have f (0) < 0. When c < 0, h > 3c2
4 implies

f (0) < 0.
Choose

h0 = max
¶
h1, h2,

3c2

4

©
.

Whenever h > h0, v = f1(φ) intersects with φ2
−

1
3v

2
= c at two

points φ1, φ2 and [φ1, φ2] ⊂ D.
The proof then is complete. □

Remark 3.3. In the proof, we only constructed the cases when the
two endpoints are on the hyperbola φ2

−
1
3v

2
= c. Actually, the

other situation that one endpoint is on v = 0 in Corollary 3.1 can
also happen. See Fig. 8(a), (b) for an example. And by the patching
technic, we can also obtain peakon weak solutions that are not
periodic (see Remark 3.4 and Section 4).

In Fig. 8, we plot two multi-valued traveling wave solutions
and the corresponding patched periodic traveling peakon weak
solutions for the cases k = 1, c = 2 and g = 2.

Remark 3.4. Note that we can also patch solutions corresponding
to different speeds. For example, consider the level set H = 0 with
the parameter g = 0. Then, (0, 0) ∈ {(φ, v) : H = 0}. As in Fig. 8(b)
(with g = 0), assume (φ(ξ0), v(ξ0)) = (0, 0). Consider one period
in (ξ0, ξ0 + T ). Construct u as

u(x, t) =

ß
0 for x − ct = ξ /∈ [ξ0, ξ0 + T ],

φ(ξ ) for x − ct = ξ ∈ [ξ0, ξ0 + T ].
(3.18)
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Then, the jump condition (2.3) can be verified easily at the patching
areas: ξ0 and ξ0 + T . Hence, u is a weak solution to (1.1). Based
on this kind of peakon solutions, we can construct multi-peakon
solutions with different speeds. For example, assume u1 and u2
are constructed as (3.18) with different traveling speeds c1, c2 and
periods T1, T2:

u1(x, t) =

ß
0, x − c1t = ξ /∈ [ξ1, ξ1 + T1],
φ1(ξ ), x − c1t = ξ ∈ [ξ1, ξ1 + T1],

u2(x, t) =

ß
0, x − c2t = ξ /∈ [ξ2, ξ2 + T2],
φ2(ξ ), x − c2t = ξ ∈ [ξ2, ξ2 + T2].

For ξ1 + T1 < ξ2, we can construct 2-peakon weak solution as

u(x, t) =

⎧⎨⎩
u1(x, t), x − c1t ∈ [ξ1, ξ1 + T1],
u2(x, t), x − c2t ∈ [ξ2, ξ2 + T2],
0, otherwise.

If c1 < c2, the left peakon stays far behind the right one. If c1 > c2,
the left peakon catches up the right one in finite time.Whether the
left peakon can go beyond the right onewithout changing shape or
not, which is the property of solitons, is left for future study.

4. A class of peakon weak solutions for k ≤ 0

In this section,weuse the fundamental solutionG(x) (definedby
(1.2) and (1.3)) of Helmholtz operator 1− ∂xx to give some peakon
weak solutions to the mCH equation (1.1) (with k ≤ 0) in Tℓ. And
we show that some of these peakon weak solutions also can be
obtained by the patching technic.

4.1. Peakon weak solutions for k = 0

In this subsection,we consider the dispersionlessmCHequation
(Eq. (1.1) with k = 0). When considering the whole space R (or
ℓ = +∞), the dispersionless mCH equation has peakon weak
solutions of the form (1.5). Here, we present a more general result
about this kind of peakon weak solutions for all 0 < ℓ ≤ +∞.

Proposition 4.1. Assume 0 < ℓ ≤ +∞ and p ̸= 0. Let

c =

⎧⎪⎨⎪⎩
1
4
p2
î
coth2(

ℓ

2
) −

1
3

ó
if ℓ < +∞;

1
6
p2 if ℓ = +∞.

Then, u(x, t) = pG(x − ct) is a one peakon weak solution to the
dispersionless mCH equation (1.1) (k = 0).

Proof. By the definition G(x) ((1.2) and (1.3) ), we know

m(x, t) = u(x, t) − ∂xxu(x, t) = 0 for x ̸= ct.

Hence,u(x, t) is a classical solution to the dispersionlessmCHequa-
tion inR×[0, +∞)\ {(x(t), t) : x(t) = ct, t ≥ 0}. By Theorem 2.1,
we only have to prove u(x, t) satisfies (2.2) or (2.3) along the line
{(x(t), t) : x(t) = ct, t ≥ 0}. Here, we prove u satisfies jump
condition (2.2). Notice that ux(x(t)−, t) = −ux(x(t)+, t) =

p
2 . We

have

u2(x(t), t) −
1
3
u2
x (x(t)−, t) −

1
3
u2
x (x(t)+, t)

−
1
3
ux(x(t)−, t)ux(x(t)+, t)

=

⎧⎪⎨⎪⎩
1
4
p2
î
coth2(

ℓ

2
) −

1
3

ó
if ℓ < +∞;

1
6
p2 if ℓ = +∞.

This implies the first condition in (2.2)
d
dt

x(t) = c = u2(x(t), t) −
1
3
u2
x (x(t)−, t) −

1
3
u2
x (x(t)+, t)

−
1
3
ux(x(t)−, t)ux(x(t)+, t).

The second condition in (2.2) can be easily checked. Therefore,
u(x, t) = pG(x−ct) is a peakonweak solution to the dispersionless
mCH equation. □

Remark 4.1. The traveling speed is determined by the amplitude p
and the period ℓ. When the period ℓ tends to infinity, the traveling
speed c tends to 1

6p
2:

1
6
p2 = lim

ℓ→+∞

1
4
p2
î
coth2(

ℓ

2
) −

1
3

ó
.

Remark 4.2. All the peakon weak solutions given by
Proposition 4.1 can be obtained by the patching technic introduced
in Section 3.3. Here, we only show the case for ℓ = +∞. In this
case, the solution is reduced to

u = pG(x −
1
6
p2t) =

1
2
pe−|x− 1

6 p
2t|.

As shown in Fig. 9, consider the level set of (3.5) for k = 0, g = 0
and c > 0. At this time (0, 0) is a saddle point of (3.6). The two
lines φ = ±v belong to the level set of H = h = 0 and the time
spent near (φ, v) = (0, 0) is infinity. Consider the two branches of
the level set H = 0 in the half plane φ > 0. These two branches
correspond to two traveling wave solutions to the mCH equation:

φ1(ξ ) = A1eξ and φ2(ξ ) = A2e−ξ

for some constants Ai > 0, i = 1, 2.

(When the origin point for ξ = 0 is set, we can determine Ai for
i = 1, 2.) Now, assume the traveling speed c =

1
6p

2 for p ̸= 0.

The two branches intersect φ =

»
v2

3 + c (the right curve of

φ2
−

v2

3 = c) at B+
=

Ä»
3
2 c,
»

3
2 c
ä
and B−

=

Ä»
3
2 c, −

»
3
2 c
ä
.

Assume γ :=

¶
(φ, v) : 0 < φ <

»
3
2 c, v = φ

©
and γ̃ :=

¶
(φ, v) :

0 < φ <
»

3
2 c, v = −φ

©
. Consider the patched weak solution

given by curve (clockwise)

γ ∪ B+B−
∪ γ̃ .

Assume ξ = 0 on the segment B+B−. Hence, we have

φ1(0) = φ2(0) =

…
3
2
c = A1 = A2.

This yields Ai =
|p|
2 and the corresponding patched weak solution

is

u(x, t) = φ(x − ct) =
|p|
2

e−|x−ct|
= |p|G(x − ct).

This is the one peakonweak solution given by Proposition 4.1. This
weak solution is not of finite period since it passes through the
critical points (0, 0). The time spent near (0, 0) is infinity. Similarly,
the intersection between φ = ±v (φ < 0) and the left curve of
φ2

−
v2

3 = c gives the peakon weak solution u = −|p|G(x − ct).

Notice that a solution givenbyProposition 4.1 satisfiesm(x, t) =

0 is in the smooth region of u and the superposition of such
solutions u gives a new solution in the smooth region. Hence,
the superposition of N such solutions with different traveling
speeds forms an N-peakon weak solutions only if one of the jump
conditions ((2.2) or (2.3)) is satisfied along the trajectory of each
peakon. Indeed, we have the following proposition.
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Fig. 9. Illustration of Remark 4.2: the patching technic for peakon weak solutions of the form (1.5). When g = k = 0 and traveling speed c = 2, the hyperbola φ2
−

1
3 v2

= c
(φ > 0) intersects the level set H = 0 at B+ and B− in phase plane (a). (0, 0) is a saddle point and γ ∪ B+B−

∪ γ̃ corresponds to the patched peakon weak solution
φ(ξ ) = u(x, t) = 2

√
3G(x − 2t) =

√
3e−|x−2t|

=
√
3e−|ξ | in (b).

Proposition 4.2. Let p1, . . . , pN ∈ R be N constants and pi ̸= 0,
i = 1, . . . ,N. Assume x10 < x20 < · · · < xN0. Consider N trajectories
{xi(t)}Ni=1 defined by

d
dt

xi(t) = u2(xi, t) −
1
3

Ä
u2
x (xi+, t) + ux(xi+, t)ux(xi−, t)

+ u2
x (xi−, t)

ä
, (4.1)

subject to xi(0) = xi0, where

u(x, t) =

N∑
i=1

piG(x − xi(t))

Then, u is anN-peakonweak solution of themCH equation (1.1) before
the first collision time T :

T := sup
{
T0 : x1(t) < x2(t) < · · · < xN (t) for t ∈ [0, T0)

}
. (4.2)

Proof. We only have to check the second condition in (2.2) for
t ∈ [0, T ), where T is defined by (4.2). By the assumption that
xi(t) ̸= xj(t) for i ̸= j and t < T , we have

vi
ℓ(t) − vi

r (t) = ux(xi(t)−, t) − ux(xi(t)+, t) = pi.

Becausem = 0 in the smooth region of u, we have

Ai
ℓ(t) = lim

x→xi(t)−
m(x, t)

Ä
u2(x, t) − u2

x (x, t) − x′

i(t)
ä

= 0

and similarly Ai
r (t) = 0. Hence, we have

d
dt

(vi
ℓ(t) − vi

r (t)) = Ai
ℓ(t) − Ai

r (t) = 0, i = 1, . . . ,N,

which proves the second condition of (2.2). □

When ℓ < +∞ and x1(t) < x2(t) < · · · < xN (t), Eq. (4.1) can
be simplified as
d
dt

xi =
1
4
p2i
Ä
coth2(ℓ/2) −

1
3

ä
+ coth(ℓ/2)pi

∑
j̸=i

pjG(xi − xj)

+

Ä∑
j̸=i

pjG(xi − xj)
ä2

−

Ä∑
j̸=i

pjGx(xi − xj)
ä2

. (4.3)

In the case ℓ = ∞ and x1(t) < x2(t) < · · · < xN (t), Eq. (4.1) is
simplified as
d
dt

xi =
1
6
p2i +

1
2

∑
j̸=i

pipje−|xi−xj| +

∑
1≤m<i<n≤N

pmpne−|xm−xn|. (4.4)

This ODE system was also obtained in [5].

Remark 4.3. Similar peakon weak solutions can also be obtained
for the CH equation (1.7) (with k = 0) in Tℓ. When ℓ = +∞,

u(x, t) = pG(x − ct) is a weak solution to the CH equation if
the traveling speed is c =

p
2 [16]. When consider the periodic

domain ℓ < +∞, one can prove that the traveling speed for such
a peakon weak solution is given by p

2 coth( ℓ
2 ) (see Appendix C).

Letting ℓ → +∞ in p
2 coth( ℓ

2 ), the speed converges to p
2 .

The periodic peakonweak solutions to the CH equationwas also
discussed in [21]. But the traveling speed is given by p

2 instead of
p
2 coth( ℓ

2 ). In [22], Lenells analyzed the trajectory stability of this
periodic peakon weak solutions with the expression given by [21],
withoutworrying about the speed of the traveling peakon. The rea-
son that Lenells can successfully obtain the stability result is that
he used themethod in [23]which only considers the shape stability
of peakonweak solutions and notice that different traveling speeds
in pG(x − ct) give a same function shape.

4.2. Peakon weak solutions for k < 0

If the dispersive term 2kux is present for k ∈ R, the CH equation
(1.7) has peakon weak solutions of the form [18,20]:

u(x, t) = pe−|x−(p−k)t|
− k, x ∈ R, t ≥ 0. (4.5)

Clearly, these peakon solutions do not vanish at infinity when k ̸=

0(u → −k as |x| → ∞).
For themCH equationwith k < 0,we have the following similar

result.

Proposition 4.3. Assume p ̸= 0 and k < 0. Let

u(x, t) = pG(x − ct) −
√

−k, m(x, t) = pδ(x − ct) −
√

−k, (4.6)

where the traveling speed c is given by

c =

⎧⎪⎨⎪⎩
îp
2
coth(

ℓ

2
) −

√
−k
ó2

−
p2

12
if ℓ < +∞;Äp

2
−

√
−k
ä2

−
p2

12
if ℓ = +∞.

(4.7)

Then, u(x, t) is a weak solution to the mCH equation (1.1) in Tℓ.

The proof is just a straightforward verification of the jump
conditions proposed in Theorem 2.1 and we omit it.

Remark 4.4. We remark that peakon weak solutions (4.6) can
also be obtained by the patching technic described in Section 3.3.
Consider the case ℓ = +∞. Fix k < 0, k ̸= −1 and p > 0. Let c be
defined by (4.7). Set the integral constant g = (c − k)

√
−k in (3.5).

There are two branches of level set H = −k
Ä

c
2 −

k
4

ä
intersects at

(−
√

−k, 0) which is a saddle point of System (3.6). With similar
arguments as in Remark 4.2, one can show that these peakonweak
solutions can be obtained by the patching technic. When k = −1,
the critical point (−1, 0) is degenerate, but a patched peakonweak
solution of form (4.6) can also be obtained.
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As shown by Propositions 4.1 and 4.3, the mCH equation (1.1)
with k ≤ 0 has special peakon weak solutions constructed by
the fundamental solution to the Helmholtz operator 1 − ∂xx. And
all these solutions can be constructed by the patching technic.
Naturally, one may wonder whether it has such peakon weak
solutions when k > 0. Next, we give a proposition to show that
there are no such peakon weak solutions to (1.1) when k > 0.

Proposition 4.4. If k > 0, there is no weak solution to (1.1) of the
form u(x, t) = AG(x − ct) − B for any constants c, A ̸= 0 and B.

Proof. Suppose there is a weak solution to (1.1) of the form
u(x, t) = AG(x − ct) − B. Then, m = u − uxx = −B =: M is a
constant when x ̸= ct . Consider the smooth region of uwhere it is
a traveling wave solution. Let φ(ξ ) := u(x, t) and ξ = x − ct . By
System (3.4), we have

m = φ − φ′′
=

2kφ − g
c − φ2 + v2 = M.

Since φ is not a constant, we find

φ2
− v2

− c =
1
M

(g − 2kφ).

The solution must correspond to a level set of H:

H =
1
4
(φ2

− v2)2 +
1
2
c(v2

− φ2) + kφ2
− gφ

=
1
4

Ä
c +

1
M

(g − 2kφ)
ä2

−
1
2
c
Ä
c +

1
M

(g − 2kφ)
ä

+ kφ2
− gφ

=
k(k + M2)

M2 φ2
−

g(k + M2)
M2 φ +

1
4

Ä
c +

g
M

ä2
−

1
2
c
Ä
c +

g
M

ä
= h. (4.8)

Since φ is not a constant, the coefficients of φ must be zero on the
right hand side but this is impossible if k > 0. □

Remark 4.5. When k < 0, (4.8) also implies that there exists
traveling wave solutions that makes m is a constant in smooth
regions only ifM =

√
−k.

5. Planar curve flows and the mCH equation

In this section, we discuss the planar curve flow C (t) and see
how a class of curve flows are related to the mCH equation. Sup-
pose the velocity for a point p(t; ξ ) on curve C (t) is given by v(t; ξ ),
and thus
dp(t; ξ )

dt
= v(t; ξ ),

where ξ ∈ [0, ℓ] is a label for the point, called Lagrangian co-
ordinate for the curve. The Lagrangian coordinate allows us to
parametrize C (t) as r(ξ, t) := p(t; ξ ). Since the velocity v(t; ξ )
can be decomposed along the tangential and normal directions, we
then can write the equation for the planar curve flow as

rt = aτ + bn, (5.1)

where

τ = τ (ξ, t) = (τ1, τ2) := rξ/|rξ |

is the unit tangent vector and

n = n(ξ, t) := τ⊥(ξ, t) = (−τ2, τ1)

is the unit normal vector.

Before we discuss the our planar curve flows, let us make the
following remarks: (i) If a and b are Euclidean differential invari-
ants (i.e. they only depend on curvature and its derivatives about
the arc-length), the curve flows are intrinsically the same (i.e. if r is
the flow for r0, then Pr+b is the flow for initial curve Pr0+bwhere
P is a rotation and b is a translation). (ii) Geometric properties like
total arclength, curvature and the derivatives of curvature only
depend on the normal component b. This means if one cares the
geometric curve flow only, one can set a to be anything (see [24]).
(iii) a affects the stretching of the curve and elastic properties.

We will study curve motions that preserve arc-length and total
signed area in detail. For relative discussions, see [24].

5.1. Arc-length preserving motions

The following results give criteria for preserving arc-length and
total signed area of closed curve flows given by (5.1).

Lemma 5.1. Suppose a smooth curve flow r(ξ, t) is a solution to
(5.1) with Euclidean differential invariants a and b. ξ ∈ [0, ℓ] is the
Lagrangian coordinate and s = s(ξ, t) is the arc-length parameter
at time t. Let κ(s, t) be the curvature of the curve r(ξ, t). Then, the
following statements hold.

(i) The curve is non-stretching (i.e. ∂t |rξ (ξ, t)| ≡ 0, the length
between any two points is unchanged or arc-length is preserved) if
and only if

as = bκ (5.2)

holds for any t > 0.
(ii) Suppose the curve is a closed curve, or in other words, r(ξ, t) is

a periodic function with period ℓ and ξ ∈ [0, ℓ]. Then, we have
d
dt

A(t) = −

∮
C (t)

bds, (5.3)

where

A(t) =
1
2

∮
C (t)

r · (−nds) (5.4)

is the total signed area enclosed by the curve r(ξ, t). In particular, if∮
C (t) bds = 0, the curve flow preserves the area enclosed.

Proof. (i) Denote

χ (ξ, t) = |rξ (ξ, t)|.

Because
1
2
∂tχ

2
= rξ · rξ t = aξχ − χ2bκ,

we see that χ is a constant if and only if aξ = bκχ or equivalently
(5.2) holds since ds = χdξ .

(ii) By direct computation, we find

τt = ∂t

Å
rξ
|rξ |

ã
=

1
χ
(aτξ + bξn) =

Å
aκ +

bξ

χ

ã
n. (5.5)

Further, since nt ⊥ n, we can write nt = hτ for some constant
h. By the fact that τ · n = 0, we have h = −n · τt and

nt = −

Å
aκ +

bξ

χ

ã
τ .

We now rewrite the formula for the total signed area as

A(t) =
1
2

∮
C (t)

r · (−nds) = −
1
2

∫ ℓ

0
r · nχdξ .

Hence,

d
dt

A = −
1
2

∫ ℓ

0
b|rξ | + r · τ (−(aκ|rξ | + bξ )) + r · n(aξ − |rξ |bκ)dξ
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Integrating by parts for the terms about aξ and bξ , we have A′
=

−
∫ ℓ

0 b|rξ |dξ = −
∮

C (t) bds. □

Under the non-stretching assumption (5.2) for curve flow
r(ξ, t), we derive an evolution equation for curvature κ . When
s(ξ, 0) = ξ , by Lemma 5.1 we have χ (ξ, t) ≡ 1 and s(ξ, t) ≡ ξ
for any t ≥ 0. Consequently, (5.5) can be rewritten as

τt = (bs + κa)n.

Using the above equation, we can obtain

(κn)t = τst = τts = (bs + κa)sn + (bs + κa)ns

= (bss + (κa)s)n − κ(bs + κa)τ .

Hence, it follows that

κt = n · (κn)t = bss + (κa)s, (5.6)

where nt · n = 0 was used.
We give two examples of closed curve flows connecting with

two integrable systemswhich preserve arc-length and total signed
area. These two examples can be found in [5].

1. Take a =
1
2κ

2, b =
1
κ
as = κs in (5.1). The arc-length

parameter is then preserved for any t . In the case that the
curve is closed,

∮
C (t) bds = 0 and the total signed area

enclosed by the curve is preserved. By (5.6), the curvature
satisfies

κt = κsss +
3
2
κ2κs. (5.7)

This equation is the modified Korteweg–de Vries (mKdV)
equation.

2. In this example, a and b in (5.1) are determined by κ globally
by first solvingu−uss = κ and then taking a = −(u2

−u2
s )−2,

b = as/κ = −2us. In the case that the curve is closed, we
have

∮
C (t) bds = 0 which means the total signed area is also

preserved. By (5.6), u satisfies the following mCH equation
with a dispersion term 2us

κt + [(u2
− u2

s )κ]s + 2us = 0, κ = (1 − ∂ss)u. (5.8)

Hence, the curvature is the function m introduced in (1.1).
This example connects a particular curve flows with the
mCH equation we are studying in this paper.

Remark 5.1. It is well-known that a planar curve is determined
uniquely by its curvature function up to a rigid body motion. In
the recent work [25], Bruveris, Michor and Mumford showed that
the space of closed plane curves equippedwith some Sobolev-type
metric is geodesically complete.

5.2. Hamiltonian structure for the arc-length preserving motions

In this section,we consider closed curve flows given by aHamil-
tonian system

rt = P
δE
δr

(5.9)

where E is some functional of the curve r and P is an anti-Hermitian
operator so that E is conserved under this motion. One example is

P = λ(ξ )J, J =

Å
0 1

−1 0

ã
(5.10)

and λ is a scalar. We aim to find Hamiltonian systems of the form
(5.9) for the arc-length preserving flows (5.1).

Motivated by the elastic energies in material science, we con-
sider energy functionals depending both on geometric quanti-
ties (curvature and its derivatives) and stretching. To define the

stretching, we assume the curve has a relaxed configuration so
that it contains no elastic energy under this configuration (onemay
consider a planar elastic spring for the motivation). Choosing ξ as
the arc-length parameter for this relaxed configuration, then the
elastic stretching is defined as

χ (ξ, t) = |rξ (ξ, t)|. (5.11)

We have the following proposition.

Proposition 5.1. Suppose a smooth curve flow r(ξ, t) is a solution to
(5.1) with Euclidean differential invariants a and b. ξ ∈ [0, ℓ] is the
Lagrangian coordinate chosen as arc-length parameter for the relaxed
configuration and s = s(ξ, t) is the arc-length parameter at time t. Let
κ(s, t) be the curvature of the curve r(ξ, t). Denote χ (ξ, t) the elastic
stretching of r(ξ, t) at time t defined in (5.11).

If s(ξ, 0) = ξ and as = bκ , then the dynamics (5.1) for this curve
flow can be rewritten in the following Hamiltonian structure

rt = −
a2

κ
J
δE
δr

, (5.12)

where J and E are given by

J =

Å
0 1

−1 0

ã
, E :=

∫ ℓ

0

1
a
(χ − 1)dξ . (5.13)

Consequently, the curve flows given by (5.12) move in the manifold
{r : E = 0}.

In particular, when a =
1
2κ

2 in (5.13), (5.12) gives the curve flows
described by the mKdV equation (5.7). When a = −(u2

− u2
s ) − 2

in (5.13) where u satisfies u − uss = κ , (5.12) gives the curve flows
described by the mCH equation (5.8).

Proof. By Lemma 5.1, if as = bκ , then the curve is non-stretching
and the arc-length is preserved. Hence, when s(ξ, 0) = ξ , we have
s(ξ, t) ≡ ξ for any time t ≥ 0.

Taking variation of the curve subject to δr(0) = δr(ℓ) gives

δE = −

∫ ℓ

0

δa
a2

(χ − 1)dξ −

∫ ℓ

0

∂

∂ξ

Å
1
a

rξ
|rξ |

ã
· δrdξ . (5.14)

Along the arc-length preserving curve flow r(ξ, t), we have χ ≡ 1
and the first term in (5.14) is zero. Hence, we have

δE
δr

= −
∂

∂s

Å
1
a
τ

ã
=

as
a2

τ −
κ

a
n. (5.15)

As a consequence, we have

rt = aτ + bn = aτ +
as
κ
n = −

a2

κ
J
δE
δr

.

The rest statements can be obtained easily and we omit the
proofs. □

5.3. Loops with peakons

We now study the closed curve flows corresponding to the
patched traveling peakon weak solutions to the mCH equation
(5.8), which are constructed in Theorem 3.2. Recall that such a
patched peakon weak solution u(s, t) = φ(ξ ) (ξ = s− ct) is piece-
wise smooth with jumps in first order derivative. The curvature
κ = u − uss = φ − φ′′ (φ′′ is understood in distribution sense) of
the corresponding curve contains Dirac delta mass. If the curve is
closed, then we have a loop with peakons due to the Dirac delta
mass in curvature.

The curvature κ(s) of a closed curvemust also be aperiodic func-
tion and the period T is a divisor of the curve length ℓ. Moreover,
it must satisfy the Gauss–Bonnet formula:∫ ℓ

0
κ(s)ds = 2nπ, n ∈ Z. (5.16)
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For a simple closed loop, we have n = ±1. If we allow the curve to
turn over, then n can be other integers.

However, not every periodic solution κ of Eq. (5.8) corresponds
to a closed curve flow. Next, we studywhat kind of κ gives a closed
curve. For convenience,wenow introduce the angle function θ (s, t)
which is the integral of κ(s, t) about s. Note that κ is the distribu-
tional derivative of a piecewise smooth function f . We omit the t
dependence for the convenience of discussion. The angle function
is then defined as

θ (s) :=

∫
(0,s]

κ(z)dz = f (s+) − f (0+). (5.17)

We now present a criterion on θ that guarantees that the curve is
closed. With a modification of results in [26], we have

Lemma 5.2. Suppose θ (s) is a piecewise smooth function that is
cadlag (right-continuous with left limits) and there exists T > 0 such
that θ (s + T ) = θ (s) + θ (T ), ∀s ≥ 0.

If θ (T ) ∈ 2π (Q \ Z) so that

θ (T ) =
2mπ

n
,m, n ∈ Z, n > 0, gcd(m, n) = 1,

then

γ (s) =

∫ s

0
exp(iθ (τ ))dτ

represents a closed curve in the plane with s to be the arc-length
parameter. The total length of the curve is nT . If θ (T ) ∈ 2πZ, there
are examples that the curves are not closed.

Proof. We show that

γ (nT + s) − γ (s) = 0, ∀s.

This is true because∫ s+nT

s
exp(iθ (τ ))dτ =

n−1∑
j=0

∫ s+(j+1)T

s+jT
exp(iθ (τ ))dτ

=

n−1∑
j=0

∫ s+T

s
exp(iθ (τ + jT ))dτ

=

n−1∑
j=0

exp(ijθ (T ))
∫ s+T

s
exp(iθ (τ ))dτ

=

∫ s+T

s
exp(iθ (τ ))dτ

1 − exp(im2π )
1 − exp(im2π/n)

= 0.

Then, the total length of γ must be n1T so that n1|n for some integer
n1.

By the definition of γ (s), θ is the incline angle of the tangent
vector and hence n1θ (T ) is a multiple of 2π since the curve is
closed, or n|mn1. Since gcd(n,m) = 1, we must have n1 = n and
the total length of γ is nT .

In the case θ (T ) ∈ 2πZ, one can refer to [26] for exampleswhere
the curves are not closed. □

Now, we show that some patched periodic traveling peakon
weak solutions of (5.8) may correspond to loops with peakons.
Fix k = 1, c > 0 and g > 0. By Theorem 3.2, there exists
h0 = h0(c, g) > 0 so that for all h > h0,

Γh :=

¶
(φ, v) : v2

= φ2
− c +

√
c2 − 4(φ2 − gφ − h),

φ1 ≤ φ ≤ φ2, v > 0
©
, (5.18)

gives a patched periodic traveling peakon solution uh(s, t) = φh(ξ )
(ξ = s − ct and ξ ∈ [0, Th], Th is a periodic), where φ1, φ2 are

determined by®
v2

= φ2
− c +

√
c2 − 4(φ2 − gφ − h), v > 0,

φ2
−

1
3v

2
= c.

(5.19)

Proposition 5.2. Assume k = 1 and fix c > 0 and g > 0. Let
uh(s, t) = φh(ξ ) : ξ = s − ct ∈ [0, Th] be the patched periodic weak
solution corresponding to Γh defined by (5.18) for h ∈ (h0, +∞),
where Th is a period of the patched periodic peakon solution and h0
is the constant in Theorem 3.2. Let (φ1, v

+

1 ) and (φ2, v
+

2 ) be the two
endpoints of Γh with φ1 < φ2. The following statements hold:

(i) Let θh be the angle function corresponding to κh(ξ ) := φh(ξ ) −

φh(ξ )′′. Then,

θh(Th) = 2

Ç∫
Γh

2φ − g
c − φ2 + v2

1
v
dφ + v+

2 − v+

1

å
=

∫ Th

0
φh(ξ )dξ = 2

∫
Γh

φ

v
dφ. (5.20)

(ii) θh(Th) is continuous in h. If θh(Th) is not a constant for h ∈

(h0, ∞), then there exist infinitely many solutions φh such that

θh(Th) ∈ 2π (Q \ Z).

Letting θh(Th) = 2π n
N with n,N ∈ Z, N > 0, gcd(n,N) = 1, then the

solution gives an arc-length preserving loop with peakons. The total
length is Lh = NTh and the curvature κh satisfies∫
(0,Lh]

κh(ξ )dξ = 2nπ.

Proof. Since φ′′

h is the distributional derivative of φ′

h which is
periodic and piecewise continuous, by Eq. (5.17), we find that∫
(0,Th]

φ′′

hdξ = 0.

Due to dξ =
1
v
dφ, we have

θh(Th) =

∫ Th

0
κh(ξ )dξ =

∫ Th

0
φhdξ = 2

∫
Γh

φ

v
dφ.

By this expression, the continuity of θh(Th) on h is clear.
For the other expression, we just consider∫

(0,Th]
κdξ = 2

Å∫
Γh

κ
1
v
dφ +

∫
Γh

φ′′dξ
ã

= 2
∫

Γh

κ
1
v
dφ + 2(v+

2 − v+

1 ). (5.21)

On Γh, by System (3.4) we have

φ′′

h = φh +
g − 2φh

c − φ2
h + (φ′

h)2

⇒ κh(ξ ) =
2φ − g

c − φ2 + v2

⏐⏐⏐
(φ,v)=(φh(ξ ),φ′

h(ξ ))
.

Since rational numbers are dense in any interval of R, as long
as θh(Th) is not constant in h, there are infinitely many h such that
θh(Th) ∈ 2π (Q \Z). According to Lemma 5.2, the claim follows. □

Next, we give an example to illustrate Proposition 5.2.
Fix g = 2 and c = 2. Consider the branch Γ+ (defined by

(3.10)) of H = h in the phase plane that v > 0. Let f0h(φ) :=

4 − 4(φ2
− 2φ − h) and f1h(φ) := φ2

− 2 +
√
f0h(φ). Assume

D0h := {φ ∈ R : f0h(φ) ≥ 0} and D1h := {φ ∈ R : f1h(φ) ≥ 0}.

Choose h0 = 1 + 2
√
2 and for any h > h0 we have

f0h(φ) ≥ f0h(−
√
2) ≥ 0 for any φ ∈ [−

√
2,

√
2].
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Moreover, we have

f1h(φ) ≥ 0 for φ ∈ [−
√
2,

√
2], and [−

√
2,

√
2] ⊂ D1h.

Consider the intersections between Γ+ (v > 0) and φ2
−

1
3v

2
= 2.

For h ∈ (1 +
√
2, +∞), there are two points φ1h, φ2h ∈ R that

satisfy

2(φ2
− 2) =

√
4 − 4(φ2 − 2φ − h).

Hence, from (5.20) we have

θh(Th) = 2
∫ φ2h

φ1h

φ
√
f1h(φ)

dφ

= 2
∫ φ2h

φ1h

φ»
φ2 − 2 +

√
4 − 4(φ2 − 2φ − h)

dφ.

Therefore, φh in Proposition 5.2 is defined on (1 + 2
√
2, ∞).

The figure θh(Th) versus h is shown in Fig. 10. Clearly, θh(Th)
is not a constant and therefore there are h such that θh(Th) ∈

2π (Q \ Z). Such a solution then gives a closed loop by Lemma 5.2.
However, it is not easy to tell which h satisfies θh(Th) ∈ 2π (Q \

Z). To illustrate how the peakons happen, let us consider a function
φ, which is not necessarily a solution to the mCH equation:

φ(ξ ) =

ß
φ0(ξ ), ξ ∈ [0, 1],
φ0(2 − ξ ), ξ ∈ (1, 2],

where φ0(ξ ) =
π
3 + ξ 2

+ ξ −
5
6 for ξ ∈ [0, 1]. Then, κ = φ −φ′′

=
π
3 + ξ + ξ 2

−
17
6 , ξ ∈ (0, 1). As a result, the angle function θ (s) is

given by

θ (s) =

⎧⎪⎪⎨⎪⎪⎩
π

3
s +

1
2
s2 +

1
3
s3 −

17
6

s, s ∈ [0, 1),
π

3
s −

1
3
(2 − s)3 −

1
2
(2 − s)2 −

17s
6

+
23
3

,

s ∈ [1, 2).

(5.22)

Then, θ (2) = θ (2−) − 2 =
2π
3 .

In Fig. 11, we plot the θ (s) function and the corresponding
curve. The curve is computed by evaluating the integral γ (s) =∫ s
0 exp(iθ (τ ))dτ directly.
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Appendix A. Proofs about critical points

We give a brief proof of Lemma 3.1

Proof. Consider the linearized System of (3.6) at the critical point
(φ∗, v∗) where ∂H

∂v
(φ∗, v∗) =

∂H
∂φ

(φ∗, v∗) = 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
dφ
dτ

=
∂2H
∂v∂φ

(φ − φ∗) +
∂2H
∂v2 (v − v∗),

dv
dτ

= −
∂2H
∂v∂φ

(v − v∗) −
∂2H
∂φ2 (φ − φ∗).

The eigenvalues of the linearized system satisfy

λ2
−

Ä ∂2H
∂v∂φ

ä2
+

∂2H
∂φ2

∂2H
∂v2 = 0.

WhenÄ ∂2H
∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 < 0,

(φ∗, v∗) is a center point and H(φ∗, v∗) is a local extremum of H .
WhenÄ ∂2H

∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 > 0,

(φ∗, v∗) is a saddle point of System (3.6) and it is a saddle point
of H . □

We now give a brief proof for Proposition 3.1

Proof. Assume that (φ∗, v∗) is a critical point which satisfies φ2
∗

−

v2
∗

= c . From the second equation in System (3.6), we obtain
−2kφ∗ + g = 0. Hence,

φ∗ =
g
2k

and v2
∗

= φ2
∗

− c =
g2

− 4k2c
4k2

when g2
− 4k2c > 0.

Hence,

H(φ∗, v∗) =
c2

4
−

c2

2
+

g2

4k
−

g2

2k
= −

c2

4
−

g2

4k
.

∂2H
∂v∂φ

(φ∗, v∗) =
g
k

…
g2 − 4k2c

4k2
,

∂2H
∂φ2 (φ∗, v∗)

=
g2

+ 4k3

2k2
,

∂2H
∂v2 (φ∗, v∗) =

g2
− 4k2c
2k2

.

HenceÄ ∂2H
∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 =

g2(g2
− 4k2c)
4k4

−
(g2

+ 4k3)(g2
− 4k2c)

4k4
= −

g2
− 4k2c
k

Hence, when k > 0, we haveÄ ∂2H
∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 < 0.

By Lemma 3.1, (φ∗, v∗) is a center point. When k < 0, we haveÄ ∂2H
∂v∂φ

ä2
−

∂2H
∂φ2

∂2H
∂v2 > 0.

Lemma 3.1 tells us that (φ∗, v∗) is a saddle point. □

Appendix B. Proof of Proposition 3.2

Proof. If (k, g) = (0, 0), all the level sets are of the formφ2
−v2

= c
and the claim is clearly true. Now, we assume (k, g) ̸= (0, 0). We
use five steps to prove this proposition. In Step 1 and Step 2,we give
some useful results. With these arguments, we prove proposition
by Step 3, Step 4 and Step 5. In this proof, we always use α̃ to
represent the reflection of a curve α about v = 0.

Step 1.
Γ+ ∩Σ (Γ− ∩Σ) if nonemptymust contain an arc with positive

length.
Due to Lemma 3.3, Γ+ ∩ P± are graphs of continuous functions.

Because Σ is a connected component, when Γ+ ∩ Σ ∩ P± is not
empty, it must contain an arc with positive length or it is a single
point.

Assume Γ+ ∩ Σ ∩ P+ = {(φ0, v0)} is a single point. Because
Σ is a nontrivial connected set, we can see that Γ+ = {(φ0, v0)}.
This implies that the square root in the definition of Γ+ is defined
only at φ0 and at this time we have Γ− = Γ+, in which case Σ is
trivial contradicting with the assumption. Hence, Γ+ ∩Σ (Γ− ∩Σ)
if nonempty must contain an arc with positive length.
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Fig. 10. (a): θh(Th) versus h. Figures (b) and (c) show the jump of θh(Th) at the end of Γh .

Fig. 11. Illustration of loops with peakons with Eq. (5.22). Figure (a) shows the graphs of θ (s) function, and Figure (b) shows the corresponding planar curves. The dots show
the singular points at s = 1, 3, 5, while the other peakons correspond to s = 0, 2, 4.

Step 2.
If there is a point A = (φ∗, v∗) ∈ Σ such that there are more

than three arcs emerging from A. The Implicit theorem tells us that
A has to be a critical point of H (or System (3.6)).

If the critical point A is on φ2
− v2

= c , we know v∗ ̸= 0. Oth-
erwise, we have φ2

∗
= c , which contradicts with our assumption.

This point has to be the critical point of the form φ∗ =
g
2k for (3.6).

By Proposition 3.1, this critical point is a center point when k > 0
and hence we must have k < 0 (For k = 0 and g ̸= 0, this is not a
critical point.) In this case, we have√

c2 − 4(kφ2
∗

− gφ∗ − h) =

…
c2 − 4k

Ä
φ∗ −

g
2k

ä2
+

g2

k
+ 4h

= 0.

Γ± are defined both on the right and left of this critical point. As a
result, on either side, there are two curves emerging from A.

If A = (φ∗, 0), since φ2
∗

̸= c , Γ+ and Γ− do not meet here. There
are and only are two curves emerging from A on each side of the
line φ = φ∗.

Step 3.
If Γ+ ∩ Σ = ∅ or Γ− ∩ Σ = ∅, by Lemma 3.3, Σ must not

intersect φ2
− v2

= c at v ̸= 0. By the assumption there is no
point (φ0, 0) with φ2

0 = c on it, Σ does not intersect the hyperbola
on v = 0 as well. Moreover, Σ ⊂ Γ+ or Σ ⊂ Γ−. As a result, by
Lemma 3.3,Σ ∩P+ if nonempty is the graph of a function v = f (φ).

If there are no points onΣ as described in Step 2, from the third
statement of Lemma 3.3 we have three cases for f (φ): case 1. two
endpoints of f are at v = 0; case 2. one endpoint of f is on v = 0
the other end tends to infinity; case 3. both ends of f extend to
infinity. Assume Σ+ = Σ ∩ P+, which is given by the graph of
function f . For case 1 and case 2, by our assumption about Σ , we
know Σ+ ∪ Σ̃+ = Σ . At this time Σ is a loop for case 1 while both
ends tend to infinity for case 2. For case 3, we have Σ = Σ+.

If there are points on Σ as described in Step 2, they must be
on v = 0. Otherwise they are on φ2

− v2
= 0 and at this time

Γ+ ∩Γ− ∩Σ ̸= ∅.We can use the lines φ = φA (A is a critical point
in Σ) to divide the whole plane into finite regions Ri. Consider the
arc Σi of the graph of function f in Ri. The analysis is the same as
the last paragraph.

Step 4
Now, we assume Γ+ ∩ Σ ̸= ∅ and Γ− ∩ Σ ̸= ∅. By Step 1, both

parts contain at least an arc with positive length.
Without loss of generality, we can assume Γ+ ∩ Σ ∩ P+ ̸= ∅.

By Lemma 3.3, this is a function graph v = f1(φ) with the largest
domain D. We claim first that D is an interval. Suppose otherwise,
then there are two disjoint intervals I1 and I2 such that v = f1(φ)
has no graphs between them. Let I1 be on the left of I2. Consider
the right endpoint of I1, φ∗. If Γ+ is defined for φ ∈ (φ∗, φ∗

+ δ),
then the graph in P+ must be continuously extended from f1(φ) by
the expression of Γ+ in (3.10). Hence, Γ+ is not defined on φ ∈

(φ∗, φ∗
+ δ) (for δ > 0) and consequently, Γ− is not defined either

(the domain of Γ− is contained in the domain of Γ+). This means
the graphs of Γ+ over I1 and I2 cannot be in the same connected
component Σ .

To be simple, let γ be the function graph of f1. If there are any
points A = (φA, vA) as described in Step 2 on γ , we use the lines
φ = φA to divide the whole planes into finite regions Ri (of course,
if there are no such points, R1 is the whole plane). Consider the arc
γi = γ∩Ri. Assume its endpoints areB = (φB, vB) andC = (φC , vC ).
γi must have one end that ends on v = 0 or φ2

−v2
= c with v ̸= 0

(if both ends tend to infinity, we then have the case in Step 3). We
use the following four cases to study the structure of γi.

1. The first case is that one end, B, of γi tends to infinity.

• If the other end C satisfies vC = 0, then C is not on
φ2

− v2
= c . This means Γ+ and Γ− do not meet there.

By the symmetry of Σ , we know Σ ∩ Ri = γi ∪ γ̃i. In
this case, Σ ∩ Ri has both ends tend to infinity.
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• If the other end C falls onto φ2
− v2

= c , then wemust
have v ̸= 0. Then, Γ+ and Γ− meet here and Γ− has an
arc αi merging from C which is under γi in Ri ∩ P+.
If the other end of αi ends on a point C ′ with vC ′ = 0,
then γi ∪ αi ∪ γ̃i ∪ α̃i is a simple curve with both ends
tending to infinity. Furthermore, if C ′ happens to be a
critical point in Step 2, there are some arc ofΓ− beyond
this critical point and the discussion for these arcs will
be similar as Step 3.
If the other end of αi tends to infinity without inter-
secting v = 0, then γi ∪ αi = Σ ∩ Ri ∩ P+ is a simple
curve with both ends tending to infinity. Σ ∩ Ri ∩ P− if
nonempty (this happens only if C ′ is the critical point
on the hyperbola) will be the reflection of this simple
curve, which is again a simple curve.

2. The second possibility is that both ends are on v = 0. In this
case, by the discussion in Step 2,Γ−∩Σ ∩Ri = ∅. As a result,
Σ ∩ Ri = γi ∪ γ̃i is a loop.

3. Another possibility is one (say B) on v = 0 and one (say C) on
φ2

−v2
= c with v ̸= 0. Then, there is an arcαi inΓ−∩Σ∩Ri

merging from C in Ri and under γi. The other end of αi must
terminate on a point C ′ with vC ′ = 0. As a result, Σ ∩ Ri is a
loop. Similarly, if C ′ happens to be a critical point in Step 2,
there are some arc of Γ− beyond this critical point and the
discussion for these arcs will be similar as that in Step 3.

4. Lastly, both B and C are on φ2
− v2

= c with v ̸= 0. We call
the left endpoint B. In this case, Γ− ∩ Σ ∩ Ri exists both on
the right of B and on the left of C , called α−

i and α+

i .

• If α−

i = α+

i , we call this αi. Then, γi ∪ αi = Σ ∩ Ri ∩ P+

is a simple curve, which is a loop. If Σ ∩ Ri ∩ P− is
nonempty (this happens only if αi touches v = 0 at
a critical point), then, it is the reflection of the loop in
P+.

• If α−

i ̸= α+

i , then, they must both touch v = 0. As a
result, γi∪α−

i ∪α+

i = β and β∪ β̃ is a simple curve and
forms a loop. Further, if these points on v = 0 happen
to be critical points in Step 2, there are some arc of Γ−

beyond this critical point and the discussion for these
arcs will be similar as that in Step 3.

This then finishes the discussion of the structures of Σ .
Step 5
The last part of the proposition is obvious by Lemma 3.3 and the

expressions of Γ±. □

Appendix C. Peakon weak solutions for the CH equation (1.7)

The definition of weak solution to the CH equation (1.7) is given
similarly as the mCH equation. u ∈ C([0, T );H1(Tℓ)) is a weak
solution to (1.7) subject to u(x, 0) = u0(x) if the following holds
for any ϕ(x, t) ∈ C∞

c ([0, T ) × Tℓ)∫ T

0

∫
Tℓ

uφtdxdt −

∫ T

0

∫
Tℓ

uφxxtdxdt +
3
2

∫ T

0

∫
Tℓ

u2φxdxdt

+
1
2

∫ T

0

∫
Tℓ

u2
xφxdxdt

−

∫ T

0

∫
Tℓ

1
2
u2φxxxdxdt = −

∫
Tℓ

uφ(x, 0)dx

+

∫
Tℓ

u0φxx(x, 0)dx. (C.1)

As shown in [16], the N-peakon solutions are of the form

u(x, t) =

N∑
i=1

pi(t)G(x − xi(t)).

Using the weak formulation, we find that the jump conditions
given by xi(t) and pi(t) satisfy the following ODE system⎧⎪⎪⎨⎪⎪⎩

dxi(t)
dt

= u(xi(t), t),

dpi(t)
dt

= −pi(t)
1
2
[ux(xi(t)+) + ux(xi(t)−)].

(C.2)

Here pi(t) depends on time and this is different with the N-peakon
weak solutions to the mCH equation given in Proposition 4.2.
Notice that for any x ∈ R, we have

−
1
2
[Gx(x+) + Gx(x−)] = sgn(x)G(x).

Hence, (C.2) can be changed into⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dxi(t)
dt

=

N∑
j=1

pj(t)G(xi(t) − xj(t)),

dpi(t)
dt

=

N∑
j=1

pi(t)pj(t)sgn(xi(t) − xj(t))G(xi(t) − xj(t)).

(C.3)

This is a Hamiltonian system and the Hamiltonian function is given
by

H0(t) =
1
2

N∑
i,j=1

pi(t)pj(t)G(xi(t) − xj(t)).

When ℓ = +∞, pi(t) and xi(t) satisfy the following Hamiltonian
system of ODEs:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d
dt

xi(t) =
1
2

N∑
j=1

pj(t)e−|xi(t)−xj(t)|, i = 1, . . . ,N,

d
dt

pi(t) =
1
2

N∑
j=1

pi(t)pj(t)sgn
(
xi(t) − xj(t)

)
e−|xi(t)−xj(t)|,

i = 1, . . . ,N.

(C.4)

One can refer to [27–29] for a rigorous analysis of the Hamiltonian
system (C.4).

If N = 1, from (C.3) we have

p1(t) ≡ p and
d
dt

x1(t) =
p
2
coth(

ℓ

2
) = c. (C.5)

The one peakon weak solution is given by

u(x, t) = pG(x − ct). (C.6)
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