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Abstract

This paper investigates Cauchy problems for nonlinear fractional time–space generalized Keller–Segel 
equation c0D

β
t ρ + (−�)

α
2 ρ + ∇ · (ρB(ρ)) = 0, where Caputo derivative c0D

β
t ρ models memory effects in 

time, fractional Laplacian (−�)
α
2 ρ represents Lévy diffusion and B(ρ) = −sn,γ

´
Rn

x−y

|x−y|n−γ+2 ρ(y)dy

is the Riesz potential with a singular kernel which takes into account the long rang interaction. We first 
establish Lr − Lq estimates and weighted estimates of the fundamental solutions (P (x, t), Y (x, t)) (or 
equivalently, the solution operators (Sβ

α (t), T β
α (t))). Then, we prove the existence and uniqueness of the 

mild solutions when initial data are in Lp spaces, or the weighted spaces. Similar to Keller–Segel equations, 
if the initial data are small in critical space Lpc (Rn) (pc = n

α+γ−2 ), we construct the global existence. 
Furthermore, we prove the L1 integrability and integral preservation when the initial data are in L1(Rn) ∩
Lp(Rn) or L1(Rn) ∩ Lpc (Rn). Finally, some important properties of the mild solutions including the 
nonnegativity preservation, mass conservation and blowup behaviors are established.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction

Fractional derivatives [41,28,14,20,33] are employed to describe the nonlocal effects in 
time and space. They are integro-differential operators generalizing the definition of integer 
order derivative to fractional orders, and have been used to deal with numerous application 
in areas such as physics, hydrology, biomedical engineering, control theory, to name a few 
[39,30,36,13,49,42,35]. Time fractional derivatives [11,41,28,33] are usually applied to model 
the ubiquitous memory effects. The theory of time fractional differential equations, especially 
time fractional ODEs, has been developed by many authors [21,14,17,34]. Both time and spatial 
fractional derivatives [39,47,13] can be used for anomalous diffusion or dispersion when a par-
ticle plume spreads at a rate inconsistent with the Brownian motion models. The appearance of 
spatial fractional derivatives in diffusion equations are exploited for macroscopic description of 
transport and often lead to superdiffusion phenomenon. Time fractional derivatives are usually 
connected with anomalous subdiffusion, where a cloud of particles spread more slowly than a 
classical diffusion [37,12], because particle sticking and trapping phenomena ordinarily display 
power-law behaviors.

There have been a lot of works investigating fractional partial differential equation (see [47,
24,15,31,45,50,27] for example). Huang and Liu [24] studied the uniqueness and stability of 
nonlocal Keller–Segel equations by considering a self-consistent stochastic process driven by 
rotationally invariant α-stable Lévy process. Taylor [45] constructed the formulas and estimates 
for the solution to nonhomogeneous time fractional diffusion equations c0D

β
t u + Au − q(t) =

0 where A is a positive self-adjoint operator. Zacher [50] considered the regularity of weak 
solutions to linear diffusion equations with Riemann–Liouville time fractional derivative in a 
bounded domain in Rn. Kemppainen, Siljander and Zacher [27] performed a careful analysis 
of the large-time behaviors for fully nonlocal diffusion equations. Allen, Caffarelli and Vasseur 
[1,2] discussed porous medium flows and parabolic problems with fractional time derivative of 
Caputo-type.

In this paper, we focus on Cauchy problems of the following nonlinear time–space fractional 
diffusion equations (NFDE):

{
c
0D

β
t ρ + (−�)

α
2 ρ + ∇ · (ρB(ρ)) = 0 in (x, t) ∈R

n × (0,∞),

ρ(x,0) = ρ0(x),
(1.1)

where 0 < β < 1, 1 < α ≤ 2. c0D
β
t is Caputo fractional derivative operator of order β . Caputo 

derivative was first introduced in [11] and is more suitable for the initial-value problem com-
pared with the Riemann–Liouville fractional derivative. There are many recent definitions of the 
Caputo derivative in the literature listed to generalize the traditional definition [20,2,5,33,34]. 
We will use the definition introduced in [33,34] because of the theoretic convenience (see also 
Section 2 for the detailed introduction). When the function v is absolutely continuous in time, 
the definition in [33,34] reduces to the traditional form:

c
0D

β
t v(t) = 1

�(1 − β)

tˆ
(t − s)−β v̇(s)ds, (1.2)
0
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where � is the Gamma function and v̇(t) is the first order integer derivative of function v(t) with 
respect to independent variable t . According to Chapter V in [43], the nonlocal operator (−�)

α
2 , 

known as the Laplacian of order α2 , is given by means of the Fourier multiplier

(−�)
α
2 ρ(x) := F−1(|ξ |αρ̂(ξ)

)
(x),

where

ρ̂(ξ) =F
(
ρ(x)

) =
ˆ

Rn

ρ(x)e−ix·ξ dx (1.3)

is the Fourier transformation of ρ(x). For γ ∈ (1, n], n ≥ 2 and some constant sn,γ > 0, the 
linear vector operator B can be formally represented as B(ρ) = ∇((−�)−

γ
2 ρ) and is explicitly 

expressed with convolution of a singular Riesz kernel as follows

B(ρ)(x) = −sn,γ

ˆ

Rn

x − y

|x − y|n−γ+2 ρ(y)dy, (1.4)

which is the attractive kernel as [32] pointed out.
Model (1.1) generalizes the well known parabolic–elliptic Keller–Segel model [25,23,8]:

{
∂tρ = 	ρ − ∇ · (ρ∇c),

− 	c = ρ.
(1.5)

Here, ρ(x, t) represents the density of bacteria cells and c represents the density of chem-
ical substance. The original parabolic–parabolic Keller–Segel model was first introduced in 
[26] for chemotactic migration processes, while the parabolic–elliptic model was introduced 
due to the fact that the diffusion coefficient of the chemical substance is very large [25]. The 
equation −	c = ρ models the fact that the bacteria generate chemical substance and the term 
−∇ · (ρ∇c) comes from chemotaxis (the bacteria move according to the chemical gradient). 
Hence, −∇ · (ρ∇c) is the aggregation term and the two terms on the right hand side of the first 
equation compete with each other. The aggregation term can not be bounded in all cases, and the 
destabilizing effect indeed causes the solution to blow up in finite time for some cases [25,38]. In 
the classical work of Jäger and Luckhaus [25], they studied the blowup of the Keller–Segel sys-
tem based on a certain comparison principle for the radially symmetric solutions. This technique 
has recently been modified for much larger classes including refined chemotaxis models [44,4]. 
Another excellent strategy to prove blowup relies on the moment method dating back to [38] and 
later for more general systems in [6]. The moment method seems to be restricted to parabolic–
elliptic system, and for the techniques regarding fully parabolic–parabolic system, one can refer 
to [22,48].

Our model (1.1) describes the biological phenomenon chemotaxis with both anomalous diffu-
sion and memory effects. Formally, (1.1) is just to replace the time derivative in the Keller–Segel 
model (1.5) with the Caputo fractional derivative and the Laplacian in the second equation with 
γ /2-fractional Laplacian, when the memory effect and nonlocality are concerned. Our model re-
tains some interesting and essential features of the Keller–Segel model (1.5). Indeed, in Section 6, 
we show that the aggregation term still causes blowup when the mass is large and concentrated 
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for the indices we consider. Since our system is the generalization of the parabolic–elliptic sys-
tem, the method we use for blowup is the moment method.

With the usual time derivative where no memory is concerned, the generalized Keller–Segel 
equation for chemotaxis with anomalous diffusion has been studied by several authors. When 
γ = 2, Escudero [16] constructed global in time solutions for the fractional diffusion with 1 <
α ≤ 2. In two dimensional space (n = 2) and γ = 2, Biler and Wu [7] investigated the Cauchy 
problem with initial data u0 in critical Besov spaces Ḃ1−α

2,r (R2) for r ∈ [1, ∞] and 1 < α < 2. 
Li, Rodrigo and Zhang [32] proved the wellposedness, continuation criteria and smoothness of 
local solutions. For general γ and α, Biler and Karch [6] studied the local and global existence 
of mild solutions in C([0, T ], Lp(Rn)), and blowup behaviors.

For the model with memory effects and anomalous diffusion (1.1), first of all, in Proposi-
tion 3.3, 3.4 and 3.5, we construct the Lr − Lq estimates, the time continuity and weighted 
estimates of the solution operators (Sβ

α (t), T β
α (t)), using the results of the asymptotic behavior 

of the fundamental solutions (P (x, t), Y(x, t)) to fully nonlocal diffusion equations established 
in [15,27], listed in Lemma 3.3, Proposition 3.1 and Proposition 3.2. With the help of above esti-
mates, in Theorem 4.1, 4.2 and 4.5, we prove the existence and uniqueness of the mild solutions 
to (1.1) with the initial data in Lp spaces and weighted spaces. The main results regarding Lp

spaces are as following:

Theorem (Theorem 4.1). Suppose n ≥ 2, 0 < β < 1, 1 < α ≤ 2 and 1 < γ ≤ n. Let p ∈
(pc, ∞) ∩ [ 2n

n+γ−1 , n
γ−1 ). Then, for any ρ0 ∈ Lp(Rn), there exists T > 0 such that the equa-

tion (1.1) admits a unique mild solution in C([0, T ]; Lp(Rn)) with initial value ρ0 in the sense 
of Definition 4. Define the largest time of existence

Tb = sup{T > 0 : (1.1) has a unique mild solution in C([0, T ];Lp(Rn))}.
Then if Tb < ∞, we have lim supt→T −

b
‖ρ(·, t)‖p = +∞.

Theorem (Theorem 4.2). Suppose n ≥ 2, 0 < β < 1, 1 < α ≤ 2 and 1 < γ ≤ n. Let ν = ∞
if 2(α + γ − 2)β − α ≤ 0 or ν = 2nβ

2(α+γ−2)β−α
if 2(α + γ − 2)β − α > 0. Then, whenever 

(pc, ν) ∩ [ n
n−α+1 , n

γ−1 ) is nonempty, for any p ∈ (pc, ν) ∩ [ n
n−α+1 , n

γ−1 ), there exists δ > 0
such that for all ρ0 ∈ Lpc(Rn) with ‖ρ0‖pc ≤ δ, the equation (1.1) admits a mild solution ρ ∈
C([0, ∞); Lpc(Rn)) with initial value ρ0 in the sense of Definition 4, satisfying

‖ρ(t)‖pc ≤ 2δ,∀t > 0, (1.6)

and ρ ∈ C((0, ∞), Lp(Rn)). Further, the solution is unique in

XT :=
{
ρ ∈ C([0, T ];Lpc(Rn)) ∩ C((0, T ],Lp(Rn)) : ‖ρ‖pc,p;T < ∞

}
, T ∈ (0,∞). (1.7)

Here, the critical pc is given by pc = n
α+γ−2 (see Section 4 to see why Lpc is critical). These 

results are based on a fixed point lemma for a bilinear operator in Banach space (see Lemma 4.1).
In the framework of mild solutions, some basic properties such as nonnegativity preserva-

tion and mass conservation are nontrivial. We prove the L1 integrability and integral preser-
vation property of the mild solutions in Theorem 4.3 and 4.4 when initial data belong to 
L1(Rn) ∩ Lp(Rn) spaces or L1(Rn) ∩ Lpc(Rn). Interestingly, if ρ0 ∈ L1(Rn) ∩ Lp(Rn), we can 
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prove the existence of mild solutions for larger range of p values in Theorem 4.3 compared with 
Theorem 4.1. We then establish nonnegativity preservation (and therefore mass conservation) in 
Section 5. The main result regarding nonnegativity reads:

Theorem (Theorem 5.1). In Theorem 4.1 (or Theorem 4.2, Theorem 4.3, Theorem 4.4, Theo-
rem 4.5), if we also have ρ0 ≥ 0, then for all t in the interval of existence we have

ρ(x, t) ≥ 0. (1.8)

The nonnegativity preservation is based on the following important properties (see Corol-
lary 5.1 and equation (5.16))

〈(−	)
α
2 ρ,ρ+〉 ≥ 0,

ˆ

Rn

(c0D
β
t ρ)ρ− dx ≤ −1

2
(c0D

β
t ‖ρ−‖2

2),

where ρ+ = max(ρ, 0) = ρ ∨ 0 and ρ− = − min(ρ, 0) = −ρ ∧ 0. The rigorous proof is achieved 
by utilizing some approximating sequences to gain required regularity.

In Section 6, we investigate blowup behaviors of system (1.1) using the ν-moment (1 < ν < α) 
following the method used in [38,6]. The main results are as follows:

Theorem (Theorem 6.1). Assume n ≥ 2, 0 < β < 1, 1 < α ≤ 2, 1 < γ ≤ n. Assume ρ0 ≥ 0 and 
also the conditions in Theorem 4.3 (or Theorem 4.5) hold to ensure the existence of mild solu-
tions. If one of the following conditions are satisfied,

(i) For α = 2, γ = n, ν = 2, if ρ0 ∈ L1(Rn, (1 + |x|ν)dx) so that

‖ρ0‖1 >
2n

sn,γ

.

(ii) For some ν ∈ (1, α) when α < 2 or ν ∈ (1, 2] when α = 2, with n−γ+2
ν

> 1, if ρ0 ∈
L1(Rn, (1 + |x|ν)dx) and

‖ρ0‖1 > M∗,
ˆ

Rn

|x|νρ0(x) dx < δ,

for certain constants M∗(ν, n, α, γ ) and δ(ν, n, α, γ ).
(iii) Suppose α + γ < n + 2 (or pc > 1) and for some ν ∈ (1, α) when α < 2 or ν ∈ (1, 2] when 

α = 2. If ρ0 ∈ L1(Rn, (1 + |x|ν)dx) satisfying
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´
Rn |x|νρ0(x)dx´

Rn ρ0(x)dx
≤ χ

⎛
⎝ˆ

Rn

ρ0(x)dx

⎞
⎠

ν
n+2−α−γ

, (1.9)

where χ = δ(M∗)−1+ ν
α+γ−2−n (M∗, δ are the constants in (ii)).

Then the mild solution of (1.1) will blow up in a finite time.

The rest of this paper is organized as follows. In Section 2, we recall some notations, def-
initions and known results needed later. In Section 3, we construct the Lr − Lq estimates, the 
time continuity and weighted estimates of the fundamental solutions and solution operators to 
(1.1). In Section 4, we establish the existence and uniqueness of the mild solutions to NFDE 
(1.1) by applying the results derived in Section 3, and show that the integral of the mild solution 
is preserved. The nonnegativity preservation property and conservation of mass are discussed in 
Section 5. In Section 6, the blowup criterion for (1.1) are established with the similar approach 
as the one used in [6, Theorem 2.3].

2. Notations and preliminaries

In this section, first we provide the definition of Caputo derivative based on a convolution 
group (introduced in [33,34]) and show some properties related to Caputo derivatives. Then we 
define the mild solution to (1.1), introduce the notations of some functional spaces and recall 
some results which will be used later.

2.1. Caputo derivatives based on a convolution group

To introduce the generalized definition of Caputo derivatives, let us first present the following 
notion of limit:

Definition 1. Let B be a Banach space. For a locally integrable function u ∈ L1
loc((0, T ); B), if 

there exists u0 ∈ B such that

lim
t→0+

1

t

tˆ

0

‖u(s) − u0‖Bds = 0, (2.1)

we call u0 the right limit of u at t = 0, denoted by u(0+) = u0. Similarly, we define u(T −) to 
be the constant uT ∈ B such that

lim
t→T −

1

T − t

T̂

t

‖u(s) − uT ‖Bds = 0. (2.2)
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As in [33], we use the following distributions {gβ} as the convolution kernels for β > −1:

gβ(t) :=

⎧⎪⎨
⎪⎩

θ(t)
�(β)

tβ−1, β > 0,

δ(t), β = 0,
1

�(1+β)
D

(
θ(t)tβ

)
, β ∈ (−1,0).

Here θ(t) is the standard Heaviside step function and D means the distributional derivative. gβ

can also be defined for β ≤ −1 (see [33]) so that these distributions form a convolution group 
C = {gβ : β ∈R} and consequently we have

gβ1 ∗ gβ2 = gβ1+β2 , ∀β1, β2 ∈ R, (2.3)

where the convolution between distributions with one-sided bounded supports can be defined as 
[19, Chap. 1]. Correspondingly, we have the time-reflected group

C̃ := {g̃α : g̃α(t) = gα(−t), α ∈ R}.

Clearly, supp g̃ ⊂ (−∞, 0] and for γ ∈ (0, 1), the following equality is true

g̃−γ (t) = − 1

�(1 − γ )
D(θ(−t)(−t)−γ ) = −Dg̃1−γ (t), (2.4)

where D represents the distributional derivative on t .
To define the weak Caputo derivatives valued in general Banach spaces, we first introduce the 

definition of the right Caputo derivatives of test functions:

Definition 2 ([34]). Let 0 < β < 1. Consider u ∈ L1
loc((−∞, T ); R) such that u has a left limit 

u(T −) at t = T in the sense of Definition 1. The β-th order right Caputo derivative of u is a 
distribution in D ′(R) with support in (−∞, T ], given by

D̃
β

c;T u := g̃−β ∗ (θ(T − t)(u(t) − u(T −))).

We now introduce the definition of Caputo derivatives for mappings into Banach spaces:

Definition 3 ([34]). Let B be a Banach space and u ∈ L1
loc([0, T ); B). Let u0 ∈ B . We define the 

weak Caputo derivative of u associated with initial data u0, denoted by c0D
β
t u, to be a bounded 

linear functional from C∞
c (−∞, T ) to B such that for any test function ϕ ∈ C∞

c ((−∞, T ); R),

〈c0Dβ
t u,ϕ〉 :=

T̂

−∞
(u − u0)θ(t)(D̃

β

c;T ϕ)dt =
T̂

0

(u − u0)(D̃
β

c;T ϕ)dt. (2.5)

We call the weak Caputo derivative c0D
β
t u associated with initial value u0 the Caputo derivative 

of u (still denoted as c0D
β
t u) if u(0+) = u0 in the sense of Definition 1 under the norm of the 

underlying Banach space B .
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The so-defined Caputo derivatives have the following properties

Lemma 2.1 ([34]). c0D
β
t u is supported in [0, T ). In other words, for any ϕ ∈ C∞

c (−∞, T ) that 

is zero on [0, T ), the action of c0D
β
t u on ϕ is zero. In addition:

(i) If B =R
n, then the Caputo derivative is consistent with the one in [33], given by

c
0D

β
t u = g−β ∗ ((u − u0)θ(t)).

(ii) If u : (0, T ) → B is absolutely continuous, then

c
0D

β
t u = 1

�(1 − β)

tˆ

0

u̇(s)

(t − s)β
∈ L1((0, T );B).

(iii) If u ∈ C([0, T ), B) ∩ C1((0, T ), B), then for t ∈ (0, T ), we have

�(1 − β)(c0D
β
t u(t)) = u(t) − u(0)

tβ
+ β

tˆ

0

u(t) − u(s)

(t − s)β+1 ds. (2.6)

Remark 2.1. If T < ∞, g−γ ∗ u should be understood as the restriction of the convolution onto 
D ′(−∞, T ). One can refer to [33] for the technical details. Actually, if one defines the convolu-
tion between gα and u suitably, the claim in Part (i) of Lemma 2.1 still holds for general Banach 
spaces.

In general, c
0D

β
t u is an abstract functional from C∞

c ((−∞, T ); R) to B . We say c
0D

β
t u ∈

L1
loc([0, T ); B) if there exists a function f ∈ L1

loc([0, T ); B) such that for any ϕ ∈ C∞
c ((−∞, T );

R), we have

〈c0Dβ
t u,ϕ〉 =

T̂

0

f (t)ϕ(t) dt. (2.7)

In this case, we will identify c0D
β
t u with f . With this notion, we have the following claims from 

[33,34]:

Lemma 2.2. Let β ∈ (0, 1).

(i) Let u ∈ L1
loc((0, T ); R). Assume that the weak Caputo derivative for an assigned initial value 

u0 ∈R is c0D
β
t u. As linear functionals on C∞

c ((−∞, T ); R), we have

(u − u0)θ(t) = gβ ∗ (c0D
β
t u). (2.8)
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(ii) If f (t) := (c0D
β
t u) ∈ L1

loc([0, T ); B), then

u(t) = u0 + 1

�(γ )

tˆ

0

(t − s)γ−1f (s) ds, a.e. on (0, T ),

where the integral is understood as the Lebesgue integral.

The above claims follow from the properties of the underlying convolution group C . The 
generalized definition in [33,34] has the following theoretic convenience: it only requires the 
functions to be locally integrable with a certain initial value, which allows the study of solutions 
of fractional PDEs in very weak sense. There is no requirement on the time regularity of the 
functions to obtain the claims in Lemma 2.2.

Using Lemma 2.2, we are able to conclude the following results:

Lemma 2.3. Let 0 < β < 1, T > 0. Suppose u ∈ L1
loc(0, T ; B) and there is an assignment of 

initial value u0 ∈ B such that f := (c0D
β
t u) ∈ Lp(0, T ) with 1

α
< p ≤ ∞. Then u is continuous 

and for any s, t ∈ [0, T ] with s < t , we have

‖u(t) − u(s)‖B ≤ 2

�(β)

(
p − 1

βp − 1

)1− 1
p

(t − s)
β− 1

p ‖f ‖Lp(0,T ;B). (2.9)

Proof. Case 1. 1 < p < ∞. For s < t, 0 < β < 1, one has

‖u(t) − u(s)‖B

= 1

�(β)

∥∥∥∥∥∥
sˆ

0

(
(t − τ)β−1 − (s − τ)β−1

)
f (τ)dτ +

tˆ

s

(t − τ)β−1f (τ)dτ

∥∥∥∥∥∥
B

≤ 1

�(β)

⎛
⎝ sˆ

0

(
(s − τ)β−1 − (t − τ)β−1

)
‖f (τ)‖Bdτ +

tˆ

s

(t − τ)β−1‖f (τ)‖Bdτ

⎞
⎠

≡ 1

�(β)
(I1 + I2).

(2.10)

It follows from Hölder’s inequality with 1
q

+ 1
p

= 1 that

I1 ≤
( sˆ

0

(
(s − τ)β−1 − (t − τ)β−1)q

dτ
) 1

q ‖f ‖Lp(0,T ;B).

Substitution s − τ = ξ(t − s) gives that

⎛
⎝ sˆ

0

(
(s − τ)β−1 − (t − τ)β−1

)q

dτ

⎞
⎠

1
q

= (t − s)
1
q
+(β−1)

⎛
⎜⎝

s
t−sˆ

0

(
ξβ−1 − (1 + ξ)β−1

)q

dξ

⎞
⎟⎠

1
q

.
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If (β − 1)q + 1 > 0, which is equivalent to p > 1
β

, it follows from the elementary inequality 
(a − b)r ≤ ar − br for all a ≥ b ≥ 0 and r ≥ 1 that

s
t−sˆ

0

(
ξβ−1 − (1 + ξ)β−1

)q

dξ ≤
s

t−sˆ

0

(
ξ (β−1)q − (1 + ξ)(β−1)q

)
dξ

= 1

(β − 1)q + 1

((
s

t − s

)(β−1)q+1

−
(

1 + s

t − s

)(β−1)q+1

+ 1

)

≤ 1

(β − 1)q + 1
.

Consequently,

I1 ≤ (t − s)
1
q
+(β−1)

(
(β − 1)q + 1

)− 1
q ‖f ‖Lp(0,T ;B). (2.11)

Applying Hölder’s inequality again and then computing the integral directly, one has

I2 ≤
( tˆ

s

(
(t − τ)(β−1)qdτ

) 1
q ‖f ‖Lp(0,T ;B)

= (t − s)
1
q
+(β−1)

(
(β − 1)q + 1

)− 1
q ‖f ‖Lp(0,T ;B).

(2.12)

Therefore, we have from (2.10)–(2.12) and 1
q

+ 1
p

= 1 that (2.9) holds in this case.

Case 2. p = ∞. With similar argument as (2.10), one deduce that

‖u(t) − u(s)‖B

≤ 1

�(β)

⎛
⎝ sˆ

0

(
(s − τ)β−1 − (t − τ)β−1

)
dτ‖f ‖L∞(0,T ;B) +

tˆ

s

(t − τ)β−1dτ‖f ‖L∞(0,T ;B)

⎞
⎠

= 1

�(1 + β)

(
sβ − tβ + 2(t − s)β

)
‖f ‖L∞(0,T ;B)

≤ 2

�(1 + β)
(t − s)β‖f ‖L∞(0,T ;B).

(2.13)

Hence (2.9) with p = ∞ holds. �
The following comparison principle for Caputo derivative will play an important role in the 

proof of the nonnegativity and the study of finite time blowup of the solution to (1.1).

Lemma 2.4. [33] Let 0 < β < 1, T > 0. Assume that v(t) ∈ C([0, T ]; R). Suppose f (t, x) is a 
continuous function, locally Lipschitz in x, such that ∀t ≥ 0, x ≤ y implies f (t, x) ≤ f (t, y). If 
f (t, v) − (c0D

γ
t v) is a nonnegative distribution, then v ≤ u for t ∈ [0, min(T , Tb)), where u is the 

solution to the following ODE
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c
0D

β
t u = f (t, u), u(0) = v(0)

and Tb is the largest existence time for u.

Remark 2.2. Indeed, the monotonicity in x for f (t, x) can be removed. The proof will be pre-
sented in a forthcoming short note [18].

For real numbers β, γ , the Mittag–Leffler function Eβ,γ : C → C is defined by

Eβ,γ (z) =
∞∑

n=0

zn

�(nβ + γ )
. (2.14)

We will denote

Eβ(z) := Eβ,1(z). (2.15)

If β > 0 and γ > 0, Eβ,γ (z) is an entire function.
For function u ∈ L1

loc(0, T ; R) with u(0+) = u0 and polynomial growth in time, [33] shows 
that the Laplace transform of the weak Caputo derivative is still given by:

L(c0D
β
t u) = sβL(u) − u0s

β−1, (2.16)

and the solution to the ODE

c
0D

β
t u = λu + f (t), u(0) = u0

is given by

u(t) = u0Eβ(λtβ) + β

tˆ

0

sβ−1E′
β(λtβ)f (t − s) ds. (2.17)

As a corollary of Lemma 2.4, we have

Corollary 2.1. Let 0 < β < 1, T > 0. Assume that u(t) ∈ C([0, T ]; R). If c0D
β
t u ≤ a + bu(t) for 

some b ≥ 0 (the inequality means a +bu(t) − (c0D
β
t u) is a non-negative distribution), then, when 

b = 0,

u(t) ≤ u(0) + atβ

�(β + 1)
; (2.18)

when b �= 0,

u(t) ≤ u(0)Eβ(btβ) + a

b

(
Eβ(btβ) − 1

)
. (2.19)
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2.2. Basic setup: definitions, notations and preliminary lemmas

Denote

A = (−�)
α
2 (2.20)

and Eβ(−tβA) is the linear operator defined by operator calculus. Following [45], formally 
taking the Laplace transform of (1.1), we can find that ρ satisfies the following Duhamel type 
integral equation (similar to (2.17)) though the equation (1.1) is non-Markovian:

ρ(x, t) = Eβ(−tβA)ρ0 − β

tˆ

0

(t − τ)β−1E′
β(−(t − τ)βA)(∇ · (ρB(ρ))(τ )dτ

= Eβ(−tβA)ρ0 −
tˆ

0

(t − τ)β−1Eβ,β(−(t − τ)βA)(∇ · (ρB(ρ))(τ )dτ,

(2.21)

where we have used the well-known fact:

βE′
β(z) = Eβ,β(z).

This formal computation then motivates the definition of the mild solution as follows:

Definition 4. Let X be a Banach space over space and time. We call ρ ∈ X is a mild solution to 
(1.1) if ρ satisfies the integral equation (2.21) in X.

Let us now clarify the notations for the spaces which will be used later in this paper. For 
1 ≤ p ≤ ∞, we use ‖u‖p to denote the Lp-norm of a Lebesgue measurable function u in Lp(Rn)

space. Recall that the weak Lp norm is defined by

‖u‖Lp,∞ = sup
λ>0

{λdu(λ)
1
p }, du(λ) = |{x : |u(x)| > λ}|. (2.22)

The Hardy–Littlewood–Sobolev inequality for Lp spaces is listed in the following lemma.

Lemma 2.5. [43, page 119, Theorem 1] Let 0 < � < n, 1 < p < q < ∞ and 1
q

= 1
p

− �
n

. Then

∥∥∥∥∥∥
ˆ

Rn

f (y)

|x − y|n−�
dy

∥∥∥∥∥∥
q

≤ C‖f ‖p, (2.23)

holds for all f ∈ Lp(Rn).
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Consequently, we have

Corollary 2.2. Assume 0 ≤ λ < n, p = 2n
2n−λ

. Then

∣∣∣∣∣∣
ˆ

Rn

ˆ

Rn

f (x)f (y)

|x − y|λ dxdy

∣∣∣∣∣∣ ≤ C‖f ‖2
p. (2.24)

When λ = 0, it is trivial while for 1 < λ < n, it follows from Lemma 2.5.
For fixed ν ≥ 0, we define the weighted space L∞

ν (Rn) as follows

L∞
ν (Rn) = {v ∈ L∞(Rn) : ‖v‖L∞

ν
:= ‖(1 + |x|)νv(x)‖∞ < ∞}. (2.25)

For s ∈R, 1 < p < ∞, the Sobolev spaces are defined in [46, Chapter 13.6]:

Hs,p(Rn) = {u ∈ Lp(Rn) :F−1((1 + |ξ |2) s
2 û) ∈ Lp(Rn)},

where F is the Fourier transform and the norm given by

‖u‖Hs,p := ‖F−1((1 + |ξ |2) s
2 û)‖p.

The Hs,p(Rn) spaces are also called the Bessel potential spaces and sometimes denoted by 
Ws,p(Rn). The following Sobolev embedding is standard:

Lemma 2.6. [46] For 0 < sp < n, 1 < p < ∞, then

Hs,p(Rn) ⊂ L
np

n−sp (Rn).

3. Estimates of the fundamental solutions

Consider the functions P(x, t) and Q(x, t) defined for 1 < α ≤ 2 and 0 < β < 1:

FP(·, t) = Eβ(−|ξ |αtβ), FQ(·, t) = Eβ,β(−|ξ |αtβ), (3.1)

where F is the Fourier transform defined in (1.3).
Now, we define

Y(x, t) = tβ−1Q(x, t). (3.2)

It is mentioned in [27, Lemma 4.1] that Y is the 1 − β order Riemann–Liouville derivative of P . 
We pick A = (−	)

α
2 (1 < α ≤ 2), and consider operators Sβ

α (t), T β
α (t) defined by

f (x) �→ Sβ
α (t)f (x) := Eβ(−tβA)f (x) = P(·, t) ∗ f (x),

f (x) �→ T β
α (t)f (x) := tβ−1Eβ,β(−tβA)f (x) = Y(·, t) ∗ f (x).

(3.3)
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The pair {P, Y } is called the fundamental solutions to the Cauchy problem (1.1). In particular, 
S

β
α ρ0 is the formal solution to the following initial value problem

{
c
0D

β
t ρ + (−�)

α
2 ρ = 0, in (x, t) ∈R

n × (0,∞)

ρ(x,0) = ρ0(x),
(3.4)

while the mild solution in (2.21) can be rewritten as

ρ(t) = Sβ
α (t)ρ0 −

tˆ

0

∇x · (T β
α (t − s)ρ(s)B(ρ)(s)) ds

=
ˆ

Rn

P (x − y, t)ρ0(y) dy −
tˆ

0

ˆ

Rn

∇x · (Y (t − s, x − y)ρ(y, s)B(ρ)(y, s)) dyds.

(3.5)

By extending the results in [29,27], we have the following claims

Lemma 3.1. P and Q are both nonnegative and integrable. In particular, we have

ˆ

Rn

P (x, t) dx = 1,

ˆ

Rn

Q(x, t) dx = 1

�(β)
. (3.6)

Proof. The proof follows from Remark 4.2 in [27]. It is well-known that

s �→ Eβ(−tβsα), s �→ Eβ,β(−tβsα)

are completely monotone functions on R+. Hence, FP(·, t) and FQ(·, t) are positive definite 
on Rn. By Bochner’s theorem [40], both P and Q are nonnegative.

Note that the Fourier transform evaluated at ξ = 0 equals the integral of the function. Then, 
we have

ˆ

Rd

P (x, t) dx = Eβ(−0αtβ) = 1.

With the fact that P(·, t) is nonnegative, we find that P(·, t) is integrable and the integral values 
is 1. Similar results for Q(·, t) follow from the fact

Eβ,β(0) = 1

�(β)
. �

Next, we are going to collect some estimates of these operators, which will be useful for the 
analysis of time fractional PDEs (though some of them are not used in this paper).
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3.1. Contraction properties

The contraction properties follow from the asymptotic behavior of the Mittag–Leffler func-
tions. We have the following estimates regarding the operators appeared in (2.21):

Lemma 3.2. [45, (8.23), (8.36), (8.38)]

(i) Suppose that e−tA is a contraction semi-group in a Banach space, where A is the generator 
of the semigroup. Then,

‖Eβ(−tβA)f ‖B ≤ ‖f ‖B, ‖Eβ,β(−tβA)f ‖B ≤ 1

�(β)
‖f ‖B.

(ii) Let 0 < α ≤ 2 and A = (−	)
α
2 . If 1 < p < ∞ and σ ∈ (0, 1], then for T0 > 0, there exists 

C > 0 such that

‖Eβ(−tβA)f ‖Hσα,p ≤ Ct−σβ‖f ‖p, ‖Eβ,β(−tβA)f ‖Hσα,p ≤ Ct−σβ‖f ‖p, (3.7)

uniformly for t ∈ (0, T0].

3.2. Lr − Lq estimates

The Lr − Lq estimates follow from the asymptotic study of the fundamental solutions, 
which have been established in [15,27] using the asymptotic behaviors of the so-called Fox 
H -functions:

Lemma 3.3. Let 0 < β < 1, 1 < α ≤ 2. We have the following asymptotic estimates for P and Y :
(1) When |x|αt−β ≥ 1, there exists C > 0 such that

|P(x, t)| ≤
{

C|x|−n−αtβ, 1 < α < 2,

Ct−
nβ
2 exp{−C|x| α

α−β t
− β

α−β }, α = 2,
(3.8)

|∇P(x, t)| ≤
{

C|x|−n−α−1tβ, 1 < α < 2,

Ct−
β(n+1)

2 exp{−C|x| α
α−β t

− β
α−β }, α = 2,

(3.9)

and that

|Y(x, t)| ≤
{

C|x|−n−αt2β−1, 1 < α < 2,

Ct−
nβ
2 +β−1 exp{−C|x| α

α−β t
− β

α−β }, α = 2,
(3.10)

|∇Y(x, t)| ≤
{

C|x|−n−α−1t2β−1, 1 < α < 2,

Ct−
β(n+1)

2 +β−1 exp{−C|x| α
α−β t

− β
α−β }, α = 2,

(3.11)
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(2) When |x|αt−β ≤ 1, there is C > 0 such that

|P(x, t)| ≤

⎧⎪⎨
⎪⎩

Ct−
nβ
α , α > n,

C|x|−n+αt−β, α < n,

Ct−β(1 + | ln |x|αt−β |), α = n(= 2),

(3.12)

|∇P(x, t)| ≤ C|x|−n+α−1t−β, (3.13)

and that

|Y(x, t)| ≤

⎧⎪⎨
⎪⎩

Ct−
nβ
α

+β−1, 2α > n,

C|x|−n+2αt−β−1, 2α < n,

Ct−β−1(1 + | ln |x|αt−β |), 2α = n,

(3.14)

|∇Y(x, t)| ≤

⎧⎪⎨
⎪⎩

t−β−1|x|−n−1+2α n > 2α − 2,

t−β−1|x|(1 + log(|x|αt−β)), n = 2α − 2,

tβ−1− β(n+2)
α |x| n < 2α − 2,

(3.15)

Remark 3.1. In [29], in the expression for P , the prefactor of the exponential is given by |x|−n

in the case α = 2 and |x|αt−β ≥ 1. This is indeed equivalent to the above estimates. In fact, we 

introduce z = |x|2t−β and |x|−n exp(. . .) = t−
nβ
2 (zn exp(. . .)) which is controlled from above 

and below by the same exponential with a different constant inside.

Using Lemma 3.3, one can derive the estimates of ‖P‖p and ‖∇P‖p (see [27, Lemma 6.1, 
Lemma 6.22]). We summarize the results as following.

Proposition 3.1. [27] Suppose 0 < β < 1 and 1 < α ≤ 2.
(1). Set κ1 = n

n−α
if n > α and κ1 = ∞ otherwise. Then we have for any p ∈ [1, κ1), there 

exists C > 0 such that

‖P‖p ≤ Ct
− nβ

α
(1− 1

p
)
. (3.16)

If n < α (or n = 1), (3.16) also holds for p = κ1 = ∞. If n > α, for p = κ1 = n
n−α

, (3.16) holds 
only for weak Lκ1 norm:

‖P‖Lκ1,∞ ≤ Ct−β.

(2). Let κ2 = n
n−α+1 if n > α − 1 and κ2 = ∞ otherwise. Then for p ∈ [1, κ2), there is C > 0

such that

‖∇P‖p ≤ Ct
− nβ

α
(1− 1

p
)− β

α . (3.17)

If n ≤ α − 1 (or n = 1, α = 2), (3.17) also holds for p = κ2 = ∞. For n > α − 1 and p = κ2, 
(3.17) only holds in weak Lp:

‖∇P‖Lκ2,∞ ≤ Ct−β.
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Similarly, we have the estimates for Y :

Proposition 3.2. Suppose 0 < β < 1 and 1 < α ≤ 2.
(1). Set κ3 = n

n−2α
if n > 2α and κ1 = ∞ otherwise. Then we have for any p ∈ [1, κ3), there 

exists C > 0 such that

‖Y‖p ≤ Ct
− nβ

α
(1− 1

p
)+β−1

. (3.18)

If n < 2α, (3.18) also holds for p = κ3 = ∞. If n > 2α, for p = κ3 = n
n−2α

, (3.18) holds only for 
weak Lκ1 norm:

‖Y‖Lκ3,∞ ≤ Ct−β−1.

(2). Let κ4 = n
n−2α+1 if n > 2α−1 and κ4 = ∞ otherwise. Then for p ∈ [1, κ4), there is C > 0

such that

‖∇Y‖p ≤ Ct
− nβ

α
(1− 1

p
)− β

α
+β−1

. (3.19)

If n ≤ 2α − 1, (3.19) also holds for p = κ4 = ∞. For n > 2α − 1 and p = κ4, (3.19) only 
holds in weak Lp:

‖∇Y‖Lκ2,∞ ≤ Ct−β−1.

The proof of Proposition 3.2 is similar to the proof of Proposition 3.1. Part (1) of Propo-
sition 3.2 is the Lemma 6.2 in [27] and part (2) does not appear in [27]. Though the proof is 
similar, due to the importance of this result, we attach the proof in Appendix A for completeness.

With the help of Propositions 3.1 and 3.2, we obtain the following Lr −Lq estimates regarding 
the operators Sβ

α (t) and T β
α (t):

Proposition 3.3. Let 0 < β < 1 and 1 < α ≤ 2. Then,
(1). The following L∞ estimates hold:

‖Sβ
α (t)u‖∞ ≤ ‖u‖∞, ‖T β

α (t)u‖∞ ≤ 1

�(β)
tβ−1‖u‖∞,

‖∇Sβ
α (t)u‖∞ ≤ Ct−

β
α ‖u‖∞, ‖∇T β

α (t)u‖∞ ≤ Ct−
β
α
+β−1‖u‖∞.

(3.20)

(2). Let q ∈ [1, ∞). We define θ1 = qn
n−qα

if n > qα and θ1 = ∞ otherwise. Then, for any 
r ∈ [1, θ1), we have

‖Sβ
α (t)u‖r ≤ Ct

− nβ
α

( 1
q
− 1

r
)‖u‖q (3.21)

If r = q , the constant can be chosen to be 1. If n < qα, then the above also holds for r = θ1 = ∞.
(3). Let q ∈ [1, ∞). We define θ2 = qn

n−2qα
if n > 2nα and θ2 = ∞ otherwise. Then, for any 

r ∈ [1, θ2), we have



L. Li et al. / J. Differential Equations 265 (2018) 1044–1096 1061
‖T β
α (t)u‖r ≤ Ct

− nβ
α

( 1
q
− 1

r
)+β−1‖u‖q (3.22)

If r = q , the constant can be chosen as 1
�(β)

. If n < 2qα, then the above also holds for r = θ2 =
∞.

(4). Let q ∈ [1, ∞). Let θ3 = qn
n+q(1−α)

if n > q(α − 1), and θ3 = ∞ otherwise. Then for 
r ∈ [q, θ3) there is C > 0 satisfying

‖∇Sβ
α (t)u‖r ≤ Ct

− nβ
α

( 1
q
− 1

r
)− β

α ‖u‖q . (3.23)

If n < q(α − 1), the estimate also holds for r = θ3 = ∞.
(5). Let q ∈ [1, ∞). Let θ4 = qn

n+q(1−2α)
if n > q(2α − 1), and θ4 = ∞ otherwise. Then for 

r ∈ [q, θ4) there is C > 0 satisfying

‖∇T β
α (t)u‖r ≤ Ct

− nβ
α

( 1
q
− 1

r
)− β

α
+β−1‖u‖q . (3.24)

If n < q(2α − 1), the estimate also holds for r = θ4 = ∞.

Proof. Recall that Young’s inequality says that if r, p, q ∈ [1, ∞] satisfying 1
r
+1 = 1

p
+ 1

q
, then

‖f ∗ g‖r ≤ ‖f ‖p‖g‖q .

(1). The estimates here follow directly by setting f = u, g = P, Y, ∇P, ∇Y respectively, 
r = p = ∞ and q = 1. Recall that ‖P‖1 = 1 and ‖Y‖1 = tβ−1‖Q‖1 = 1

�(β)
tβ−1. The bounds for 

‖∇P‖1 and ‖∇Y‖1 follow from (3.17) and (3.19).
The proofs for (2)–(5) are similar by setting f = u, g = P, Y, ∇P, ∇Y respectively. In par-

ticular, we choose p ∈ [1, κi). Then, we have 1 − 1
p

= 1
q

− 1
r
. Clearly, as long as q

q−1 < κi , the 
estimate holds for all r ∈ [q, ∞]. If q

q−1 > κi , which happens only if κi < ∞, then q <
κi

κi−1 and 

r < 1
1/κi+1/q−1 . This then gives the desired results. �

Using the above results, we now establish the time continuity of the fundamental solutions:

Proposition 3.4. Let �(x) := P(x, 1) and �(x) := Y(x, 1) = Q(x, 1). Then, we have

(i) � ∈ Lp(Rn) when p ∈ [1, κ1), while ∇� ∈ Lp(Rn) when p ∈ [1, κ2). � ∈ Lp(Rn) when 
p ∈ [1, κ3), while ∇� ∈ Lp(Rn) when p ∈ [1, κ4).

(ii) We have the following formulas for P, Q, Y :

P(x, t) = t−
nβ
α �

( x

tβ/α

)
, Q(x, t) = t−

nβ
α �

( x

tβ/α

)
,

Y (x, t) = t−
nβ
α

+β−1�
( x

tβ/α

)
. (3.25)

Consequently, P(x, t) ∈ C((0, ∞), Lp(Rn)) for p ∈ [1, κ1), ∇P ∈ C((0, ∞), Lp(Rn)) for 
p ∈ [1, κ2), Y ∈ C((0, ∞), Lp(Rn)) for p ∈ [1, κ3) and ∇Y ∈ C((0, ∞), Lp(Rn)) for p ∈
[1, κ4).

(iii) For any u ∈ Lq(Rn) with q ∈ [1, ∞), t �→ S
β
α u ∈ C([0, ∞), Lq(Rn)).
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Proof. (i). The claims follow from Proposition 3.1 and Proposition 3.2.
(ii). Since we have (FP)(ξ, t) = Eβ(−|ξ |αtβ), it is clear that

P(x, t) =F−1Eβ(−|ξ |αtβ) = t−
nβ
α F−1(Eβ(−| · |α))(

x

tβ/α
) = t−

nβ
α �

( x

tβ/α

)
.

Similarly, we have

Q(x, t) = t−
nβ
α �

( x

tβ/α

)
,

and hence the formula for Y(x, t) follows from (3.2).
It is a well-known fact that if f ∈ Lq(Rn) with q ∈ [1, ∞), we have ‖λnf (λx) − f ‖Lp → 0

as λ → 1 (This can be proved by the standard process of approximating Lp functions with C∞
c

functions). The claims then follow.
(iii). The fact t �→ S

β
α u ∈ C((0, ∞), Lq(Rn)) is obvious from the results in (ii). The continuity 

of Sβ
α u at t = 0 is a standard consequence of mollification, given the expression of P in (ii). �

3.3. Weighted estimates

We consider the weighted estimates of the fundamental solutions in the weighted space 
L∞

ν (Rn) (see equation (2.25)).

Proposition 3.5. Assume 0 < β < 1, 1 < α ≤ 2 and u0 ∈ L∞
n+α(Rn) ⊂ L1(Rn) ∩ L∞(Rn). Then, 

there is C > 0 such that

‖Sβ
α (t)u0‖L∞

n+α
≤ C‖u0‖L∞

n+α
+ Ctβ‖u0‖1, (3.26)

‖∇T β
α (t)u0‖L∞

n+α
≤ Ct−

β
α
+β−1‖u0‖L∞

n+α
+ Ct2β− β

α
−1‖u0‖1. (3.27)

Proof. For |x|αt−β ≥ 1 and 1 < α ≤ 2, (3.8) implies that

|x|n+α|P(x, t)| ≤ Ctβ. (3.28)

For |x|αt−β ≤ 1, we use (3.12) to obtain

|x|n+α|P(x, t)| ≤ Ctβ. (3.29)

(For example, if α < n, we have |x|n+α|P(x, t)| ≤ C|x|2αt−β ≤ Ctβ .)
Hence, due to (3.28) and (3.29), we have

‖|x|n+αP (x, t)‖∞ ≤ Ctβ. (3.30)

Note that there exists C > 0 such that

(1 + |x|)n+α ≤ C(1 + |y|)n+α + C|x − y|n+α. (3.31)

It then follows from (3.31) and (3.29) that
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‖Sβ
α (t)u0‖L∞

α+n
= ess sup

x∈Rn

|Sβ
α (t)u0|(1 + |x|)n+α

≤ Cess sup
x∈Rn

ˆ

Rn

P (x − y, t)u0(y)(1 + |y|)n+αdy

+ Cess sup
x∈Rn

ˆ

Rn

P (x − y, t)|x − y|n+αu0(y)dy

≤ C‖u0‖L∞
n+α

+ Ctβ‖u0‖1.

(3.32)

Using (3.11) and (3.15), we similarly find

‖|x|n+α∇Y(x, t)‖∞ ≤ Ct2β− β
α
−1. (3.33)

Further, equation (3.19) implies

‖∇Y(x, t)‖1 ≤ Ct−
β
α
+β−1. (3.34)

Therefore, by (3.31), (3.33) and (3.34), we similarly have

‖∇T β
α (t)u0‖L∞

α+n
= ess sup

x∈Rn

|(∇Y) ∗ u0|(1 + |x|)n+α

≤ C‖∇Y(t)‖1‖u0‖L∞
n+α

+ C‖|x|n+α∇Y(x, t)‖∞‖u0‖1

≤ Ct−
β
α
+β−1‖u0‖L∞

n+α
+ Ct2β− β

α
−1‖u0‖1. �

(3.35)

4. Existence and uniqueness of mild solutions

In this section, based on the Lr − Lq estimates in subsection 3.2, we construct the local 
existence and uniqueness of mild solution to equation (1.1) for initial data ρ0 ∈ Lp(Rn) and the 
global existence for small initial data ρ0 ∈ Lpc(Rn), where pc = n

α+γ−2 . Based on the weighted 
estimates in subsection 3.3, we establish the existence and uniqueness of mild solutions in the 
weighed space C([0, T ], L∞

n+α(Rn)). Finally, we provide the proof of integrability and integral 
preservation for ρ0 ∈ L1(Rn) ∩ Lp(Rn) and ρ0 ∈ L1(Rn) ∩ Lpc(Rn).

Before we make the analysis, let us perform scaling. Suppose that u(x, t) satisfies the equation 
(1.1). Since (1.1) formally preserves mass, we consider first the mass-preserving scaling as

uλ(x, t) = λnu(λx,λbt).

Then, (−	)
α
2 uλ = λn+α(−	)

α
2 u while ∇ ·(uλB(uλ)) = λ2n+2−γ ∇ ·(uB(u)). Clearly, if n +α >

2n + 2 − γ , or

n < α + γ − 2,

the diffusion is stronger and this case is referred to the sub-critical case (in terms of mass con-
centration or diffusion). For usual PDEs, in the subcritical case, all L1 initial data will lead to 
global existence of solutions. For our model, since we have used (1.4) and assumed γ ∈ (1, n], 
there will be no sub-critical cases. If we allow γ > n (of course (1.4) should be replaced by 
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B(ρ) = ∇((−	)−
γ
2 ρ), there can be sub-critical cases. Since sub-critical case is not our focus 

and the paper is already too long, we leave it for future.
If n > α + γ − 2, the aggregation term can be strong, and this case will be referred to the 

super-critical case. For super-critical case, there is a critical Lp space. To see this, let us consider 
another scaling which yields another solution:

uλ = λau(λx,λbt).

We have c0D
β
t uλ = λaλβbc

0D
β
t u, (−	)

α
2 uλ = λa+α(−	)

α
2 u while ∇ · (uλB(uλ)) = λ2a+2−γ ∇ ·

(uB(u)). For uλ to be a solution, we then find

a + βb = a + α, a = α + γ − 2.

In other words,

uλ = λα+γ−2u(λx,λ
α
β t)

is also a solution to (1.1). Under the transformation u �→ uλ, the L
n

α+γ−2 norm is invariant. Hence, 
the critical index should be

pc = n

α + γ − 2
. (4.1)

As we will see in Section 6, for supercritical case and critical case (n = α +γ − 2), large L1 data 
can lead to blowup behaviors. Since the assumption n ≥ 2 and γ ≤ n implies that pc ≥ 1, we 
need to impose the small initial data in Lpc in order to obtain the global existence (Theorem 4.2).

To prove the existence of mild solutions, we first recall the following fixed point theorem

Lemma 4.1. [6, Lemma 3.1] Let (X, ‖ · ‖X) be a Banach space and H : X × X → X be a 
bounded bilinear form such that for all u1, u2 ∈ X and a constant η > 0,

‖H(u1, u2)‖X ≤ η‖u1‖X‖u2‖X. (4.2)

If 0 < ε < 1
4η

and v ∈ X such that ‖v‖X ≤ ε, then the equation u = v + H(u, u) has a solution 

in X satisfying ‖u‖X ≤ 2ε. In addition, this solution is the unique one in B(0, 2ε).

For our model, we are going to define the bilinear form to be

H(u,v) = −
tˆ

0

∇ · (T β
α (t − s)(u(s)B(v(s))))ds. (4.3)
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4.1. Existence in Lp spaces

In this subsection, we investigate the existence of the solution to (1.1) when the initial data is 
in Lp space.

Theorem 4.1. Suppose n ≥ 2, 0 < β < 1, 1 < α ≤ 2 and 1 < γ ≤ n. Let p ∈ (pc, ∞) ∩
[ 2n
n+γ−1 , n

γ−1 ). Then, for any ρ0 ∈ Lp(Rn), there exists T > 0 such that the equation (1.1) admits 
a unique mild solution in C([0, T ]; Lp(Rn)) with initial value ρ0 in the sense of Definition 4. 
Define the largest time of existence

Tb = sup{T > 0 : (1.1) has a unique mild solution in C([0, T ];Lp(Rn))}.

Then if Tb < ∞, we have

lim sup
t→T −

b

‖ρ(·, t)‖p = +∞.

Proof. By Proposition 3.3 and Proposition 3.4, Sβ
α (t)ρ0 ∈ C([0, T ]; Lp(Rn)) with

‖Sβ
α (t)ρ0‖C([0,T ];Lp(Rn)) ≤ ‖ρ0‖p.

We now consider the second term in (3.5). By Proposition 3.3, we have

‖H(u,v)‖p ≤
tˆ

0

‖∇ · (T β
α (t − s)u(s)B(v(s)))‖pds

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)B(v(s))‖q ds,

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)‖p‖B(v(s))‖ pq

p−q
ds,

(4.4)

provided 1 ≤ q ≤ p < θ4 as in Proposition 3.3.
Choosing q such that

1

p
− γ − 1

n
= p − q

pq
,

or 1
q

= 2
p

− γ−1
n

. If 1
q

> 1
p

and q ≥ 1, or

1 <
2n

n + γ − 1
≤ p <

n

γ − 1
,

then Hardy–Littlewood–Sobolev inequality implies that
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‖B(v)(s)‖ pq
p−q

≤ C‖v(s)‖p.

Clearly, if p ≥ 2n
2α+γ−2 , θ4 = ∞. Otherwise, we need p < θ4 = n

2n/p−γ−2α+2 . This means 
that we need

p >
n

2α + γ − 2
,

which is clearly true since p > pc.
With these requirements, we find

sup
0≤t≤T

‖H(u,v)‖p ≤ C sup
0≤t≤T

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)‖p‖v(s)‖p ds. (4.5)

Since p > pc implies that −nβ
α

( 1
q

− 1
p
) − β

α
+ β > 0, we have

sup
0≤t≤T

‖H(u,v)‖p ≤ C‖u‖C([0,T ];Lp(Rn))‖v‖C([0,T ];Lp(Rn))T
− nβ

α
( 1

q
− 1

p
)− β

α
+β

.

Now, we need to verify that H(u, v) ∈ C([0, T ], Lp(Rn)). Choosing the same q as above, 
again by Hölder inequality and Hardy–Littlewood–Sobolev inequality, we have that

w(s) := u(s)B(v(s)) ∈ C([0, T ];Lq(Rn)).

Now, choose 0 ≤ t < t + δ ≤ T for some t > 0 and δ > 0. Then, we pick δ1 > 0 and have

‖H(u,v)(t + δ) − H(u,v)(t)‖p ≤

∥∥∥∥∥∥∥
t+δˆ

max(0,t−δ1)

∇T β
α (t + δ − s)w(s) ds

∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥
tˆ

max(0,t−δ1)

∇T β
α (t − s)w(s) ds

∥∥∥∥∥∥∥
p

+
∥∥∥∥∥∥

max(0,t−δ1)ˆ

0

∇(T β
α (t + δ − s) − T β

α (t − s))w(s) ds

∥∥∥∥∥∥
p

.

Estimates of the first two terms are similar to the argument in (4.4) and they are controlled by

C‖w‖C([0,T ],Lq(Rn))(δ + δ1)
− nβ

α
( 1

q
− 1

p
)− β

α
+β

.

By Proposition 3.4, ∇Y ∈ C([δ1, T ], Lr(Rn)) for r ∈ [1, κ4) and therefore ∇Y is uniformly con-
tinuous on [δ1, T ]. Hence, the third term goes to zero as δ → 0. This verifies that H(u, v) ∈
C([0, T ], Lp(Rn)).

Choosing T small enough, Lemma 4.1 applies and the existence follows.
Because our equation is non-Markovian so that we cannot apply the continuation technique 

while Lemma 4.1 only implies the uniqueness in short time. Instead, we provide another direct 
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proof for the uniqueness. Suppose that we have two solution ρ1 and ρ2 on [0, T ]. Let M =
max(‖ρ1‖C([0,T ];Lp(Rn)), ‖ρ2‖C([0,T ];Lp(Rn))). We define

e(t) = ‖ρ1 − ρ2‖C([0,t];Lp(Rn))).

Then, by (3.5), (4.3) and (4.5), we have

e(t) ≤ sup
0≤s≤t

‖H(ρ1, ρ1)(s) − H(ρ2, ρ2)(s)‖p ≤ MC

tˆ

0

(t − τ)
− nβ

α
( 1

q
− 1

p
)− β

α
+β+1

e(τ ) dτ.

The comparison principle in [17, Proposition 5] implies that e(t) = 0.
We prove the last claim regarding Tb by contradiction. Assume lim supt→T −

b
‖ρ‖p <

∞. Then supt∈[0,Tb)
‖ρ(t)‖p < ∞. Following the same approach as we show H(u, v) ∈

C([0, ∞], Lp(Rn)), and noticing the fact that Sβ
α ρ0 ∈ C([0, M], Lp(Rn)) (and thus uniformly 

continuous) for any M > 0, equation (3.5) indicates that for any ε > 0, there exists δ > 0 such 
that ‖ρ(t1) − ρ(t2)‖p < ε when Tb − δ < t1 < t2 < Tb. Hence, we can define ρ(Tb) so that 
ρ(·) ∈ C([0, Tb], Rn). Now, we consider the following equation about ρ̃:

ρ̃(t) =
⎛
⎝Sβ

α (t + Tb)ρ0 −
Tbˆ

0

∇x · (T β
α (Tb + t − s)ρ(s)B(ρ)(s)) ds

⎞
⎠

−
tˆ

0

∇x · (T β
α (t − s)ρ̃(s)B(ρ̃)(s)) ds.

The first term is in C([0, ∞), Lp(Rn)) following the same approach as we show H(u, v) ∈
C([0, ∞], Lp(Rn)). Repeating what has been just done, this new integral equation has a unique 
solution in C([0, δ1]; Lp(Rn)) for some δ1 > 0. If we define ρ(Tb + t) = ρ̃(t) for t ∈ [0, δ1], then 
ρ becomes a mild solution on [0, Tb + δ1), which contradicts with the definition of Tb. �

By the Lr − Lq estimate of Sβ
α (t)u in Proposition 3.3, we find that for p1 ∈ [p, θ1)

sup
0≤t≤T

(‖Sβ
α (t)u‖p + t

nβ
α

( 1
p

− 1
p1

)‖Sβ
α (t)u‖p1) ≤ C‖u‖p. (4.6)

This motivates us to define the following norm for u ∈ C([0, T ]; Lp(Rn)):

‖u‖p,p1;T := sup
0≤t≤T

(‖u‖p + t
nβ
α

( 1
p

− 1
p1

)‖u‖p1) ≤ C‖u‖p. (4.7)

For a given initial data in ρ0 ∈ Lp(Rn), we may use the modified norm ‖ · ‖p,p1 above for the 
function space. This is beneficial because we do not have to use ‖v‖p to control B(ρ) when 
applying the Hardy–Littlewood–Sobolev inequality. Instead, we can use ‖ · ‖p1 norm with some 
time factor to control B(ρ). Indeed, by some preliminary calculation, we find
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‖H(u,v)‖p ≤
tˆ

0

‖∇T β
α (t − s)u(s)B(v)(s)‖pds

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)B(v)(s)‖q ds,

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

p1
− γ−1

n
)− β

α
+β−1‖u(s)‖p‖v‖p1 ds

≤ C‖u‖p,p1‖v‖p,p1 t
β( −n

αp
− 2

α
+ γ

α
+1)

.

In the above estimate, q and p1 are related by 1
q

= 1
p

+ 1
p1

− γ−1
n

. According to this formula, we 
find that for p > pc, this viewpoint provides nothing new compared with Theorem 4.1. However, 
we are allowed to choose p = pc while keeping p1 > pc. This observation yields the global 
existence and uniqueness of the mild solution to (1.1) with small data in Lpc(Rn):

Theorem 4.2. Suppose n ≥ 2, 0 < β < 1, 1 < α ≤ 2 and 1 < γ ≤ n. Let ν = ∞ if 2(α +
γ − 2)β − α ≤ 0 or ν = 2nβ

2(α+γ−2)β−α
if 2(α + γ − 2)β − α > 0. Then, whenever (pc, ν) ∩

[ n
n−α+1 , n

γ−1 ) is nonempty, for any p ∈ (pc, ν) ∩ [ n
n−α+1 , n

γ−1 ), there exists δ > 0 such that for 
all ρ0 ∈ Lpc(Rn) with

‖ρ0‖pc ≤ δ,

the equation (1.1) admits a mild solution ρ ∈ C([0, ∞); Lpc(Rn)) with initial value ρ0 in the 
sense of Definition 4, satisfying

‖ρ(t)‖pc ≤ 2δ,∀t > 0, (4.8)

and ρ ∈ C((0, ∞), Lp(Rn)). Further, the solution is unique in

XT :=
{
ρ ∈ C([0, T ];Lpc(Rn)) ∩ C((0, T ],Lp(Rn)) : ‖ρ‖pc,p;T < ∞

}
, T ∈ (0,∞). (4.9)

Proof. Fix T ∈ (0, ∞]. Consider the space X := XT with the norm ‖ · ‖X := ‖ · ‖pc,p;T . This 
space is then a Banach space.

By Proposition 3.4, Sβ
α (t)ρ0 ∈ C([0, T ], Lpc(Rn)) for any T > 0. Since P ∈ C((0, ∞),

Lr(Rn)) for r ∈ [1, κ1), we then have Sβ
α (t)ρ0 ∈ C((0, T ], Lp(Rn)). By (4.7), we find

‖Sβ
α (t)ρ0‖X ≤ C‖ρ0‖pc ≤ Cδ.

Hence Sβ
α ρ0 ∈ X.
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For H(u, v), we have:

‖H(u,v)‖pc ≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

pc
)− β

α
+β−1‖u(s)B(v(s))‖q ds,

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

p
− γ−1

n
)− β

α
+β−1‖u(s)‖pc‖v‖p ds

≤ C‖u‖X‖v‖X

tˆ

0

(t − s)
− nβ

α
( 1

p
− γ−1

n
)− β

α
+β−1

s
nβ
α

( 1
p

− 1
pc

)
ds

≤ C‖u‖X‖v‖X,

(4.10)

where Hölder’s inequality and Lemma 2.5 imply that 1
q

= 1
pc

+ 1
p

− γ−1
n

. In these inequalities, 

we need θ4 > pc > q ≥ 1 and p > pc , and nβ
α

( 1
p

− 1
pc

) > −1. Note that pc > q ≥ 1 ensures the 
Hölder inequality, the Hardy–Littlewood–Sobolev inequality (Lemma 2.5) to be applied:

n

n − α + 1
≤ p <

n

γ − 1
.

Also p > pc and nβ
α

( 1
p

− 1
pc

) > −1 ensure the integrals with respect to s to converge. Note that 

max( n
n−α+1 , pc) ≥ max( 2n

n+γ−1 , pc) as it should be. Further, θ4 = ∞ if p ≥ n
α

. If p < n
α

,

θ4 = n

n(1/pc + 1/p − (γ − 1)/n) + 1 − 2α
,

and 1 ≤ q < pc < θ4 is automatically true.
The other part can be estimated in the same way.

t
nβ
α

( 1
pc

− 1
p

)‖H(u,v)‖p ≤ Ct
nβ
α

( 1
pc

− 1
p

)

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)B(v(s))‖q ds,

≤ Ct
nβ
α

( 1
pc

− 1
p

)

tˆ

0

(t − s)
− nβ

α
( 1

p
− γ−1

n
)− β

α
+β−1‖u(s)‖p‖v(s)‖p ds,

(4.11)

where 1
q

= 2
p

− γ−1
n

. In order to make sure the above inequalities to be held, we need p to satisfy 

the conditions in Theorem 4.1. However, as we know max( n
n−α+1 , pc) ≥ max( 2n

n+γ−1 , pc), these 
conditions are satisfied automatically.
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We then find that

t
nβ
α

( 1
pc

− 1
p

)‖H(u,v)‖p

≤ C‖u(s)‖X‖v(s)‖Xt
nβ
α

( 1
pc

− 1
p

)

tˆ

0

(t − s)
− nβ

α
( 1

p
− γ−1

n
)− β

α
+β−1

s
2 nβ

α
( 1

p
− 1

pc
)
ds,

= C‖u(s)‖X‖v(s)‖X.

For this integral to converge, we need 2nβ
α

( 1
p

− 1
pc

) > −1, or p < ν.
The claim that H(u, v) ∈ C([0, T ], Lpc(Rn)) ∩ C((0, T ], Lp(Rn)) can be proved with the 

same argument as the proof of Theorem 4.1. The only difference is the estimates of (4.10) and 
(4.11). We omit the details and then H(u, v) ∈ X.

Applying Lemma 4.1, the existence part then follows. The uniqueness can be verified in the 
same way as what we did in the proof of Theorem 4.1. �
Remark 4.1. For the standard Keller–Segel equation (α = γ = 2 and β → 1), (pc, ν) ∩
[ n
n−α+1 , n

γ−1 ) is nonempty.

Remark 4.2. For n ≥ 2, γ ≤ n and thus pc ≥ 1, (1.1) is critical or super-critical. According to 
the blowup results in Section 6, the smallness of initial data is necessary for global existence. As 
for usual Keller–Segel model, the global existence for all initial data holds for sub-critical case 
(see [3, Section 3.2] when n = 1). We believe (1.1) (with B(ρ) = ∇((−	)−

γ
2 ρ) allowing γ > n) 

also has global solutions in the sub-critical cases without the assumption of smallness.

4.2. Integrability and integral preservation

In this subsection, we explore the integrability of the mild solutions if ρ0 ∈ L1(Rn) ∩Lp(Rn). 
By interpolation, we know that ρ0 ∈ Lr(Rn) for all r ∈ [1, p]. Corresponding to Theorem 4.1, 
we have the following theorem:

Theorem 4.3. Suppose n ≥ 2, 0 < β < 1, 1 < α ≤ 2 and 1 < γ ≤ n. Suppose ρ0 ∈ L1(Rn) ∩
Lp(Rn) where p ∈ (pc, ∞) ∩ [ 2n

n+γ−1 , ∞). Then

(i) There exists T > 0 such that equation (1.1) admits a unique mild solution in C([0, T ];
L1(Rn)) ∩ C([0, T ]; Lp(Rn)) with initial value ρ0 in the sense of Definition 4. Further, the 
integral is preserved, that is,

ˆ

Rn

ρ(x, t) dx =
ˆ

Rn

ρ0(x) dx. (4.12)

(ii) Define the largest time of existence

Tb = sup{T > 0 :
(1.1) has a unique mild solution in C([0, T ];L1(Rn)) ∩ C([0, T ];Lp(Rn))}.
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If Tb < ∞, we then have

lim sup
t→T −

b

(‖ρ(·, t)‖1 + ‖ρ(·, t)‖p) = +∞.

(iii) If p falls into the range in Theorem 4.1, then the largest existence times for the mild solution 
in Theorem 4.1 and the mild solution here are the same.

Proof. In this proof, we consider the space

X = C([0, T ];L1(Rn)) ∩ C([0, T ];Lp(Rn)),

with the norm given by

‖u‖X := sup
0≤t≤T

(‖u‖1 + ‖u‖p).

Then, X is a Banach space.
It is clear that for any r ∈ [1, p], ‖u‖C([0,T ];Lr(Rn)) ≤ ‖u‖X .

(i). By Proposition 3.4, Sβ
α ρ0 ∈ X. Thus, by Proposition 3.3, we find that

‖Sβ
α (t)ρ0‖X ≤ ‖ρ0‖1 + ‖ρ0‖p.

We then evaluate that for any 0 ≤ t ≤ T :

‖H(u,v)‖1 ≤ C

tˆ

0

(t − s)−
β
α
+β−1‖u(s)B(v)(s)‖1 ds

≤ C

tˆ

0

(t − s)−
β
α
+β−1‖u(s)‖p1‖B(v)(s)‖ p1

p1−1
ds

≤ C

tˆ

0

(t − s)−
β
α
+β−1‖u(s)‖p1‖v‖p2 ds

≤ C‖u‖X‖v‖XT − β
α
+β,

(4.13)

where 1 − 1
p1

= 1
p2

− γ−1
n

. Clearly, as long as 1 + γ−1
n

∈ [ 2
p
, 2) ∩ ( 1

p
+ γ−1

n
, 2), there always 

exist p1 ∈ (1, p], p2 ∈ (1, p] ∩ (1, n
γ−1 ) such that the Hölder and the Hardy–Littlewood–Sobolev 

inequalities hold. This condition is satisfied if

p ≥ 2n

n + γ − 1
.

The other constraint θ4 > 1 in Proposition 3.3 is automatically satisfied.
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Similarly, we can estimate for 0 ≤ t ≤ T :

‖H(u,v)‖p ≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)B(v(s))‖q ds,

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)‖p3‖B(v(s))‖ p3q

p3−q
ds

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖u(s)‖p3‖v‖p4 ds.

(4.14)

Here, we require θ4 > p ≥ q ≥ 1, and 1
q

− 1
p3

= 1
p4

− γ−1
n

. Clearly, as long as 1
q

+ γ−1
n

∈
[ 2
p
, 1 + 1

q
) ∩ ( 1

p
+ γ−1

n
, 1 + 1

q
), there always exist p3 ∈ (q, p], p4 ∈ (1, n

γ−1 ) ∩ (1, p] to make 
the Hölder and the Hardy–Littlewood–Sobolev inequalities hold. Hence, we need the following 
condition

1

q
∈ [ 1

p
,1] ∩ [ 2

p
− γ − 1

n
,2 − γ − 1

n
) ∩ (

1

p
,2 − γ − 1

n
) = (

1

p
,1] ∩ [ 2

p
− γ − 1

n
,1].

The interval is nonempty since p ≥ 2n
n+γ−1 . To make the integrals converge, we need

1

q
<

1

p
+ α − 1

n
.

Therefore, we need 2
p

− γ−1
n

< 1
p

+ α−1
n

to ensure q to exist and the inequality is satisfied since 

p > pc . p < θ4 requires 1
q

< 1
p

+ 2α−1
n

which is guaranteed by p > pc also.

The claim that H(u, v) ∈ C([0, T ], L1(Rn)) ∩ C([0, T ], Lp(Rn)) can be proved as in the 
proof of Theorem 4.1. The only difference is that we use estimates as in (4.13) and (4.14). We 
omit the details and then H(u, v) ∈ X.

Then, we find that there exists some δ > 0 such that

‖H(u,v)‖X ≤ CT δ‖u‖X‖v‖X.

The existence for small time then follows from Lemma 4.1. The uniqueness argument is per-
formed similarly as we did in Theorem 4.1.

(ii). The statement regarding Tb follows in a similar approach as the proof in Theorem 4.1 and 
we omit the details.

(iii). Consider that p is in the range as in Theorem 4.1. To prove that the largest existence 
times are the same, we only have to show that if ρ ∈ C([0, T1]; Lp(Rn)) is a mild solution 
in Theorem 4.1 for some T1 > 0, then ρ ∈ C([0, T1]; L1(Rn)). To this end, we consider the 
sequence {ρn} defined inductively by ρ0 = S

β
α ρ0 and

ρn+1 = Sβρ0 + H(ρ,ρn), n ≥ 0.
α
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By the same estimates as in Theorem 4.1, we find that ρn ∈ C([0, T ], Lp(Rn)). Direct computa-
tion shows that ρn → ρ in C([0, T1]; Lp(Rn)) as n → ∞. Now, by (4.13), we find

‖H(ρ,ρn)‖1 ≤ C

tˆ

0

(t − s)−
β
α
+β−1‖ρ(s)‖p‖ρn(s)‖ np

np+pγ−n−p
ds.

Since np
np+pγ−n−p

∈ (1, p], there is σ ∈ [0, 1) such that

‖H(ρ,ρn)‖1 ≤ C

tˆ

0

(t − s)−
β
α
+β−1‖ρn(s)‖σ

1 ‖ρn(s)‖1−σ
p ds

≤ C1

tˆ

0

(t − s)−
β
α
+β−1‖ρn(s)‖σ

1 ds.

This gives the inequality

‖ρn+1‖1 ≤ ‖ρ0‖1 + C1(T1)

tˆ

0

(t − s)−
β
α
+β−1‖ρn(s)‖σ

1 ds.

Inductively, it is easy to see that for any positive integer m, ‖ρm(t)‖1 ≤ u(t), where u(t) solves 

the fractional ODE c
0D

β− β
α

t u = C1(T1)u
σ ,u(0) = ‖ρ0‖1, which exists globally as showed in 

[17]. Extracting an almost everywhere convergent subsequence and applying Fatou’s lemma to 
|ρnk | and |ρ|, we find ‖ρ‖1 ≤ u(t). Using this boundedness and similar estimate to the proof 
in equation (4.13), it is straightforward to show ‖ρ(t + 	t) − ρ(t)‖1 → 0 as 	t → 0. Hence, 
ρ ∈ C([0, T1]; L1(Rn)).

As soon as we have the integrability, we have

ˆ

Rn

ρ dx =
ˆ

Rn

Sβ
α ρ0 dx −

ˆ

Rn

tˆ

0

∇ · (T β
α (t − s)ρ(s)B(ρ(s)))ds dx. (4.15)

Since we know P ≥ 0 and 
´
Rn P dx = 1, we then have

ˆ

Rn

Sβ
α ρ0 dx =

ˆ

Rn

ρ0 dx. (4.16)

Further, for any t > 0, we have ζ = ρ(s)B(ρ)(s) ∈ C([0, t]; L1(Rn)) since ρ ∈ X. By approxi-
mating ζ with C∞

c ([0, t] ×R
n) functions, we find
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ˆ

Rn

tˆ

0

∇ · (T β
α (t − s)ζ(s))ds dx = 0. (4.17)

(4.15), (4.16) and (4.17) prove that L1 integral is preserved. �
Remark 4.3. In Theorem 4.3, we do not need to ask for p < n

γ−1 compared with Theorem 4.1. 
The reason is that we only choose p4 < n

γ−1 , and p3 can be adjusted accordingly, which will not 
affect p.

For ρ0 ∈ L1(Rn) ∩ Lpc(Rn), we have the following claim:

Theorem 4.4. Assume the conditions and notations in Theorem 4.2 hold. Suppose (pc, ν) ∩
[ n
n−α+1 , n

γ−1 ) is nonempty. Then, there exists δ > 0 such that for all ρ0 ∈ L1(Rn) ∩ Lpc(Rn)

with ‖ρ0‖pc ≤ δ, all the claims for the mild solution ρ in Theorem 4.2 hold and further 
ρ ∈ C([0, ∞), L1(Rn)) satisfying

ˆ

Rn

ρ(x, t) dx =
ˆ

Rn

ρ0(x) dx. (4.18)

Proof. As in the proof of Theorem 4.2, we pick p ∈ (pc, ν) ∩ [ n
n−α+1 , n

γ−1 ) and δ > 0 so that 
the mild solution satisfies

‖ρ‖X = sup
t>0

‖ρ‖pc + t
nβ
α

( 1
pc

− 1
p

)‖ρ‖p ≤ 2δ, (4.19)

and using (4.19), it holds that

‖H(ρ,v)‖pc ≤ C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

pc
)− β

α
+β−1‖ρ(s)B(v(s))‖q ds

≤ C

tˆ

0

(t − s)
− nβ

α
( 1

p
− γ−1

n
)− β

α
+β−1‖ρ(s)‖p‖v‖pc ds

≤ C1‖ρ‖X‖v‖C([0,t];Lpc ) ≤ 1

2
‖v‖C([0,t];Lpc ),

(4.20)

where the same constraint 1
q

= 1
pc

+ 1
p

− γ−1
n

holds. The only difference is that we applied Lpc

norm on v here while we applied Lpc norm on the first function in the proof of Theorem 4.2. 
Note that δ is chosen such that C12δ ≤ 1

2 which is the same as what we did in the proof of 
Theorem 4.2.

Clearly,

‖Sβ(t)ρ0‖1 ≤ ‖ρ0‖1. (4.21)
α
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If p1 = n
n−α+1 ≥ pc or n ≤ 2α + γ − 3,

‖H(ρ,ρ)‖1 ≤ C

tˆ

0

(t − s)−
β
α
+β−1‖ρ(s)‖pc‖B(ρ(s))‖ pc

pc−1
ds,

≤ C

tˆ

0

(t − s)−
β
α
+β−1‖ρ(s)‖pc‖ρ(s)‖ n

n−α+1
ds

≤ C‖ρ‖2
X

tˆ

0

(t − s)−
β
α
+β−1s

nβ
α

( n−α+1
n

− 1
pc

)
ds,

(4.22)

where the norm X is in (4.19). It is clear that

nβ

α
(
n − α + 1

n
− 1

pc

) = β

α
(n − 2α − γ + 3) ≥ β

α
(3 − 2α) > −1. (4.23)

The integral in the third inequality of (4.22) converges. Hence, (4.21) and (4.22) imply that 
ρ(t) ∈ L1(Rn). It is then easy to show that

‖ρ(t + 	t) − ρ(t)‖1 → 0, 	t → 0, ∀t ≥ 0,

by using similar controls. Approximating ρB(ρ) with C∞
c ([0, t] ×R

n) functions, we can prove 
easily that

ˆ

Rn

H(ρ,ρ)dx = 0.

This then proves the claims when p1 ≥ pc.
Now, we assume p1 < pc (p1 > 1 is clearly true). Then, using interpolation, there exists 

σ ∈ (0, 1) such that

‖u‖p1 ≤ ‖u‖σ
1 ‖u‖1−σ

pc
. (4.24)

We construct the sequence ρn as ρ0 = S
β
α ρ0 and

ρn+1 = Sβ
α ρ0 + H(ρ,ρn), n ≥ 0 (4.25)

where ρ is the mild solution. Inductively, with the help of (4.25), (4.20) and (4.19), assumption 
‖ρ0‖pc ≤ δ implies that

‖ρn+1‖pc ≤ δ + ‖H(ρ,ρn)‖pc ≤ δ + 1

2
2δ = 2δ.

Similarly, ρn+1 ∈ C([0, ∞); Lpc(Rn)) can be verified directly.
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Further, let u(t) be the solution to the following equation

c
0D

β− β
α

t u = C(2δ)2−σ uσ , u(0) = ‖ρ0‖1,

which exists globally and is increasing on [0, ∞) by the result in [17]. Clearly, ‖ρ0‖1 ≤ ‖ρ0‖1 ≤
u(t). Then, we prove by induction that for any positive integer m, ‖ρm(t)‖1 ≤ u(t). Indeed, using 
(4.19), (4.24) and induction assumption, we have

‖ρn+1‖1 ≤ ‖ρ0‖1 + C

tˆ

0

(t − s)−
β
α
+β−1‖ρ(s)‖pc‖ρn(s)‖ n

n−α+1
ds

≤ ‖ρ0‖1 + C(2δ)2−σ

tˆ

0

(t − s)−
β
α
+β−1‖ρn(s)‖σ

1 ds

≤ ‖ρ0‖1 + C(2δ)2−σ

tˆ

0

(t − s)−
β
α
+β−1uσ (s)ds = u(t).

Again by estimating directly ‖ρn+1(t +	t) −ρn+1(t)‖1, we find that ρn+1 ∈ C([0, ∞), L1(Rn)).
Finally, we have

ρn+1 − ρ = H(ρ,ρn − ρ)

and therefore

‖ρn+1 − ρ‖pc ≤ 1

2
‖ρn − ρ‖pc

according to (4.20). This implies that ρn → ρ in C([0, ∞), Lpc(Rn)). By a diagonal argument, 
we can take a subsequence ρnk → ρ a.e. on [0, ∞) × Rn. Applying Fatou’s Lemma to the ab-
solute value of ρnk and ρ, we have ρ(t) ∈ L1(Rn) and ‖ρ‖1 ≤ u(t) for a.e. t ∈ [0, ∞). Using 
‖ρ‖1 ≤ u(t), we can then check directly that

‖ρ(t + 	t) − ρ(t)‖1 → 0, 	t → 0.

Again, we can prove

ˆ

Rn

H(ρ,ρ)dx = 0

by approximating ρ with smooth functions. �
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4.3. Existence in the weighted space

In this subsection, we study the existence of the mild solutions to (1.1) in the weighted spaces 
(see equation (2.25) for the definition of L∞

ν )

XT = L∞([0, T ],L∞
n+α(Rn)). (4.26)

For mild solutions in weighted spaces of some PDEs, one may refer to [10,6]
It is easy to verify that

‖u‖L∞
n+α

< ∞ ⇒ u ∈ L1(Rn) ∩ L∞(Rn). (4.27)

First, we establish the L∞ estimate of linear operator B using the XT -norm.

Lemma 4.2. Let 1 < γ ≤ n, 1 < α ≤ 2, n ≥ 2. Assume u ∈ XT . B(u) is defined as (1.3). Then

‖B(u)‖∞ ≤ C‖u‖XT
. (4.28)

Proof. According to (1.4), we have

|B(u)(x, t)| =
∣∣∣∣∣∣
ˆ

Rn

−sn,γ (x − y)

|x − y|n−γ+2 u(y, t) dy

∣∣∣∣∣∣
≤ C‖u‖XT

ˆ

Rn

1

|x − y|n−γ+1(1 + |y|n+α)
dy.

Denote �1 = {y ∈ R
n : |y| ≤ |x|

2 }, �2 = {y ∈ R
n : |x − y| ≤ |x|

2 } and �3 = {y ∈ R
n : |x − y| ≥

|x|
2 , |y| ≥ |x|

2 }. Then, we have

I =
ˆ

Rn

1

|x − y|n−γ+1(1 + |y|n+α)
dy =

ˆ

�1

+
ˆ

�2

+
ˆ

�3

=: I1 + I2 + I3. (4.29)

If y ∈ �1, we have 1
2 |x| ≤ |x − y| ≤ 3

2 |x|. This inequality gives that

I1 ≤ C
1

|x|n−γ+1

ˆ

|y|≤|x|/2

1

(1 + |y|)n+α
dy = C1

1

|x|n−γ+1

|x|/2ˆ

0

rn−1

(1 + r)n+α
dr.

When |x| ≤ 1, this is controlled by

C1
1

|x|n−γ+1

|x|/2ˆ
rn−1dr = C2|x|γ−1 ≤ C2.
0
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When |x| > 1, we have trivially I1 ≤ C1
´∞

0
rn−1

(1+r)n+α dr < ∞.

If y ∈ �2, we have |y| ≥ |x| − |x − y| ≥ 1
2 |x|. Then,

|I2| ≤ C
1

(1 + |x|)n+α

ˆ

�2

1

|x − y|n−γ+1 dy

= C1
1

(1 + |x|)n+α

|x|/2ˆ

0

rn−1

rn−γ+1 dr

= C2
|x|γ−1

(1 + |x|)n+α
≤ C3.

(4.30)

If y ∈ �3, one has |x|
2 ≤ |x − y| ≤ 3|y|. Then,

|I3| ≤
ˆ

|x−y|≤1

1

|x − y|n−γ+1 dy +
ˆ

�3∩{|x−y|>1}

1

|x − y|n−γ+1(1 + |y|n+α)
dy.

The first term is trivially bounded by a constant, and for the second term we have

ˆ

�3∩{|x−y|>1}

1

|x − y|n−γ+1(1 + |y|n+α)
dy ≤ C1

ˆ

�3∩{|x−y|>1}

1

|x − y|2n+α−γ+1 dy

≤ C2

∞̂

max(1,|x|/2)

rn−1

r2n+α−γ+1 dr

≤ C3.

All the bounds are independent of x and the claim is therefore proved. �
Using Lemma 4.2, we establish the existence of mild solution to (1.1) in XT .

Theorem 4.5. For n ≥ 2. Let 0 < β < 1, 1 < α ≤ 2 and 1 < γ ≤ n. If ρ0 ∈ L∞
n+α(Rn). Then there 

exists T > 0 such that (1.1) has a unique mild solution ρ ∈ L∞([0, T ]; L∞
n+α(Rn)), satisfying

ˆ

Rn

ρ dx =
ˆ

Rn

ρ0 dx.

Define the largest time of existence

T α
b = sup{T > 0 : (1.1) has a unique mild solution in XT }.

If T α
b < ∞, we then have lim supt→T −

b
‖ρ(·, t)‖L∞

n+α
= +∞. Further, this solution is the same 

solution as in Theorems 4.3 on [0, T α), and
b
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ρ ∈ C([0, T α
b ),Lp(Rn)), ∀p ∈ [1,∞).

Proof. We can construct the existence of solution to (1.1) in XT applying Proposition 3.5.
By equation (3.26) and (4.27), we find

‖Sβ
α (·)ρ0‖XT

≤ C(1 + T β)‖ρ0‖L∞
n+α

. (4.31)

Due to the definition of the bilinear form (4.3) and estimate (3.27), we have

‖H(ρ, ρ̃)‖XT
= ess sup

x∈Rn

(1 + |x|)n+α

∣∣∣∣∣∣
tˆ

0

T β
α (t − τ)∇(ρB(ρ̃))(τ )dτ

∣∣∣∣∣∣
≤

tˆ

0

‖∇ · (T β
α (t − τ)(ρB(ρ̃))(τ ))‖L∞

n+α
dτ

≤ C

tˆ

0

(t − τ)−
β
α
+β−1‖(ρB(ρ̃))(τ )‖L∞

n+α
+ (t − τ)2β− β

α
−1‖(ρB(ρ̃))(τ )‖1dτ

(4.32)

By Lemma 4.2 and (4.27), we can deduce

‖ρB(ρ̃)(τ )‖L∞
α+n

= ‖(1 + |x|)n+αρ(τ)B(ρ̃)(τ )‖∞ ≤ C‖ρ‖XT
‖ρ̃‖XT

, (4.33)

and

‖(ρB(ρ̃))(τ )‖1 ≤ C‖ρ‖1‖B(ρ̃)(τ )‖∞ ≤ C‖ρ‖XT
‖ρ̃‖XT

. (4.34)

It follows from (4.32), (4.33) and (4.34) that

‖H(ρ, ρ̃)‖XT
≤ Ctβ− β

α ‖ρ‖XT
‖ρ̃‖XT

+ Ct2β− β
α ‖ρ‖XT

‖ρ̃‖XT
. (4.35)

Combining (4.31) and (4.35), Lemma 4.1 yields the existence result in XT .
Since ρ ∈ L∞([0, T ], L1(Rn)) ∩ L∞([0, T ], L∞(Rn)), we can deduce that ρ ∈ C([0, T ],

Lp(Rn)) for any p ∈ [1, ∞) using (3.5). On the other hand, ρ0 ∈ L∞
n+α(Rn) implies that it 

is in Lp(Rn) for any p ∈ [1, ∞]. Then, Theorem 4.3 tells us that there is a unique mild 
solution ρ̃ in C([0, T1], L1(Rn)) ∩ C([0, T1], Lp1(Rn)) for some T1 > 0 and p1 ∈ (1, ∞). 
The uniqueness part of Theorem 4.3 ensures that ρ = ρ̃ on [0, min(T , T1)]. Moreover, equa-
tion (4.27) and the blowup scenario of Theorem 4.3 imply that ρ̃ exists on [0, T α

b ). Theo-
rem 4.3 again then ensures the uniqueness of ρ and the integral preservation. Lastly, since 
ρ ∈ C([0, T ], L1(Rn)) ∩ L∞([0, T ], L∞(Rn)), we deduce that ρ ∈ C([0, T ], Lp(Rn)) for all 
p ∈ [1, ∞).

The statement regarding T α
b follows in a similar approach as the argument in Theorem 4.1

and we omit the details. �
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Remark 4.4.

• Note that we usually do not have ρ ∈ C([0, T ], L∞
n+α(Rn)). Consider that ρ0 is compactly 

supported but essentially discontinuous. It is well-known that the mollification of ρ0 does 
not converge to ρ0 in L∞(Rn). Hence, Sβ

α (t)ρ0 �→ ρ0 in L∞
n+α(Rn) as t → 0+.

• The fact that ρ ∈ XT clearly implies that for ν < α

ˆ

Rn

|x|ν |ρ|dx < ∞.

Indeed, according to the asymptotic form of the fundamental solution (equation (3.8)), if α ∈
(1, 2), we cannot expect the solution to have moment of order ν ≥ α (see also [6, Section 2]).

5. Nonnegativity preservation and conservation of mass

In this subsection, we intend to discuss the problem that if the fact that the initial value ρ0 of 
(1.1) is nonnegative can imply that ρ(x, t) remains nonnegative for every 0 < t < T .

Given a function u, we recall u− = − min(u, 0) ≥ 0, u+ = max(u, 0) so that

u = u+ − u−.

We first have the following claim, which essentially follows from [9, Theorem 1.1].

Lemma 5.1. Let A = (−	)
α
2 . Suppose ρ ∈ L2(Rn), then for any t > 0,

〈e−tAρ,ρ+〉 ≤ ‖ρ+‖2
2 =

ˆ

R+
ρρ+ dx. (5.1)

Proof. The kernel P corresponding to e−sA is non-negative and integrates to 1 for any s > 0, 
which is the β → 1 limit of Lemma 3.1. Then, it follows that

〈e−tAρ,ρ+〉 = 〈e−tAρ+, ρ+〉 − 〈e−tAρ−, ρ+〉 ≤ 〈e−tAρ+, ρ+〉 = ‖e− tA
2 ρ+‖2

2 ≤ ‖ρ+‖2
2.

The first inequality follows because e−tAρ− is a non-negative function since P ≥ 0, and the 
second inequality follows from the fact that for any p ≥ 1, e− tA

2 is a contraction in Lp(Rn)

space (because ‖P‖1 = 1). �
Corollary 5.1. Let A = (−	)

α
2 . If ρ ∈ Hδ,2(Rn) for δ ∈ [0, 1] and Aρ ∈ H−δ,2(Rn), then we 

have

〈Aρ,ρ+〉 ≥ 0, 〈Aρ,ρ−〉 ≤ 0. (5.2)

Proof. By Lemma 5.1 and the fact L2(Rn) ⊂ Hδ,2(Rn), we have

〈(e−tAρ − ρ),ρ+〉 ≤ 0. (5.3)
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Hence, using (5.3), we find

〈Aρ,ρ+〉 = −
〈

lim
t→0

1

t
(e−tAρ − ρ),ρ+

〉
≥ − lim sup

t→0

1

t
〈e−tAρ − ρ,ρ+〉 ≥ 0. (5.4)

Inequality (5.4) implies that

−〈e−tAρ,ρ−〉 = 〈e−tA(−ρ), (−ρ)+〉 ≥ 0,

and the second claim follows. �
Theorem 5.1. In Theorem 4.1 (or Theorem 4.2, Theorem 4.3, Theorem 4.4, Theorem 4.5), if we 
also have ρ0 ≥ 0, then for all t in the interval of existence we have

ρ(x, t) ≥ 0. (5.5)

Proof. We will just prove the case that the solutions satisfy the assumption in Theorem 4.1 here. 
The proof for other cases are similar.

We introduce a mollifier Jε(x) = 1
εn J ( x

ε
) and consider the operator Bε defined by

Bε(u) := B(Jε ∗ u) = Jε ∗ B(u).

Recall that Tb is the largest time of existence. We fix T ∈ (0, Tb) and let ρ be the mild solution 
on [0, T ]. We define ρ(t) = ρ(T ) for t ≥ T .

Now, we first pick approximating sequence �(n)
0 ∈ Lp(Rn) ∩ L2(Rn) such that �(n)

0 ≥ 0 and 

�
(n)
0 → ρ0 in Lp(Rn). For example, we can choose fn ∈ C∞

c (Rn) such that fn → ρ0 in Lp(Rn). 

Denote fn ∨0 := max(fn, 0) and picking �(n)
0 = fn ∨0 suffices because |ρ0 −fn ∨0| ≤ |ρ0 −fn|

due to the fact ρ0 ≥ 0.
For the purpose of the proof, we consider the following auxiliary problem

�(n)(t) = Sβ
α (t)ρ0 −

tˆ

0

T β
α (t − s)∇ · ((�(n))+B 1

n
(ρ)) ds. (5.6)

We denote

an(x, t) := B 1
n
(ρ),

and it is a smooth function with derivatives bounded in [0, ∞) ×Rn by the properties of mollifi-
cation.

For t > 0, since Eβ(−s) ∼ C1s
−1 as s → ∞, we observe

‖Sβ
α u‖2

Hσ,2 =
ˆ

Rn

(1 + |ξ |2σ )(Eβ(−tβ |ξ |α))2|ûξ |2dξ ≤ C‖u‖2
2t

− 2σβ
α , σ ∈ [0, α]. (5.7)

To deal with the second term in (5.6), due to the definition of T β
α , we note that
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∥∥∥∥∥∥
tˆ

0

T β
α (t − s)∇ · v ds

∥∥∥∥∥∥ ≤
tˆ

0

(t − s)β−1‖Eβ,β(−(t − s)βA)∇ · v(s)‖ds

holds for any norm. Hence, aiming to compute Hσ,2 norm, we have

‖Eβ,β(−(t − s)βA)∇ · v(s)‖2
Hσ,2

=
ˆ

Rn

(1 + |ξ |2σ )
∣∣ξEβ,β(−(t − s)β |ξ |α)v̂ξ

∣∣2
dξ

≤
ˆ

Rn

(1 + |ξ |2σ+2−2δ)E2
β,β(−(t − s)β |ξ |α)|ξ |2δ|v̂ξ |2 dξ

≤C(1 + (t − s)−
β(2σ+2−2δ)

α )‖v‖2
Hδ,2 .

(5.8)

Since Eβ,β(−s) ∼ C2s
−2 as s → ∞, the last inequality is valid if 2σ + 2 − 2δ ≤ 4α. This 

computation implies that

∥∥∥∥∥∥
tˆ

0

T β
α (t − s)∇ · v ds

∥∥∥∥∥∥
Hσ,2

≤ C(T )(1 +
tˆ

0

(t − s)β−1−β 2σ+2−2δ
2α )‖v‖Hδ,2 (5.9)

Picking σ = δ = 0 in (5.7)–(5.9) (with u = ρ, v = anρ
+), and applying the method in [34, Ap-

pendix], we find that

�(n) ∈ Cβ([0,∞),L2(Rn)) ∩ C∞((0,∞),L2(Rn)). (5.10)

Using this time regularity, we have that in C([0, ∞), H−α,2(Rn)), �(n) solves the following 
initial value problem in strong sense:

{
c
0D

β
t �(n) + (−�)

α
2 �(n) = −∇ · ((�(n))+an(x, t))in (x, t) ∈R

n × (0,∞),

�(x,0) = �
(n)
0 (x) ≥ 0.

(5.11)

With the time regularity and (2.6) in Lemma 2.1, we find that in H−α,2(Rn)

c
0D

β
t �(n) = 1

�(1 − β)

⎛
⎝�(n) − �

(n)
0

tβ
+ β

tˆ

0

�(n) − �(n)(x, s)

(t − s)β+1 ds

⎞
⎠ . (5.12)

It is clear that

ρ �→ anρ
+

is bounded in L2(Rn) and H 1,2(Rn). By interpolation, this mapping is bounded in Hδ,2, 0 ≤ δ ≤
1. We now denote
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vn = (�(n))+an.

We know ρn ∈ C([0, T ]; L2(Rn)). Hence, we can pick δ = 0, 2σ + 2 − 2δ < 2α, or σ < α − 1
in (5.7)–(5.9) to find

‖ρn‖Hσ,2 ≤ Ct−
σβ
α + C(T )(1 +

tˆ

0

(t − s)β−1−β 2σ+2−2δ
2α )‖vn‖2 ≤ Ct−

σβ
α .

This allows us to pick δ ∈ (0, α − 1) and σ < α + δ − 1, which then improves the regularity 
of ρn. Clearly, we can continue this process in finite steps so that δ = 1 and σ < α. Hence, for 
t > 0,

�(n) ∈ Hσ,2(Rn), σ ∈ [0, α).

Consequently, for t > 0, �(n) ∈ H 1,2(Rn) and (−	)
α
2 �(n) ∈ H−ε,2(Rn) for any ε > 0.

The right hand side of (5.12) also makes sense in C([0, ∞), L2(Rn)). Since (�(n))− ∈ L2(Rn), 
we can multiply (�(n))− on both sides of (5.12) for t > 0 and take integral with respect to x. 
Together with the facts �(n) ∈ H 1,2(Rn) and (−	)

α
2 �(n) ∈ H−1,2(Rn) for t > 0, we can pair 

both sides of (5.11) with (�(n))− with respect to x to get for any t > 0:

ˆ

Rn

c
0D

β
t �(n)(�(n))−dx + 〈(−�)

α
2 �(n), (�(n))−〉 = −

ˆ

Rn

∇ · ((�(n))+an(x, t))(�(n))−dx. (5.13)

For the term 
´
Rn

c
0D

β
t �(n)(�(n))−dx (for notational convenience, we use � to represent a gen-

eral �(n)), (2.6) in Lemma 2.1 gives that

ˆ

Rn

(c0D
β
t �)�−dx = 1

�(1 − β)

(ˆ
Rn

−|�−(t)|2 − ρ0(x)�−(x, t)

tβ
dx

− β

ˆ

Rn

tˆ

0

|�+(x, s)�−(x, t)|
(t − s)β+1 dsdx − β

ˆ

Rn

tˆ

0

(�−(x, t) − �−(x, s))�−(x, t)

(t − s)β+1 dsdx
)

≤ 1

�(1 − β)

⎛
⎝−‖�−(x, t)‖2

2

2tβ
− β

tˆ

0

(�−(x, t) − �−(x, s))�−(x, t) dx

(t − s)β+1 ds

⎞
⎠ . (5.14)

Here we have used the nonnegativity of �0 and �−. Note that

−(a − b)a ≤ −a2 − b2

2
.

Applying the above inequality to (5.14), we have
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ˆ

Rn

(c0D
β
t �)�−dx ≤ 1

�(1 − β)

⎛
⎝−‖�−‖2

2

2tβ
− β

tˆ

0

‖�−(t)‖2
2 − ‖�−(s)‖2

2)

2(t − s)β+1 ds

⎞
⎠ . (5.15)

Note that ‖�−
0 ‖2

2 = 0. Applying Equation (2.6) to ‖�−‖2
2 (due to the regularity results (5.10)), 

(5.15) implies that for any n ≥ 1:

ˆ

Rn

(c0D
β
t �(n))(�(n))−dx ≤ −1

2
(c0D

β
t ‖(�(n))−‖2

2). (5.16)

With Corollary 5.1, we have that for any t > 0

〈(−	)
α
2 �(n), (�(n))−〉 ≤ 0, (5.17)

since (−	)
α
2 �(n) ∈ H−1,2(Rn) while ρn ∈ H 1,2 for t > 0.

Further, since for any t > 0, �(n) ∈ H 1,2(Rn), we have (�(n))− ∈ H 1,2(Rn) and ∇(�(n))− =
−1�(n)≤0∇�(n). Then, we obtain that

−〈∇ · ((�(n))+an(x, t)), (�(n))−〉 = 0. (5.18)

Combining (5.13), (5.16), (5.17) and (5.18), for t > 0, it holds that

0 ≤ −1

2
(c0D

β
t ‖(�(n))−‖2

2).

Since ‖(�(n))−‖2
2 is continuous in time, (�(n))− = 0 follows from Lemma 2.2.

This means that �(n) indeed satisfies the following equation

�(n)(t) = Sβ
α (t)�

(n)
0 −

T̂

0

T β
α (t − s)∇ · ((�(n))B 1

n
(ρ))) ds, (5.19)

and �(n) ≥ 0.
Note that �

(n)
0 ∈ Lp(Rn). Since B 1

n
(ρ) is smooth and bounded, we find that �(n) ∈

C([0, ∞), Lp(Rn)). Then, for t ∈ [0, T ],
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‖�(n)(t) − ρ(t)‖p

≤‖�(n)
0 − ρ0‖p +

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖�(n)B 1

n
(ρ) − ρB(ρ)‖q ds

≤‖�(n)
0 − ρ0‖p +

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖�(n) − ρ‖p(s)‖B 1

n
(ρ(s))‖ pq

p−q
ds

+
tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖ρ‖p‖J 1

n
∗ B(ρ) − B(ρ)‖ pq

p−q
ds

≤C

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖�(n) − ρ‖p(s) ds + δn(T )

where

δn(T ) = ‖�(n)
0 − ρ0‖p + sup

0≤t≤T

tˆ

0

(t − s)
− nβ

α
( 1

q
− 1

p
)− β

α
+β−1‖ρ‖p‖J 1

n
∗ B(ρ) − B(ρ)‖ pq

p−q
ds

goes to zero as n → ∞.
By the comparison principle (Lemma 2.4), we have

‖�(n)(t) − ρ(t)‖p ≤ u(t),

where u(t) solves the equation

c
0D

− nβ
α

( 1
q
− 1

p
)− β

α
+β

t un(t) = Cun(t), un(0) = δn(T ).

Clearly, as n → ∞, un(t) → 0 for t ∈ [0, T ], and then we conclude that

�(n)(t) → ρ(t), in C([0, T ],Lp(Rn)).

Since �(n)(t) ≥ 0, we then have ρ(t) ≥ 0 for t ∈ [0, T ]. Since T ∈ (0, Tb) is arbitrary, the claim 
follows. �
Corollary 5.2. In Theorem 4.3 (or Theorem 4.4, Theorem 4.5), besides the conditions listed there, 
if further we have ρ0 ≥ 0, then ρ(x, t) ≥ 0 and the total mass is conserved, that is

M =
ˆ

Rn

ρ dx =
ˆ

Rn

ρ0 dx.
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6. Finite time blow up of solutions

In this section, we investigate the blowup behaviors for (1.1). For the usual parabolic–elliptic 
Keller–Segel equations, a strategy of proof for blowup relies on the second moment method 
(see, for example, the celebrated work of Nagai [38]). As mentioned in Remark 4.4 (see also 
[6, Section 2]), if α ∈ (1, 2), the solution usually does not have moment of order ν ≥ α. Hence, 
the standard technique using second moment does not work for α ∈ (1, 2). If we focus on the 
fundamental solution P , a straightforward corollary of Lemma 3.3 is

ˆ

Rn

|x|νP dx ≤ Ct
βν
α , (6.1)

for ν ∈ (1, α) if α ∈ (1, 2) or for ν ∈ (1, 2] if α = 2. Hence moment of order ν ∈ (1, α) might 
work. (Of course for α = 2, one can consider second moment.)

Using the ν-moment to prove the blowup with Caputo time fractional derivative follows from 
the similar approach as the proof of [6, Theorem 2.3]. For the sake of completeness, we provide 
a detailed proof here.

Consider the following function which will be used to construct the moment:

ϕ(x) := (1 + |x|2) ν
2 − 1. (6.2)

The following lemma has been proved in [6] to justify that ϕ is equivalent to |x|ν and has some 
good properties:

Lemma 6.1. [6]

(i) For ε > 0, there exists C(ε) > 0 such that

ϕ(x) ≤ |x|ν ≤ ε + C(ε)ϕ(x) (6.3)

(ii) For 1 < ν < α < 2, or 1 < ν ≤ α = 2,

(−�)
α
2 ϕ(x) ∈ L∞(Rn). (6.4)

(iii) For 1 < ν ≤ 2, there exists K = K(ν) > 0 such that the following inequality

|x − y|2
1 + |x|2−ν + |y|2−ν

≤ 1

K

(∇ϕ(x) − ∇ϕ(y)
) · (x − y), ∀x, y ∈ R

n. (6.5)

In order to study the finite time blowup of solutions to equation (1.1), we need some auxiliary 
results. We then have the following claim

Proposition 6.1. Let ρ be the mild solutions in Theorem 4.3 (or Theorem 4.4, or Theorem 4.5). 
Let ν ∈ (1, α) if α ∈ (1, 2) and ν ∈ (1, α] if α = 2. In addition, if ρ0 ≥ 0 and ρ0 ∈ L1(Rn, (1 +
|x|2)ν/2dx), then in the interval of existence of the mild solutions,
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ω(t) :=
ˆ

Rn

ϕ(x)ρ(x, t) dx =
ˆ

Rn

((1 + |x|2) ν
2 − 1)ρ(x, t) dx < ∞.

Further, ω(t) is continuous and satisfies the equation

c
0D

β
t ω(t) = −

ˆ

Rn

ρ(x, s)(−	)
α
2 ϕ dx

− sn,γ

2

¨

Rn×Rn

ρ(x, s)ρ(y, s)

|x − y|n−γ+2 (∇ϕ(x) − ∇ϕ(y)) · (x − y)dxdy.

(6.6)

Proof. Below, we provide a uniform proof for all the conditions in the theorems (although the 
first part of the claims is trivial for Theorem 4.5).

Let Tb be the largest time of existence. We fix T ∈ (0, Tb) and let ρ be the mild solution on 
[0, T ]. Define ρ(t) = ρ(T ) for t ≥ T . We consider the following regularized system

ρn(t) = Sβ
α (t)ρ0 −

tˆ

0

T β
α (t − s)∇ · (ρnB 1

n
(ρ)) ds, (6.7)

where B 1
n
(ρ) = J 1

n
∗ B(ρ) with Jε = 1

εn J ( x
ε
). Repeat all the arguments as in the proof of Theo-

rem 5.1, we have

ρn ≥ 0,

ˆ

Rn

ρn(x, t) dx =
ˆ

Rn

ρ0 dx =: M.

More importantly, by taking the difference directly, we find for some p ≥ pc (depending on 
which theorems we are considering)

ρn → ρ in C([0, T ];Lp(Rn)), as n → ∞.

By equation (6.7), we find that in C([0, T ]; H−α,p(Rn)), the following equality holds in 
strong sense:

c
0D

β
t ρn = −(−	)

α
2 ρn − ∇ · (ρnB 1

n
(ρ)). (6.8)

Testing (6.8) using ψ ∈ C∞
c (Rn), we have

c
0D

β
t 〈ρn,ψ〉 = −

ˆ

Rn

ρn(−	)
α
2 ψ dx +

ˆ

Rn

ρnB 1
n
(ρ) · ∇ψ dx. (6.9)

Now, we take n → ∞ in (6.9) which is valid since ψ ∈ C∞
c (Rn) and ρn → ρ in 

C([0, T ], Lp(Rn)), and have:



1088 L. Li et al. / J. Differential Equations 265 (2018) 1044–1096
c
0D

β
t 〈ρ,ψ〉 = −

ˆ

Rn

ρ(−	)
α
2 ψ dx +

ˆ

Rn

ρB(ρ) · ∇ψ dx. (6.10)

Then, (6.10) gives that

〈ρ,ψ〉(t) = 〈ρ,ψ〉(0) + 1

�(β)

tˆ

0

(t − s)β−1(J1(s) + J2(s))ds, (6.11)

where

J1(s) = −
ˆ

Rn

ρ(x, s)(−	)
α
2 ψ dx,

J2(s) =
ˆ

Rn

ρB(ρ) · ∇ψ dx

= − sn,γ

2

¨

Rn×Rn

ρ(x, s)ρ(y, s)

|x − y|n−γ+2 (∇ψ(x) − ∇ψ(y)) · (x − y)dxdy.

Choose ζ ∈ C∞
c (Rn) and 0 ≤ ζ ≤ 1, that is, for |x| ≤ 1, ζ = 1, for |x| ≥ 2, ζ = 0. Now we take 

ψm = ϕζm, where ζm = ζ( x
m

). The corresponding J1 and J2 will be denoted by J1,m and J2,m. 
Direct computation verifies that ‖∇2ϕ‖∞ < ∞, and consequently

sup
m≥1

‖∇2ψm‖∞ = sup
m≥1

(
‖∇2ϕ‖∞‖ζ‖∞ + 2

1

m
sup

m≤|x|≤2m

|∇ϕ|‖∇ζ‖∞ + 1

m2 ‖ϕ∇2ζ‖∞

)

< ∞.

(6.12)

Note that for |x| ∈ [m, 2m], ∇ϕ ∼ (1 + |x|)ν−1 ≤ Cmν−1. By Corollary 2.2,

¨

Rn×Rn

ρ(x, s)ρ(y, s)

|x − y|n−γ
dxdy ≤ C‖ρ‖2

2n
n+γ

(s) < ∞, (6.13)

where we have used the fact that 2n
n+γ

∈ [1, pc].
Using (6.12) and (6.13), we find

|J2,m| ≤ C‖ρ‖2
2n

n+γ

(s) < ∞

and similarly

I2 := − sn,γ

2

¨

Rn×Rn

ρ(x, s)ρ(y, s)

|x − y|n−γ+2 (∇ϕ(x) − ∇ϕ(y)) · (x − y)dxdy < ∞.

Consequently, we find that as m → ∞, uniformly on [0, T ]:
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|I2 − J2,m| ≤ C

¨

Rn×Rn\B(0,m)×B(0,m)

ρ(x, s)ρ(y, s)

|x − y|n−γ
dxdy → 0.

It is also clear that uniformly for s ∈ [0, T ],

J1,m → I1 := −
ˆ

Rn

ρ(x, s)(−	)
α
2 ϕ ds.

Replacing ψ with ψm, Ji with Ji,m (i = 1, 2) in (6.11) and taking m → ∞, we obtain on 
[0, T ]:

lim
m→∞〈ρ,ψm〉 = ω(0) + 1

�(β)

tˆ

0

(t − s)β−1(I1(s) + I2(s)) ds,

which is continuous and finite. However, for left hand side, we apply monotone convergence 
theorem and find that the limit must be ω(t). This is implies that ω(t) is continuous on [0, T ]
and the equation (6.6) is valid. Since T ∈ (0, Tb) is arbitrary, the claim follows. �
Theorem 6.1. Assume n ≥ 2, 0 < β < 1, 1 < α ≤ 2, 1 < γ ≤ n. Assume ρ0 ≥ 0 and also the 
conditions in Theorem 4.3 (or Theorem 4.5) hold to ensure the existence of mild solutions. If one 
of the following conditions are satisfied,

(i) For α = 2, γ = n, ν = 2, if ρ0 ∈ L1(Rn, (1 + |x|ν)dx) so that

‖ρ0‖1 >
2n

sn,γ

.

(ii) For some ν ∈ (1, α) when α < 2 or ν ∈ (1, 2] when α = 2, with n−γ+2
ν

> 1, if ρ0 ∈
L1(Rn, (1 + |x|ν)dx) and

‖ρ0‖1 > M∗,
ˆ

Rn

|x|νρ0(x) dx < δ,

for certain constants M∗(ν, n, α, γ ) and δ(ν, n, α, γ ).
(iii) Suppose α + γ < n + 2 (or pc > 1) and for some ν ∈ (1, α) when α < 2 or ν ∈ (1, 2] when 

α = 2. If ρ0 ∈ L1(Rn, (1 + |x|ν)dx) satisfying

´
Rn |x|νρ0(x)dx´

Rn ρ0(x)dx
≤ χ

⎛
⎝ˆ

Rn

ρ0(x)dx

⎞
⎠

ν
n+2−α−γ

, (6.14)

where χ = δ(M∗)−1+ ν
α+γ−2−n (M∗, δ are the constants in (ii)).

Then the mild solution of (1.1) will blow up in a finite time.
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Proof. Recall the function

ω(t) =
ˆ

Rn

ϕ(x)ρ(x, t)dx.

Proposition 6.1 implies that on the existence of interval [0, T ], we have ω(t) ∈ [0, ∞) and

c
0D

β
t ω(t) = −

ˆ

Rn

(
(−�)

α
2 ϕ(x)

)
ρ(x, t)dx

− sn,γ

2

ˆ

Rn

ˆ

Rn

(∇ϕ(x) − ∇ϕ(y)) · (x − y)
ρ(x, t)ρ(y, t)

|x − y|n−γ+2 dxdy

= I1 + I2.

(6.15)

In the existence of interval, M := ´
Rn ρ(x)dx = ´

Rn ρ0(x)dx > 0. This implies that ω(t) > 0. 
Hence, as long as the solution does not blow up, ω(t) ∈ (0, ∞).

(i). In the case that α = 2, γ = n, ν = 2, we find that

I1 + I2 = 2nM − sn,γ M2.

Hence, if M > 2n
sn,γ

, w(t) will be zero in finite time. This means that the solution will blow up in 
finite time.

(ii). Lemma 6.1 shows that there exists constant C0 such that

I1 ≤ C0M.

Now, consider I2, by Lemma 6.1 (Equation (6.5)), we have that

I2 ≤ −1

2
sn,γ K

ˆ

Rn

ˆ

Rn

ρ(x, t)ρ(y, t)

|x − y|n−γ (1 + |x|2−ν + |y|2−ν)
dxdy

=: −1

2
sn,γ KJ (t).

(6.16)

Choose p ∈ (1, ∞), δ ∈ (0, 1) and s ≥ 0 such that

p = 1

δ
, s = (n − γ )δ, sp′ + (2 − ν)δp′ = ν, (6.17)

where p′ = p
p−1 . Indeed, (6.17) implies that

p = n − γ + 2

ν
> 1, s = (n − γ )ν

n − γ + 2
≥ 0. (6.18)

By Hölder’s inequality, we then have:



L. Li et al. / J. Differential Equations 265 (2018) 1044–1096 1091
M2 =
ˆ

Rn

ˆ

Rn

ρ(x, t)ρ(y, t)dxdy

=
ˆ

Rn

ˆ

Rn

ρ(x, t)ρ(y, t)
|x − y|s

(1 + |x|2−ν + |y|2−ν)δ

(1 + |x|2−ν + |y|2−ν)δ

|x − y|s dxdy

≤ J (t)
1
p · (

ˆ

Rn

ˆ

Rn

ρ(x, t)ρ(y, t)|x − y|sp′(
1 + |x|2−ν + |y|2−ν)δp

′
dxdy

) 1
p′ .

(6.19)

By (6.17) and inequality (6.3) in Lemma 6.1, we find

|x − y|sp′
(1 + |x|2−ν + |y|2−ν)δp

′ ≤ C1,1 max((1 + |x|ν), (1 + |y|ν))
≤ C1,2(1 + ϕ(x) + ϕ(y)).

(6.20)

(6.19) and (6.20) imply that

M2 ≤ C

1
p′
1,3J (t)

1
p (M2 + 2Mω(t))

1
p′ , (6.21)

and with (6.16) and (6.21), we obtain that

I2 ≤ −C1
M2p

(M2 + 2Mω(t))p−1 . (6.22)

Hence, we have the following inequality for ω(t) applying (6.15), the estimate of I1 and (6.22)

c
0D

β
t ω(t) ≤ C0M − C1

M2p

(M2 + 2Mω(t))p−1 , (6.23)

where C0 = ‖(−�)
α
2 ϕ‖∞.

Clearly, there are M∗ > 0 and δ > 0 such that whenever M > M∗ and ω(0) ≤ ´
Rn |x|νρ0 dx <

δ, we have

C2 := C0M − C1
M2p

(M2 + 2Mω(0))p−1 < 0. (6.24)

By the fundamental theorem for fractional calculus (Lemma 2.2), we find that on the interval of 
existence of solution to (1.1), ω(t) ≤ ω(0). Consequently, with estimates (6.23) and (6.24), the 
inequality (2.18) in Corollary 2.1 implies that

ω(t) < ω(0) + C2
1

�(β)
tβ .

From the above inequality, one can deduce that there exists 0 < T ∗ < ∞ such that ω(T ∗) = 0, 
which implies finite time blowup.

(iii). In this case, we have the extra assumption α + γ < n + 2 and the mass M can be any 
positive number. For the purpose of proof, we fix M0 > M∗, where M∗ is the number in (ii).
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Recall that if ρ is a solution to (1.1), then so is

ρλ = λα+γ−2ρ(λx,λ
α
β t).

These two solutions clearly have the same blow up behavior. Choosing λα+γ−2−n = M0
M

, we can 
then verify that the mass of ρλ is M0.

Direct computation shows that

ˆ

Rn

|x|νρλ(x,0)dx =
ˆ

Rn

|x|νλα+γ−2ρ(λx,0)dx

= (
M0

M
)
1− ν

α+γ−2−n
ˆ

Rn

|x|νρ0(x)dx

(6.25)

Hence, if

(
M0

M
)
1− ν

α+γ−2−n
ˆ

Rn

|x|νρ0(x)dx < δ,

or
ˆ

Rn

|x|νρ0(x)dx < χ
(ˆ
Rn

ρ0(x)dx
)1− ν

α+γ−2−n ,

where χ = δM
−1+ ν

α+γ−2−n

0 , the solution blows up in finite time. By taking M0 → M∗, we verify 
the expression of χ in the claim. �
Remark 6.1. It is mentioned in [6, Remark 2.6] that the conditions in (iii) indeed implies that 
‖ρ0‖pc is big which is in accordance with the result in Theorem 4.2.
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Appendix A. Lp estimates of ∇Y

Proof of Proposition 3.2 Part (2). Denote �1 = {x ∈ R
n : |x|α > tβ} and �2 = {x ∈ R

n :
|x|α ≤ tβ}.

‖∇Y(x, t)‖p
p =

ˆ
|∇Y(x, t)|pdx +

ˆ
|∇Y(x, t)|pdx = I + J. (A.1)
�1 �2
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Let r = |x|.
For I , by Lemma 3.3 Part (1), when 1 < α < 2,

I ≤ Ctp(2β−1)

ˆ

|x|α≥tβ

1

|x|(n+α+1)p
dx

= Ctp(2β−1)

∞̂

t
β
α

r−(n+α+1)p+n−1dr

= Ct−
nβ
α

(p−1)+p(β−1− β
α
).

(A.2)

For α = 2, we have

I ≤ Ct(−
(n+1)β

2 +β−1)p

∞̂

t
β
α

exp(−Cr
α

α−β t
− β

α−β )rn−1dr

= Ct−
nβ
α

(p−1)+p(β−1− β
α
),

(A.3)

here we use the substitution s = rt−
β
α .

For J , in the case n < 2α − 2, we can compute directly that

J ≤ C

ˆ

|x|≤t
β
α

|tβ−1− β(n+2)
α |p|x|p dx

≤ Ct(β−1− β(n+2)
α

)p

t
β
αˆ

0

rprn−1 dr

= Ct−
nβ
α

(p−1)+p(β−1− β
α
).

(A.4)

In the case 2α − 2 < n, we have

J ≤C

ˆ

|x|≤t
β
α

|x|p(2α−n−1)t−p(β+1) dx

= Ct−p(β+1)

t
β
αˆ

0

rp(2α−n−1)rn−1 dr

= Ct−
nβ
α

(p−1)+p(β−1− β
α
).

(A.5)

If n ≤ 2α − 1, this holds for any p ∈ [1, ∞). If n > 2α − 1, we need p < n
n+1−2α

or p < κ4 for 
this integral to make sense.
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In the case n = 2α − 2 = 2, that is n = α = 2, we have

J ≤ C

ˆ

|x|≤t
β
α

t−p(β+1)|x|p(1 + | log(|x|αt−β)|)p dx

= Ct−p(β+1)

β
αˆ

0

(1 + | log(rαt−β)|)prn−1 dr

= Ct−
nβ
α

(p−1)+p(β−1− β
α
).

(A.6)

Putting the results (A.2)–(A.6) into (A.1), (3.19) in Proposition 3.2 is verified.
By the asymptotic behavior of ∇Y in Lemma 3.3, for x ∈ �2, when n ≤ 2α − 1, ‖∇Y‖∞ <

Ctβ−1−(n+1)
β
α . For x ∈ �1, the bound is trivially obtained. Hence, when n ≤ 2α−1, the estimate 

also holds for p = ∞ = κ4.
In the case 2α − 1 < n and p = n

n+1−2α
, according to the calculation above, we find that

I
1
p ≤ Ct

− nβ
α

(1− 1
p
)+β−1− β

α = Ct−β−1

is always true and thus Pχx∈�1 is in Lp(Rn) and satisfies the given bound. We now focus on the 
part on �2.

d(λ) = |{|x| ≤ t
β
α : ∇Y > λ}| ≤ |{x : |x| < (Ct−β−1λ−1)

1
n−2α+1 }|

⇒ λd
n−2α+1

n ≤ Ct−β−1.

This yields the desired result. �
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