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A RANDOM BATCH EWALD METHOD FOR PARTICLE SYSTEMS
WITH COULOMB INTERACTIONS\ast 

SHI JIN\dagger , LEI LI\dagger , ZHENLI XU\dagger , AND YUE ZHAO\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . We develop a random batch Ewald (RBE) method for molecular dynamics simula-
tions of particle systems with long-range Coulomb interactions, which achieves an O(N) complexity
in each step of simulating N -body systems. The RBE method is based on the Ewald splitting for the
Coulomb kernel with a random ``minibatch"" type technique introduced to speed up the summation of
the Fourier series for the long-range part of the splitting. Importance sampling is employed to reduce
the induced force variance by taking advantage of the fast decay property of the Fourier coefficients.
The stochastic approximation is unbiased with controlled variance. Analysis for bounded force fields
gives some theoretic support of the method. Simulations of two typical problems of charged sys-
tems are presented to illustrate the accuracy and efficiency of the RBE method in comparison to
the results from the Debye--H\"uckel theory, the classical Ewald summation, and the particle-particle
particle-mesh method, demonstrating that the proposed method has the attractiveness of being easy
to implement with the linear scaling and is promising for many practical applications.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . Ewald summation, Langevin dynamics, random batch method, stochastic differ-
ential equations

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 65C35, 82M37, 65T50

\bfD \bfO \bfI . 10.1137/20M1371385

1. Introduction. Molecular dynamics simulation is among the most popular
numerical methods at the molecular or atomic level for understanding dynamical and
equilibrium properties of many-body particle systems in many areas such as chemical
physics, soft materials, and biophysics [9, 18, 17]. However, long-range interactions
such as electrostatic Coulomb interactions pose a major challenge to particle simula-
tions, as one has to take into account all pairs of interactions, leading to\scrO (N2) compu-
tational cost per iteration for naive discretizations, which is not only computationally
expensive but also less accurate considering the presence of boundary conditions in
the simulation box. A lot of effort in the literature has been devoted to comput-
ing the long-range interactions efficiently, and widely studied methods include lattice
summation methods such as particle-mesh Ewald (PME) [10, 15] and particle-particle
particle-mesh Ewald (PPPM) [38, 13], and multipole type methods such as treecode
[2, 14] and fast multipole methods [21, 22, 50]. These methods can reduce the opera-
tions per step to \scrO (N logN) or \scrO (N) and have gained great success in practice, but
many problems remain to be solved as the prefactor in the linear scaling can be large,
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B938 SHI JIN, LEI LI, ZHENLI XU, AND YUE ZHAO

or their implementation is nontrivial, or the scalability for parallel computing is not
high.

The mainstream packages [7, 49, 25] for all-atom molecular dynamics simulations
mostly use Ewald-type lattice-summation algorithms which are originally proposed
by Ewald [16]. This type of method splits the Coulomb kernel into a rapidly decaying
function in the real space and a smooth function. The cutoff scheme is introduced
for the first part in the real space. The smooth part is approximated by the Fourier
series expansion. The classical Ewald achieves an \scrO (N3/2) complexity to sum up
all interactions. When the cutoff radius is independent of N and the Fourier series
is accelerated by the fast Fourier transform (FFT) with an interpolation to distrib-
ute charges on lattices, one obtains the PME method which achieves an \scrO (N logN)
complexity. The state-of-the-art development of the Ewald-type algorithm includes
an optimized choice of volumetric decomposition FFT scheme for large systems on
massively parallel supercomputers [31] and efficient methods for Coulomb interactions
without full periodicity [20, 42].

In this work, we propose a random batch Ewald (RBE) method of particle sys-
tems with Coulomb interactions, which enables an \scrO (N) Ewald method per time
step for fast molecular dynamics simulations. The ``random minibatch"" idea, namely
using the sum over a small random set to approximate some big summation, has its
origin in the stochastic gradient descent method [44, 6]. This type of idea has been
developed into different methods such as the stochastic gradient Langevin dynamics
for Bayesian inference [48], stochastic binary interaction algorithms for the mean field
swarming dynamics [1], the random batch method for interacting particle systems
[29], and random batch Monte Carlo simulations [36]. Though the specific implemen-
tations are different for different applications, these methods are intrinsically Monte
Carlo methods for computing the big summation involved in the dynamics, and the
convergence can be obtained due to a time averaging effect [29], obeying the law of
large numbers in time.

The RBE method uses the same idea of random minibatch. The new design is
different from previous work in that the minibatch is built into the Ewald summation
and sampled from the Fourier space. We take a cutoff radius in the real space such that
the particles within the radius are of order one, and we sample p = \scrO (1) frequencies in
the Fourier expansion of the smooth part of the Ewald splitting. These p frequencies
form the minibatch for the force calculation. The advantages of this approach are
threefold. First, the short-range part of the force remains exact and thus the variance
of the force can be significantly reduced. Second, the short-range repulsive force due
to the van der Waals interaction can be naturally introduced to avoid unphysical
configuration. Third and most important, the importance sampling can be used
in the Fourier space in building the minibatch such that the force variance can be
further reduced. These strategies combined lead to a simple and efficient RBE method
for molecular dynamics, as shown in our numerical examples for calculating typical
properties of electrolytes.

The rest of the paper is organized as follows. Section 2 is devoted to an intro-
duction to the setup and the classical Ewald summation, which forms the basis of our
method. In section 3, we introduce the methodology of the RBE and give its detailed
implementation. We also provide some theoretic evidence on why the method works
and can be efficient. In section 4, we test the RBE on two typical problems to validate
the method. Conclusions are given in section 5.

2. Overview of the Ewald summation. In this section, we introduce the
setup and notations to be used later. Then, we give a brief review of the classical
Ewald summation [16, 11].
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RANDOM BATCH EWALD METHOD B939

To approximate electrostatic interactions between charges in an electrolyte of big
extent, one often uses a simulation box with periodic boundary conditions (PBCs)
[18] to mimic the bulk environment of the electrolyte. Without loss of generality, we
consider a cubic box with the edge length L so that the volume of the box is given by
V = L3. During the simulation, one calculates interactions of N numerical particles
(not necessarily physical particles) inside the box with positions \bfitr i and charges qi
(1 \leq i \leq N) satisfying the electroneutrality condition

N\sum 
i=1

qi = 0.(2.1)

Then, one evolves the particles according to Newton's equations

d\bfitr i = \bfitv i dt,

mid\bfitv i = \bfitF i dt+ d\bfiteta i,
(2.2)

where d\bfiteta i represents the coupling with the environment (heat bath) (see section 3.3).
The forces are computed using \bfitF i =  - \nabla \bfitr i

U , where U is the potential energy of
the system. Let \bfitr ij := \bfitr j  - \bfitr i and rij = | \bfitr ij | be the distance. The potential energy
of the system due to Coulomb interactions with PBCs can be written as

U =
1

2

\sum 
\bfitn 

\prime 
N\sum 

i,j=1

qiqj
| \bfitr ij + \bfitn L| 

,(2.3)

where \bfitn \in \BbbZ 3 ranges over the three-dimensional integer vectors and
\sum \prime 

is defined
such that \bfitn = 0 is not included when i = j. Due to the long-range nature of the
Coulomb potential, this series converges conditionally. Hence, directly computing
the interaction energy (2.3) and the corresponding interaction forces using a cutoff
approach is less accurate, and one shall introduce more advanced techniques to sum
up the infinite series.

The idea of the classical Ewald summation is to separate the series into long-range
smooth parts and short-range singular parts. The conditional convergence due to the
long-range, but smooth, parts can be dealt with from the Fourier side. To describe
the details, one first introduces the error function

erf(x) :=
2\surd 
\pi 

\int x

0

exp( - u2)du

and the error complementary function is erfc(x) := 1 - erf(x). Clearly, the Coulomb
kernel can be written as

1

r
=

erf(
\surd 
\alpha r)

r
+

erfc(
\surd 
\alpha r)

r

for any positive constant \alpha , and the potential energy (2.3) can be decomposed as
U := U1 + U2 with

U1 =
1

2

\sum 
\bfitn 

\prime 
\sum 
i,j

qiqj
erf(

\surd 
\alpha | \bfitr ij + \bfitn L| )

| \bfitr ij + \bfitn L| 
,(2.4)

U2 =
1

2

\sum 
\bfitn 

\prime 
\sum 
i,j

qiqj
erfc(

\surd 
\alpha | \bfitr ij + \bfitn L| )

| \bfitr ij + \bfitn L| 
.(2.5)
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B940 SHI JIN, LEI LI, ZHENLI XU, AND YUE ZHAO

The sum in U2 now converges absolutely and rapidly, and one can truncate it to
simplify the computation. The sum in U1 still converges conditionally in spite of the
charge neutrality condition, but since the kernel is smooth, the summation can be
treated nicely in the Fourier domain. Define the Fourier transform:

\widetilde f(\bfitk ) := \int 
\Omega 

f(\bfitr )e - i\bfitk \cdot \bfitr d\bfitr 

with \bfitk =2\pi \bfitm /L and\bfitm \in \BbbZ 3. The inverse transform gives f(\bfitr )= (1/V )
\sum 

\bfitk 
\widetilde f(\bfitk )ei\bfitk \cdot \bfitr .

Then, U1 is expressed as (see [18, Chap. 12]),

U1 =
2\pi 

V

\sum 
\bfitk \not =0

1

k2
| \rho (\bfitk )| 2e - k2/4\alpha  - 

\sqrt{} 
\alpha 

\pi 

N\sum 
i=1

q2i ,(2.6)

where k = | \bfitk | and \rho (\bfitk ) is given by

\rho (\bfitk ) :=

N\sum 
i=1

qie
i\bfitk \cdot \bfitr i ,(2.7)

which can be viewed as the conjugate of the Fourier transform of the charge density.
The divergent \bfitk = 0 term is usually neglected in simulations to represent that the
periodic system is embedded in a conducting medium which is essential for simulating
ionic systems.

By inspection of the expressions above, we may take truncations in both the real
and frequency domains. In particular, picking the real space and the reciprocal space
cutoffs

rc := s/
\surd 
\alpha , kc := 2s

\surd 
\alpha ,(2.8)

one then has (see [32])

U =
2\pi 

V

\sum 
0<k\leq kc

1

k2
| \rho (\bfitk )| 2e - k2/4\alpha  - 

\sqrt{} 
\alpha 

\pi 

N\sum 
i=1

q2i

(2.9)

+
1

2

\sum 
| \bfitr ij+\bfitn L| \leq rc

qiqj
erfc(

\surd 
\alpha | \bfitr ij + \bfitn L| )

| \bfitr ij + \bfitn L| +\scrO 

\Biggl( 
Qe - s2

s2
(

s\surd 
\alpha L3

)
1
2

\Biggr) 
=: \widetilde U1 + \widetilde U2 +\scrO (\cdot ),

where Q :=
\sum N

i=1 q
2
i ,
\widetilde U1 is defined by the sum of the first two terms, and \widetilde U2 corre-

sponds to the third term. The density of particles in the real space \rho r and the density
of frequencies \rho f in the reciprocal space are given respectively by

\rho r =
N

L3
and \rho f =

\biggl( 
L

2\pi 

\biggr) 3

.(2.10)

The number of interacting particles to be considered for a given particle is thus

Nr :=
4\pi 

3
r3c\rho r =

4\pi s3N

3
\surd 
\alpha 
3
L3

,

yielding total pairs Np = (4\pi /3)s3N2/(
\surd 
\alpha L)3. The number of frequencies to be

considered is Nf = (4\pi /3)k3c\rho f = (4/3\pi 2)(sL
\surd 
\alpha )3. The total work to compute \widetilde U1
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RANDOM BATCH EWALD METHOD B941

is thus Tf \sim NfN since the computation of \rho (\bfitk ) needs \scrO (N) operations. The total

work to compute \widetilde U2 is Tr \sim Np. To optimize the calculation, one needs to balance
these two parts of works, thus Np \sim NfN . Hence

\surd 
\alpha \sim N1/6/L is chosen to balance

the costs between the real and frequency domains. This then yields the total number
of pairs Np = \scrO (N3/2), and the number of frequencies to be considered is given by
Nf = \scrO (N1/2) so that the complexity in the frequency part is Tf = \scrO (N3/2). Hence,
the total complexity per iteration is \scrO (N3/2) for the energy computation.

The computation of force can be done directly using

\bfitF i =  - \nabla \bfitr i
U =  - 

\sum 
\bfitk \not =0

4\pi qi\bfitk 

V k2
e - k2/(4\alpha )Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))(2.11)

 - qi
\sum 
j,\bfitn 

\prime qjG(| \bfitr ij + \bfitn L| ) \bfitr ij + \bfitn L

| \bfitr ij + \bfitn L| 
=: \bfitF i,1 + \bfitF i,2,

where we recall \bfitr ij = \bfitr j  - \bfitr i, pointing toward particle j, and

G(r) :=
erfc(

\surd 
\alpha r)

r2
+

2
\surd 
\alpha e - \alpha r2

\surd 
\pi r

.

Note that the force \bfitF i,1 is bounded for small \bfitk . In fact, k \geq 2\pi /L, so V k is not small.
Again, we are going to take the truncations as shown in (2.8). With the choice\surd 

\alpha \sim N1/6/L, there are Nf = \scrO (N1/2) frequencies to consider. Note the \rho (\bfitk )
computed can be used for all i, so the complexity for computing the forces \bfitF i,1 for
all i = 1, . . . , N is \scrO (N3/2). Since there are \scrO (N1/2) particles to consider for each
i, the complexity for computing the forces \bfitF i,2 for all i = 1, . . . , N is also \scrO (N3/2).
The total complexity per iteration is thus \scrO (N3/2).

It is remarked that the PPPM [38, 13] is a fast way to compute the Ewald sum
using the FFT. The PPPM chooses parameter \alpha such that

\surd 
\alpha \sim N1/3/L. Using the

cutoffs (2.8), the number of frequencies to be considered and the number of particles
in real space for a given particle are given respectively by

Nf = \scrO (N) and Nr = \scrO (1).(2.12)

Hence, to compute the force, the complexity corresponding to the summation of all
frequency components is\scrO (N \cdot Nf ) = \scrO (N2) in the direct Ewald summation. To speed
up the summation in the Fourier space, one meshes the simulation box, assigns charges
on the grid by interpolation, and then takes advantage of the FFT to obtain \rho (\bfitk ) so
that the potential can be computed with \scrO (N logN) complexity. The potential and
forces at the particle locations are then obtained by further interpolation and some
numerical difference schemes. Hence, the complexity per iteration is \scrO (N logN) for
the PPPM.

3. The random batch Ewald. We now aim to develop the stochastic molecular
dynamics using the idea of random minibatch. The implementation of minibatch (i.e.,
finding suitable cheap unbiased stochastic approximation) depends on the specific
applications. For interacting particle systems in [29], the strategy is the random
grouping of particles. By inspection of the Ewald summation ((2.9) and (2.11)), we

found that e - k2/(4\alpha ) is summable so that it can be normalized to form a probability
distribution. Hence, this allows us to do the importance sampling in the Fourier space.
This leads to a random batch strategy for the simulations of molecular dynamics.
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B942 SHI JIN, LEI LI, ZHENLI XU, AND YUE ZHAO

3.1. The algorithm. Let us consider the factor e - k2/(4\alpha ) within the first term
in (2.11). Denote the sum of such factors by

S :=
\sum 
\bfitk \not =\bfzero 

e - k2/(4\alpha ) = H3  - 1(3.1)

with

H :=
\sum 
m\in \BbbZ 

e - \pi 2m2/(\alpha L2) =

\sqrt{} 
\alpha L2

\pi 

\sum 
m\in \BbbZ 

e - \alpha m2L2

.(3.2)

Here, S is the sum for all nonzero three-dimensional vectors \bfitk . The number H is the
one for one-dimensional sums. The second equality in (3.2) is obtained by the Poisson
summation formula [3, 12]. Equation (3.2) can be simply truncated at m = \pm 1 to
obtain an approximation,

H \approx 
\sqrt{} 

\alpha L2

\pi 

\Bigl( 
1 + 2e - \alpha L2

\Bigr) 
,

using the rapid convergence of the series because the typical setup in our simulations
holds \alpha L2 \gg 1. One can improve the accuracy by using more terms if needed. Then,
we have the exact expression for the probability

P\bfitk := S - 1e - k2/(4\alpha ),(3.3)

which, with \bfitk \not = 0, is a discrete Gaussian distribution and can be sampled efficiently
as detailed below.

We apply the Metropolis--Hastings (MH) algorithm (see [24] for details) to sample
from the discrete distribution

P(m) \sim H - 1e - (2\pi m/L)2/4\alpha .(3.4)

Doing this sampling procedure for three independent experiments will generate the
components ki (i = 1, 2, 3) of \bfitk as \bfitk = 2\pi \bfitm /L. The samples with k1 = k2 = k3 = 0
will be discarded. In the MH procedure, the proposal m\ast is generated by first draw-
ing x\ast \sim \scrN (0, \alpha L2/(2\pi 2)), the normal distribution with mean zero and variance
\alpha L2/(2\pi 2). One then sets m\ast = round(x\ast ), which is accepted with probability
q(m\ast | m) in the MH algorithm, and clearly the probability is given by the follow-
ing explicit expression:

q(m\ast | m) =

\int m\ast +1/2

m\ast  - 1/2

\sqrt{} 
\pi 

\alpha L2
e - \pi 2x2/\alpha L2

dx

=

\left\{           
erf

\Biggl( 
1/2\sqrt{} 
\alpha L2/\pi 2

\Biggr) 
, m\ast = 0,

1

2

\Biggl[ 
erf

\Biggl( 
| m\ast | + 1/2\sqrt{} 

\alpha L2/\pi 2

\Biggr) 
 - erf

\Biggl( 
| m\ast |  - 1/2\sqrt{} 

\alpha L2/\pi 2

\Biggr) \Biggr] 
, m\ast \not = 0.

(3.5)

Since P(m\ast ) \approx q(m\ast | m), the acceptance rate is very high, leading to small errors in
this sampling procedure. In practical implementation, one can precompute q(m\ast | m) \equiv 
\=q(m\ast ) for a large enough range of m\ast values to speed up the sampling procedure.
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RANDOM BATCH EWALD METHOD B943

We now consider the calculation of the forces in (2.11) using the random minibatch
strategy. At each step, one picks a batch size p, which is of \scrO (1), and draws p
frequencies \bfitk \ell , 1 \leq \ell \leq p, independent and identically distributed (i.i.d.) from the
discrete distribution P\bfitk by the MH sampling method above. The force \bfitF i,1 in (2.11)
is then approximated by the following random variable:

\bfitF i,1 \approx \bfitF \ast 
i,1 :=  - 

p\sum 
\ell =1

S

p

4\pi \bfitk \ell qi
V k2\ell 

Im
\bigl( 
e - i\bfitk \ell \cdot \bfitr i\rho (\bfitk \ell )

\bigr) 
.(3.6)

In the molecular dynamics simulations, we use this stochastic force \bfitF \ast 
i,1 which is

unbiased for the force calculation to replace \bfitF i,1. The resulting molecular dynamics
is a much cheaper version of the Ewald summation; this stochastic method is the
RBE.

Of course, we need to update the p samples after each time iteration. Suppose
we have picked a step size \Delta t and defined the time grid tn = n\Delta t. Then, we renew
the batch of frequencies at each time grid point tn. In real simulations, one will also
add the van der Waals potential such as the Lennard-Jones potential so that positive
and negative charges will not merge. The force on each particle is then calculated
by summing up the contributions of real and Fourier parts, and the Lennard-Jones
force (and other forces such as chemical bonds if any). Then, one integrates Newton's
equations (2.2) to obtain the position and velocity of the particle in the next time
step. Algorithm 3.1 shows one possible such molecular dynamics method using the
RBE with some appropriate thermostat coupled to a heat bath (see section 3.3 for
discussions).

In the case of the leapfrog scheme (equivalent to the velocity-Verlet method) and
the Andersen thermostat, the loop step in Algorithm 3.1 is as follows.
(1) Choose p frequencies from \scrK without replacement; calculate real and Fourier parts

of the electrostatic Coulomb force using the RBE (3.6), and other forces such as
the Lennard-Jones forces.

(2) Update the position and velocity of each particle using the following scheme for
n \geq 1:

\bfitv 
n+1/2
i = \bfitv 

n - 1/2
i +

1

mi
\bfitF n
i \Delta t,

\bfitr n+1
i = \bfitr ni + \bfitv 

n+1/2
i \Delta t.

(Here, \bfitv 
1/2
i can be obtained via the Euler scheme.)

Algorithm 3.1 Random-batch Ewald.

1: Choose \alpha , rc, and kc (the cutoffs in real and Fourier spaces, respectively), \Delta t, and
batch size p. Initialize the positions and velocities of charges \bfitr 0i ,\bfitv 

0
i for 1 \leq i \leq N .

2: Sample a sufficient number of nonzero \bfitk \sim e - k2/(4\alpha ) by the MH procedure to
form a set \scrK .

3: for n in 1 : N do
4: Integrate Newton's equations (2.2) for time \Delta t with an appropriate integration

scheme and some appropriate thermostat. The Fourier part of the Coulomb forces
is computed using the RBE force (3.6) with the p frequencies chosen from \scrK in
order.

5: end for
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B944 SHI JIN, LEI LI, ZHENLI XU, AND YUE ZHAO

(3) Update the velocity \bfitv 
n+1/2
i of each particle with probability \nu \Delta t by resampling

\bfitv i from the normal distribution \scrN (0, I3T/mi).
We now analyze the complexity of the RBE method per time step. Similar to the

strategy in the PPPM, we may choose \alpha such that the time cost in real space is cheap
and the computation in the Fourier space is then accelerated. Comparing between
the RBE and the PPPM, the only difference is that the PPPM uses FFT and the
RBE uses a random minibatch idea to speed up the computation in the Fourier space.
Hence, we make the same choice,

\surd 
\alpha \sim N1/3

L
= \rho 1/3r ,

which is inverse of the average distance between two numerical particles. The com-
plexity for the real space part is \scrO (N \cdot Nr) = \scrO (N). Using the random batch approx-
imation (3.6) which is a certain Monte Carlo method for approximating the force, the
number of frequencies to be considered is then reduced to

Nf = \scrO (p).(3.7)

If we choose the same batch of frequencies for all forces (3.6) (i.e., using the same \bfitk \ell ,
1 \leq \ell \leq p for all \bfitF \ast 

i,1) in the same time step, since the computed numbers \rho (\bfitk \ell ) can
be used for all particles, the complexity per iteration for the frequency part is reduced
to NfN = \scrO (pN). This implies that the RBE method has linear complexity per time
step if one chooses p = \scrO (1).

3.2. Consistency and stability. In this subsection, we provide some theoretic
evidence for the consistency and stability of the RBE algorithm in order to demon-
strate its validity.

According to (3.3), we find that the long wave (low frequency) modes are more
likely to be chosen in the random approximation. Since the long wave modes are more
important for the periodic effects, this importance sampling strategy could be more
effective compared with the uniform sampling across the modes considered. This
importance sampling strategy could also possibly reduce the variance so that the
random method is more stable. We now provide some theoretic evidence to explain
why this method works.

We define the fluctuation in the random batch approximation for the Fourier part
of the force on particle i by

\bfitchi i := \bfitF \ast 
i,1  - \bfitF i,1.(3.8)

The expectation and variance of the fluctuation can be obtained by direct calculation,
which is given by Proposition 3.1.

Proposition 3.1. The fluctuation in force \bfitchi i has zero expectation,

\BbbE \bfitchi i = 0,(3.9)

and that the variance is

\BbbE | \bfitchi i| 2 =
1

p

\left(  \sum 
\bfitk \not =0

(4\pi qi)
2S

V 2k2
e - k2/(4\alpha )| Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))| 2  - | \bfitF i,1| 2

\right)  .(3.10)
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RANDOM BATCH EWALD METHOD B945

The first claim in Proposition 3.1 implies that the random approximation is con-
sistent or unbiased,

\BbbE \bfitF \ast 
i,1 = \bfitF i,1,(3.11)

where \BbbE means expectation in probability theory (or the ensemble average in the
physics community). The second claim says that

\BbbE | \bfitchi i| 2 \lesssim 
1

p

S

V
U1 =

1

p
\rho rU1.

If the density \rho r = N/V is not very big, we expect our stochastic algorithm to work

well. Since for k \gg 
\surd 
\alpha , the factor e - k2/(4\alpha ) is very small and contributes little to

the variance in (3.10). Let us now consider the terms with k \lesssim 
\surd 
\alpha . In the dilute

solution regime where the Debye--H\"uckel (DH) theory (see [34] and also Appendix A)
is applicable, we expect that | Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))| \approx 0. That means the variance is nearly
zero. Of course, due to the deviation from the DH theory by thermal fluctuation, this
cannot be zero. We expect that | Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))| does not change too much by the
thermal fluctuation for k \ll a - 1 where a is the diameter of the ions (see Appendices
A and B). Clearly, if

\surd 
\alpha \ll a - 1, the frequencies we consider then satisfy k \ll a - 1.

We then can safely bound
| Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))| \leq C.

In Appendix B, it is computed under this assumption that

\BbbE | \bfitchi i| 2 \lesssim 
1

p
\rho 4/3r ,(3.12)

which verifies that the variance of the random force is indeed controlled if the density
is not big.

The following result indicates that random minibatch methods can be valid for
capturing the finite time dynamics (we take the Langevin thermostat for illustration;
see section 3.3 for discussions).

Theorem 3.2. Let (\bfitr i,\bfitv i) be the solutions to

d\bfitr i = \bfitv i dt,

mid\bfitv i =
\bigl[ 
\bfitF i

\bigl( 
\{ \bfitr j\} Nj=1

\bigr) 
 - \gamma \bfitv i

\bigr] 
dt+

\sqrt{} 
2\gamma /\beta d\bfitW i,

where \{ \bfitW i\} are i.i.d. Wiener processes. Let (\widetilde \bfitr i, \widetilde \bfitv i) be the solutions to

d\widetilde \bfitr i = \widetilde \bfitv i dt,

mid\widetilde \bfitv i =
\bigl[ 
\bfitF i

\bigl( 
\{ \widetilde \bfitr j\} Nj=1

\bigr) 
+ \bfitchi i  - \gamma \widetilde \bfitv i

\bigr] 
dt+

\sqrt{} 
2\gamma /\beta d\bfitW i,

with the same initial values as (\bfitr i,\bfitv i). Suppose that masses mi for all i are bounded
uniformly from above and below. If the forces \bfitF i are bounded and Lipschitz and
\BbbE \bfitchi i = 0, then for any T > 0, there exists C(T ) > 0 such that\Biggl( 

\BbbE 

\Biggl[ 
1

N

\sum 
i

\bigl( 
| \bfitr i  - \widetilde \bfitr i| 2 + | \bfitv i  - \widetilde \bfitv i| 2

\bigr) \Biggr] \Biggr) 1/2

\leq C(N,T )
\surd 
\Lambda \Delta t,

where \Lambda is an upper bound for maxi(\BbbE | \bfitchi i| 2).
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B946 SHI JIN, LEI LI, ZHENLI XU, AND YUE ZHAO

Similar proofs for interacting particle systems can be found in [30, 35, 36], and we
omit the proof for the claims here. The constant C(N,T ) can be made independent
of N in the mean field regime [30]. Clearly, due to the assumption that \bfitF i is bounded
and Lipschitz, the claims above are not helpful for our problem. Anyhow, it can
give us some insight how random batch type methods work. Clearly, for a given
configuration, a force computed using the RBE is a random approximation to the
true force. A single-step evaluation of such random force definitely has no accuracy
compared to the true force. The intuition why such methods work is that the effects of
random forces accumulate in time. Since the random forces are unbiased, the random
errors will roughly cancel out over time. This ``law of large numbers"" type mechanism
in time then makes the random method work. The error bound above is the square
root of variance multiplied by \Delta t, which is the typical error bound given by the central
limit theorem. Hence, our method is not aiming at computing the forces correctly for a
fixed configuration. Instead, we attempt to obtain the evolution of the configurations
and the equilibrium distribution with an acceptable error control. We use the RBE
method only to speed up molecular dynamics simulations and obtain configurations,
and then use these configurations to compute the true energies and stress tensor (and
pressure) using their definitions, without random batch approximation.

A question that may arise is whether one should wait for too many iterations
before the ``law of large number"" mechanism takes effect to capture the long time
properties (i.e., whether the random batch type methods will delay the mixing time
for the equilibria too much). In [30, 36], it has been shown that when some external
confining fields are present, the mixing time for convergence to the global equilibrium
with random batch is roughly the same as the one without random batch, as the
error controls are uniform in time. When there are no helping external fields such as
the cases we are considering here in a periodic box, whether random batch will de-
lay the convergence to the thermal equilibrium is still a theoretically open question.
However, when a heat bath is present, if the number of particles or modes is statisti-
cally large so that a few of them can capture the significant statistical properties, the
few chosen representatives may give the correct statistical properties and the random
batch methods may capture the correct macroscopic quantities without looping for
too many iterations. Hence, we believe the RBE method can capture the long time
statistical properties for the many-body systems in contact with a heat bath, without
increasing the iterations of simulation too much.

As we have seen, the variance of the fluctuation is always multiplied by the step
size \Delta t in the error estimates:

\surd 
\Lambda \Delta t for the error of trajectories or \Lambda \Delta t for the

distributions (see [30] for the weak error estimates regarding first order systems).
Hence, the variance somehow measures the stability of the random methods and the
boundedness of \BbbE | \bfitchi i| 2 is important for the convergence of the random algorithms.
Though the variance is controlled for the RBE, rigorous proof for this method is
challenging as the field \bfitF i,2 is singular. Building van der Waals potential into the
system can prevent the particles getting too close so the singularity of \bfitF i,2 might not
be seen, but the rigorous justification of convergence could still be very hard. We will
leave the rigorous mathematical analysis for future exploration.

3.3. Discussion on the thermostats. To couple with the heat bath so that the
temperature is preserved near the desired value, typical ways include the Andersen
thermostat and the Langevin thermostat. Another thermostat used in molecular
dynamics in a deterministic approach is the famous Nos\'e--Hoover thermostat [18,
Chap. 6].
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RANDOM BATCH EWALD METHOD B947

In the Andersen thermostat, one assumes the collision frequency between the
particle and the heat bath is \nu . Then, the time between two collisions for a particular
particle satisfies the exponential distribution. Hence, the probability that a particle
does not collide with the heat bath during [tn, tn + \Delta t) is 1  - exp( - \nu \Delta t) \approx \nu \Delta t.
Hence, in the Andersen thermostat, at each time grid tn, for each particle one resets
the velocity with probability \nu \Delta t. The new velocity is sampled from the Maxwell
distribution with temperature T . In (2.2), d\bfiteta i corresponds to such resetting noise to
model the collision. It is this new velocity that guarantees the correct temperature.
Of course, the larger \nu is, the better the temperature can be kept around the desired
value. However, too large a \nu value will bring some unphysical effects [41, 27, 18].

In the Langevin thermostat, the interaction with the heat bath is added into the
equation directly:

mid\bfitv i = (\bfitF i  - \gamma \bfitv i)dt+
\sqrt{} 

2\gamma /\beta d\bfitW i.

In other words, in (2.2), d\bfiteta i =  - \gamma \bfitv idt +
\sqrt{} 
2\gamma /\beta d\bfitW i. The term  - \gamma \bfitv idt is the

friction and
\sqrt{} 
2\gamma /\beta d\bfitW i is the thermal noise or the fluctuation, both arising from the

collision with the heat bath. The fluctuation-dissipation relation requires the strength
of the noise to be

\sqrt{} 
2\gamma /\beta so that the system can tend to the correct temperature

T = \beta  - 1 (the Boltzmann constant kB is taken to be 1 for the reduced units). As
in the Andersen thermostat, increasing \gamma can keep the temperature of the system
around T better. However, since the temperature enters in through the dynamics,
the Andersen thermostat seems to behave better for the temperature control than the
Langevin dynamics.

The Nos\'e--Hoover thermostat uses a Hamiltonian for an extended system of N
particles plus an additional coordinate s [41, 27]:

\scrH NH =

N\sum 
i=1

| \~\bfitp i| 2

2mis2
+ U(\{ \~\bfitr i\} ) +

p2s
2Q

+ L
ln s

\beta 
.

Here, \~\bfitp i is the momentum of the ith particle and L = 3N + 1. The microcanonical
ensemble corresponding to this Hamiltonian reduces to the canonical ensemble for
the real variables \bfitr i = \~\bfitr i,\bfitp i = \~\bfitp i/s. Hence, one may run the following deterministic
ODEs, which are the Hamilton ODEs under \scrH NH in terms of the so-called real vari-
ables with a time scaling and L = 3N (the choice L = 3N is due to the time rescaling;
see [18] for more details),

\.\bfitr i =
\bfitp i

mi
,

\.\bfitp i =  - \nabla \bfitr iU  - \xi \bfitp i,

\.\xi =
1

Q

\Biggl( \sum 
i=1

| \bfitp i| 2

mi
 - 3N

\beta 

\Biggr) 
.

The time average of the desired quantities such as those in (4.3) will be the correct
canonical ensemble average. As one can see, when the temperature of the system, de-
fined by

\sum N
i=1 mi| \bfitv i| 2/(3NkB), is different from T , the extra term  - \xi \bfitp i will drive the

system back to temperature T , and thus it may give better behaviors for controlling
the temperature.

As we have seen, the random batch approaches will bring in extra variance term.
Hence, there is a numerical heating effect that increases the temperature by \Lambda \Delta t.
Due to this reason, the RBE is not suitable for long time simulation under NVE
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ensemble if without an appropriate conservation scheme for time integration, but
it should be good for NVT (as we do in this paper) and other simulations with
thermostats. To reduce this artificial temperature, one may on one hand reduce \Lambda 
by using bigger batch size or carefully designed importance samplings. The RBE
proposed in this work is an importance sampling approach. Also, one may mimic
the simulated annealing idea [46, 26, 28] to decrease \Delta t, which has also been used
in the stochastic gradient Langevin dynamics. On the other hand, using a suitable
thermostat may drive the temperature back to T better. In principle, Nos\'e--Hoover
is the most effective for preserving temperature. If the frequency \nu is chosen suitably
in the Andersen thermostat, the temperature can be preserved well too. As we see in
section 4, if \nu and batch size p are slightly bigger and the simulated annealing approach
is used, the Andersen thermostat is already enough for the numerical examples we
consider. Due to its simplicity, we adopt the Andersen thermostat in this paper to
illustrate that the RBE works, while leaving the Nos\'e--Hoover thermostat for our
future development for large systems.

4. Application examples. In this section, we consider two typical application
examples to validate the accuracy and efficiency of the proposed method. The first
example is the charge distribution in terms of charge-charge correlation functions in
an electrolyte solution with the primitive model where the DH theory can be used
to provide a theoretical prediction. The second example is a much harder example
with many different species of ions (including a macroion) where the charge reversal
phenomenon for an electric double layer near the surface of a colloidal particle is
studied. Both examples indicate that the proposed method is effective and efficient.
The calculations are performed in a Linux system with Intel Xeon Scalable Cascade
Lake 6248@2.5GHz, 1 CPU core, and 4 GB memory.

4.1. Charge correlation functions in electrolyte. In this example, we con-
sider pure electrolyte monovalent binary ions. The primitive model of the electrolyte
is employed, which describes the solvent as mobile ions of uniform sizes embedded in
a medium of constant permittivity under a given temperature. The total potential
energy of the system is composed of the Coulomb interactions and the short-range van
der Waals interaction. The latter is modeled by the shifted Lennard-Jones potential
expressed as

VLJ(r) =

\left\{     4\varepsilon 

\Biggl[ \biggl( 
\sigma 

r  - roff

\biggr) 12

 - 
\biggl( 

\sigma 

r  - roff

\biggr) 6
\Biggr] 
+ Vshift if r  - roff < Rc

0 otherwise,

(4.1)

where roff = (di + dj)/2 - \sigma and di and dj are the diameters of two particles, respec-
tively, and \sigma is a positive constant. Vshift is taken such that the potential becomes
zero when r  - roff = Rc.

All the quantities are provided in reduced units (see [18, sect. 3.2]). The diameter
of each ion is chosen as di \equiv 0.2, the reduced temperature is T = 1.0, and the reduced
dielectric constant is \varepsilon = 1/\pi so that the electric potential of a charge q is given
by \phi (r) = q/4r. For the Lennard-Jones potential in this example, we choose the
parameters as \sigma = 0.2, Rc = 4.0, and \varepsilon = 1. We fix the particle density to be
constant N/L3 = 0.3. Correspondingly, the inverse Debye length in the DH theory
(see Appendix A) is \kappa \approx 0.9708. We run molecular dynamics simulations to prepare
the configuration samples and by taking average of these samples to obtain the charge
distribution in terms of charge-charge correlation functions,
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RANDOM BATCH EWALD METHOD B949

\rho (r) = g++(r) - g+ - (r),(4.2)

where g++ and g+ - are cation-cation and cation-anion pair correlation functions
between ions. By the DH theory, the radial distribution of net charge satisfies the
following linear relation:

ln(r| \rho (r)| ) \approx  - 0.9708r  - 2.5735, r \gg 0.2.

Here, due to the setting of the Lennard-Jones potential, we roughly have the parameter
a in Appendix A as

a =
1

2
(d1 + d2) - \sigma + \sigma = 0.2,

and the formula above should be accurate for r \gg a.
In the first numerical experiment, we take the length of the periodic box to be

L = 10.0 and the number of monovalent ions N = 300 so that cations and anions
both have 150 particles. The Andersen thermostat is adopted with frequency \nu = 3.
The parameters are chosen as in Table 1, where the nc column for the RBE lists batch
size p as no frequency cutoff is introduced. The parameters are chosen so that the
estimated relative force errors for the Ewald method and PPPM are about 10 - 4 using
error formula in [32] (the parameters are set automatically in LAMMPS software).
As discussed already, we choose the same \alpha value for the RBE as that in the PPPM.
The batch size p in the RBE is chosen through a convergence test and p = 10 gives
comparable results already. The results by the RBE, classical Ewald, and PPPM
methods in comparison with those predicted by the DH theory are shown in Figure 1.
It shows that the error by the RBE is comparable to those by the Ewald, and PPPM
methods. As Table 1 indicates, the computational time of the RBE is about 1/5 of
that for the Ewald method, 2/5 of that for the PPPM method to achieve comparable
results although the system size is not very large.

We also compute fluctuations of the potential energy (per particle) Epot and
pressure P for the three methods to validate the correctness of the configurations.
These two quantities are defined by

Epot =
1

N
(ECoul + ELJ),

P =
2

3V

\Biggl( 
N\sum 
i=1

1

2
mi\bfitv 

2
i  - vir

\Biggr) 
,

(4.3)

where vir = (1/2)
\sum 

i<j \bfitr ij \cdot \bfitF ij is the virial and ECoul is calculated as (2.9). Pressure
is calculated by using the Clausius virial theorem with kinetic energy and virial tensor.
We recall \bfitr ij = \bfitr j  - \bfitr i, and \bfitF ij is the force of particle j acting on particle i. The
potential energy per particle and the average pressure are calculated in LAMMPS
using the virial formula [8]. In Figure 2, the data of every 100 time steps are plotted

Table 1
Parameters and computational time for the Ewald, PPPM, and RBE results with N = 300.

The RBE samples from all frequencies and it shows p value in the nc column.

\alpha rc nc steps Time (s)
Ewald 0.12 8.0 7 1e6 6067
PPPM 0.55 4.0 15 1e6 3120
RBE 0.55 4.0 p = 10 1e6 1267
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Fig. 1. Charge density predicted by simulations using the RBE, classical Ewald, and PPPM
methods for L = 10 and N = 300.
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Fig. 2. Potential energy per particle and pressure by simulation time using the RBE, classical
Ewald, and PPPM methods for L = 10 and N = 300.

for the time up to t = 2000. We calculate the average data of these quantities, Epot

and P . The relative errors of the RBE compared to the PPPM are both less than
1\%.

We increase the size of the system while keeping \rho r = N/L3 = 0.3 constant to
measure the accuracy as well as the computational time. In particular, we choose N =
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300, 600, 1200, and 2400, respectively, and the length L is computed correspondingly.
In Figure 3, we show the simulation results for the charge distribution with p = 10
for the RBE method. Clearly, the simulation results of the RBE method still agree
well with the DH theory for larger r. Particularly, in the embedded subplot we can
observe that the linear relation holds up to the error tolerance e - 6 \approx 2.5 \times 10 - 3,
which confirms the accuracy of the RBE method.

Next, we compute the relative accuracy of the potential energy for the RBE
method against the PPPM for different densities. In particular, we fix L = 10 and con-
sider N = 100, 300, 1000, and 4000, respectively (correspondingly, \rho r = 0.1, 0.3, 1.0,
and 4.0). The parameters used in the calculations are shown in Table 2. Note that
the RBE method does not have nc parameter and instead we choose the batch size
p = 10, 20, 50, and 100, respectively. The time step is again \Delta t = 0.002. The potential
energies are computed using 104 configurations after equilibrium, sampled every 100
steps. The results are shown in Table 3. Clearly, if we increase the density, we need
to use larger batch size to get acceptable accuracy. The RBE with fixed batch size
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Fig. 3. Charge density simulated by the RBE method with increasing system sizes for constant
density. The batch size is p = 10 for all N .

Table 2
Parameters for the PPPM and RBE, where nc is only for the PPPM.

\alpha rc nc

N = 100 0.55 4.0 10
N = 300 0.55 4.0 10
N = 1000 1.1 3.0 13
N = 4000 2.5 2.0 18
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Table 3
Relative error of potential energy for the RBE method against the PPPM method with different

densities and batch sizes.

\rho r p = 10 p = 20 p = 50 p = 100
0.1 0.15\% 0.13\% 0.13\% 0.08\%
0.3 0.10\% 0.08\% 0.04\% 0.09\%
1.0 0.66\% 0.18\% 0.11\% 0.04\%
4.0 7.83\% 2.38\% 0.71\% 0.31\%
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Fig. 4. CPU time per step for the classical Ewald, PPPM, and RBE methods with increasing N .

p will have a bigger error if the density is increased. Anyhow, even when \rho r = 4.0,
using p = 100 seems enough to get acceptable results.

Last, we compare the efficiency for the classical Ewald, PPPM, and RBE methods.
In Figure 4 the computational times for the three methods are shown for system size
up to N = 106, where the solid lines present the linear fitting of the data in log-
log scale. The results agree with the fact that the complexity per time step for the
Ewald summation is of \scrO (N3/2), while the complexity per time step for the RBE
is only of \scrO (N) and the complexity per time step for the PPPM method is a little
larger than \scrO (N). The cost of the RBE is small even when one chooses batch size
p = 100. The RBE has the best efficiency over a whole range of particle numbers,
clearly demonstrating the attractive performance of the algorithm. We remark that
a systematic study of the efficiency of the method will be performed in our next work
for large-scale all-atom systems, in particular, the comparison with the performance
of the PPPM.
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4.2. Charge inversion in salty environment. When a highly charged col-
loid is in a solution that contains multivalent counterions, its charge can become
overcompensated due to the strong ion correlation between counterions, leading to
the charge inversion (or charge reversal) phenomenon. The many-body phenome-
non has attracted much attention in recent decades from both experimental [4, 43]
and theoretical and simulation studies [23, 5, 40, 47, 33, 19], since the charge inver-
sion implies that the effective charge of the colloid-microion complex is abnormally
inverted, opposite to the common intuition of understanding from the traditional
Poisson--Boltzmann theory.

We follow the setup of Lenz and Holm [33] and consider a highly charged colloid in
a solution of asymmetric 3:1 salt with additional 1:1 salt. The colloid has a spherical
geometry of diameter d0 = 100\r A with a point charge Q0 =  - 300e0 at its center. Here
e0 = 1.6 \times 10 - 19C is the elementary charge. It is placed at the middle of a cubic
box with the PBC. The side length of the periodic box is set to L = 225.8\r A (the
volume corresponds to a spherical cell of radius R0 = 140\r A). Initially, a total of 200
trivalent counterions, 300+nsalt monovalent coions, and nsalt monovalent counterions
are randomly distributed within the box. These ions have uniform size with a diameter
of 4\r A. Clearly, the system satisfies the charge neutrality. The trivalent counterions
correspond to the concentration of c(+3) = 30 mM (i.e., millimole per liter).

In this example,we implement the methods by the self-written molecular dynam-
ics code with C++. We focus on the accuracy comparison and investigate whether or
not the RBE can get the correct results with less effort for this relatively complicated
many-body phenomenon. Due to the strong charge of the colloid, we take the classical
Ewald results as the reference solution. In the simulations, we consider two concen-
trations for the additional 1:1 salt, i.e., csalt = 0mM and csalt = 196mM, where the
latter case corresponds to the number of particles nsalt = 1300 for each ionic species.
The temperature is set to the room temperature T\ast = 298K, and the Bjerrum length
\ell B is determined by \ell B = e20/(4\pi \varepsilon 0\varepsilon rkBT\ast ), where \varepsilon r = 78.5 is the relative dielectric
constant of water and \varepsilon 0 is the vacuum permittivity, resulting in \ell B = 7.1\r A. The van
der Waals interaction is again taken to be part of the Lennard-Jones potential (4.1),
where Rc = 21/6\r A, \sigma = 1\r A, and \varepsilon = 1kBT\ast . Note that roff is different for different
pairs, e.g., roff = 52\r A between the colloid and an microion, and roff = 4\r A between
microions.

To do simulations, we scale all lengths by L\ast = 1\r A, temperature by T\ast = 298K,
and masses by m\ast , the mass of ions which are assumed equal. Then, other quan-
tities can be scaled correspondingly: the energy is scaled by kBT\ast , the velocity by
(kBT\ast /m)1/2, and time by L\ast (m\ast /kBT\ast )

1/2, etc. Consequently, in these reduced
units, the room temperature becomes T = 1, and the Coulomb interaction between
two point charges i and j is given by Uij = \ell Bqiqj/rij , where \ell B is the scaled Bjerrum
length with value 7.1. After we computed the forces using formulas in section 2 or in
section 3, we should multiply the results with \ell B = 7.1 to get the Coulomb forces for
this example.

The molecular dynamics simulations are all performed with the Andersen thermo-
stat, with 1e5 steps for the burn-in phase and 6e5 steps for the sampling to compute
ensemble averages. In the burn-in phase, we choose time step

\Delta tn = 0.01/ ln(1 + n),

where n is the number of time steps motivated by the simulated annealing mentioned
above. In the sampling phase, we choose \Delta t = 0.002. The collision frequency \nu = 10
for csalt = 0 mM, and \nu = 1 for csalt = 196 mM. The reason to use smaller frequency
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for csalt = 196 mM is to decrease the artificial diffusion effect introduced by the
Andersen thermostat.

The settings and running time are shown in Table 4. Clearly, the time consump-
tion of the RBE method is much less (about 1/10 of that for the Ewald method), so
the proposed RBE is efficient. The integrated charge distribution, the total charge
within the radial direction distance, against the distance r from the colloidal center
is plotted in Figure 5. Regarding the effectiveness, as can be seen from the figure,
the RBE can capture the charge reversal phenomenon correctly and obtain accept-
able simulation results. As discussed in Proposition 3.1 and section 3.3, the force
approximation is unbiased, but the randomness results in positive variance leads to
numerical heating and systematic error for the equilibrium distribution. As can be
seen in Figure 5, the overcharging effect is weakened for small batches due to this
numerical heating. The RBE method converges after p \gtrsim 100 and this systematic
error is negligible for the system considered here. The inverted charge (maximum of
the curve) by the RBE when p \gtrsim 100 is in agreement with the Ewald summation and
the literature result [33]. This agrees with the discussion above in sections 3.2--3.3.
Since \nu is smaller for csalt = 196 mM, the ability of temperature control is reduced
and the numerical heating is more obvious for small p values (e.g., p = 20). To re-
solve this, one may consider subtracting the effective temperature due to the random
batch from the desired T value, or using a better thermostat such as the Nos\'e--Hoover
thermostat. These issues will be explored in our subsequent work.

The charge densities of different kinds of ions are shown in Figures 6 and 7 for
c = 0 mM and c = 196 mM, respectively. Clearly, the RBE method can compute
the densities correctly with acceptable accuracy. Again, larger batch size results in

Table 4
Computational time per 1e5 simulation steps. The RBE samples from all frequencies and it

shows p values in the nc column.

\alpha rc nc Time (s)
Ewald (c = 0 mM) 0.0014 90.0 8.7 16698
RBE (c = 0 mM) 0.0072 40.0 p = 100 1167

Ewald (c = 196 mM) 0.0014 90.0 8.7 137217
RBE (c = 196 mM) 0.0072 40.0 p = 100 15258
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Fig. 5. Integrated charge against the distance r from the colloid center when csalt = 0 mM
(left) and 196 mM (right): comparison of the Ewald and RBE methods.
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Fig. 6. Contribution of different ion types to particle density \rho when csalt = 0 mM.
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Fig. 7. Contribution of different ion types to particle density \rho when csalt = 196 mM.

smaller errors. Anyhow, the simulation results seem to be acceptable here for all batch
sizes. For these small systems, the Andersen thermostat can already do a satisfactory
job, and other temperature preserving techniques can be considered for applications
with large systems.

Overall, according to the two numerical examples above, we find that the RBE
method is both accurate and efficient: it can correctly capture the desired physical
phenomena while saving the computational time significantly. We also expect the
RBE to be easy to parallelize and to have good compatibility with a large number of
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cores. This will be tested in our subsequent work. The extra noise introduced by the
random batch can introduce some noticeable numerical heating. One may resolve this
by increasing the batch size p or decreasing the time step size to decrease the variance.
Some more advanced techniques include subtracting the effective temperature increase
or use better thermostats like the Nos\'e--Hoover. Systematic studies of these also will
be in our subsequent work.

5. Conclusions. In summary, we have developed a novel molecular dynamics
method, called the RBE method, for particle systems with long-range Coulomb in-
teraction which needs only \scrO (N) operations in each step. The RBE method benefits
from a random minibatch idea for the calculation of the force component in the Fourier
series together with an importance sampling for the Fourier modes. We have shown
that the algorithm is accurate and efficient by calculating the correlation functions
between ions and the charge inversion near the colloidal surface by using two applica-
tion examples and we demonstrated the promising properties for broader applications
of the algorithm. Besides the Coulomb systems, the RBE method can be extended to
solve other many-body problems such as celestial bodies and complex networks where
the long-range interactions also play important roles.

It is remarked that our exploration of the RBE method so far is limited to a
few aspects and there is much more work to do in the future. If the system is par-
tially periodic in some directions with Dirichlet or dielectric interface conditions in
other directions (e.g., the slab geometries), we believe the extension of our method is
straightforward by introducing techniques developed for such problems (see [45, 37, 39]
and references therein). In this work, we have compared the RBE with the classi-
cal Ewald summation and the PPPM in a single-core machine. In order to further
demonstrate the performance of the algorithm, systematic comparison should be done
with the demonstration on the scalability performance in parallel computing. Also,
the simulations of this work are based on the primitive model of solvent. This model
is simpler by treating water as a continuum medium. This model is very good for the
aim of numerical tests of electrostatic algorithms, but the implementation for all-atom
simulations shall generate much broader interest for practical uses. All these issues
shall be studied in our subsequent works, and some of these studies can be found in
a forthcoming paper [51].

Appendix A. The Debye--H\"uckel theory. Consider an electrolyte solution
with N ions contained in the cubic box with PBCs, which are idealized as hard spheres
of diameter a and carrying charge \pm q. The numbers of anions and cations are both
N/2 to meet electroneutrality condition. Let us fix one ion of charge +q at the origin
\bfitr = 0 and consider the charge distribution around it.

Inside the region 0 < r < a there are no other ions, so the electrostatic potential
satisfies the Poisson equation \varepsilon \nabla 2\phi =  - q\delta (\bfitr ) in this regime, where \varepsilon is the permittiv-
ity of the solution. Outside this region, the charge of the jth species can be described
by the Boltzmann distribution: \rho j(\bfitr ) = qj\rho \infty ,je

 - \beta qj\phi , where j = \pm and q\pm = \pm q,
and \rho \infty ,+ = \rho \infty , - = \rho /2 = N/(2V ). Hence, when r > a,

 - \varepsilon \nabla 2\phi = q\rho \infty ,+e
 - \beta q\phi  - q\rho \infty , - e

\beta q\phi \approx \beta q2\rho \phi ,(A.1)

which is the linearized Poisson--Boltzmann equation. By introducing the parameter
\kappa and Debye length \lambda D by

\kappa \equiv \lambda  - 1
D =

\sqrt{} 
q2\rho 

\varepsilon kBT
,(A.2)
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the solution of the Poisson equation can then be found to be

\phi (r) =

\left\{     
q

4\pi \varepsilon r
 - q\kappa 

4\pi \varepsilon (1 + \kappa a)
, r < a,

qe\kappa ae - \kappa r

4\pi \varepsilon r(1 + \kappa a)
, r > a.

(A.3)

Hence, the net charge density for r > a is given by

\rho (r) =  - \varepsilon \nabla 2\phi (\bfitr ) =  - \kappa 2\varepsilon \phi (r).(A.4)

Obviously, \rho (r) < 0 around the positive charge and

log(r| \rho (r)| ) =  - \kappa r + log

\biggl( 
\kappa 2q exp(\kappa a)

4\pi (1 + \kappa a)

\biggr) 
is a linear function of r. The charge density around a negative charge is similarly
discussed.

Appendix B. Variance of the random force under the Debye--H\"uckel
approximation. We consider approximating the charge net density using the DH
approximation to estimate

Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk )) = Im

\left(  \sum 
j:j \not =i

qj exp(i\bfitk \cdot (\bfitr \bfitj  - \bfitr i))

\right)  .(B.1)

We fix the ion qi at the center. For r \geq a, if we use the charge density \rho given by
(A.4) and (A.3) to compute this quantity, we get\sum 

j:j \not =i

qj exp(i\bfitk \cdot (\bfitr \bfitj  - \bfitr i)) \approx 
\int 
\BbbR 3\setminus B(\bfitr i,a)

\rho (\bfitr )ei\bfitk \cdot \bfitr d\bfitr 

=  - qi
\kappa 2e\kappa a

2(1 + \kappa a)

\int \infty 

a

\int 1

 - 1

r2
e - \kappa r

r
cos(krz)dzdr

=  - qi
1

1 + \kappa a

\Bigl[ \kappa 
k
sin(ka) + cos(ka)

\Bigr] 
/

\biggl( 
1 +

k2

\kappa 2

\biggr) 
.

(B.2)

This term is clearly real and the imaginary part is zero. If one uses the DH theory
to compute \rho (\bfitk ), one may get something bizzare in mathematics. Using the same
approximation leads to

e - i\bfitk \cdot \bfitr i\rho (\bfitk ) \approx qi

\biggl\{ 
1 - 1

1 + \kappa a

\Bigl[ \kappa 
k
sin(ka) + cos(ka)

\Bigr] 
/

\biggl( 
1 +

k2

\kappa 2

\biggr) \biggr\} 
.

This means \rho (\bfitk ) \approx qie
i\bfitk \cdot \bfitr ig(k), where g(k) is independent of i. The left-hand side

does not depend on i while the right-hand side does. This clearly comes from treating
all other particles except i using the continuum approximation, and i is not special in
\rho (\bfitk ). In spite of the bizzare result for computing \rho (\bfitk ), we believe that the approxima-
tion makes sense when one focuses on computing quantities associated with particle i,
and k \ll a - 1. When k \ll a - 1, the formula in (B.2) implies that Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk )) = 0.
This is understandable: in the equilibrium, provided that all other charges are distrib-
uted accurately by the continuum approximation, the net force is zero. In practice,
there is thermal fluctuation, and this cannot be zero, but it should be bounded by
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some number related to the temperature. Moreover, the magnitude of the integral on
the right-hand side is controlled by a bound uniform in k (recall | sin(ax)/x| \leq a) and
we believe this result by continuum approximation can reflect the true magnitude of
\rho (\bfitk ). Hence, when k \ll a - 1, it is safe to bound Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk )) by a constant.

Now, if
\surd 
\alpha \lesssim a - 1, we can then set | Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))| \leq C in computing (3.10).

When k \gtrsim 
\surd 
\alpha , we do not assume the bounds on | \rho (\bfitk )| 2, as such terms will be

dominated by e - k2/(4\alpha ). With
\surd 
\alpha \sim \rho 

1/3
r , one will have S \approx (\alpha L2/\pi )3/2 \sim N by

(3.1)--(3.2) so that

\BbbE | \bfitchi i| 2 =
1

p

\left(  \sum 
\bfitk \not =0

(4\pi qi)
2S

V 2k2
e - k2/(4\alpha )| Im(e - i\bfitk \cdot \bfitr i\rho (\bfitk ))| 2  - | \bfitF i,1| 2

\right)  
\lesssim 

1

p

(4\pi qi)
2S

V 2

\int \infty 

2\pi /L

\biggl( 
L

2\pi 

\biggr) 3
4\pi k2

k2
e - k2/4\alpha dk

\approx 8q2

p

S

V

\surd 
\alpha \pi \sim 1

p
\rho 4/3r .

(B.3)
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