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We develop Random Batch Methods for interacting particle systems with large number 
of particles. These methods use small but random batches for particle interactions, thus 
the computational cost is reduced from O (N2) per time step to O (N), for a system with 
N particles with binary interactions. On one hand, these methods are efficient Asymptotic-
Preserving schemes for the underlying particle systems, allowing N-independent time steps 
and also capture, in the N → ∞ limit, the solution of the mean field limit which are 
nonlinear Fokker-Planck equations; on the other hand, the stochastic processes generated 
by the algorithms can also be regarded as new models for the underlying problems. For 
one of the methods, we give a particle number independent error estimate under some 
special interactions. Then, we apply these methods to some representative problems in 
mathematics, physics, social and data sciences, including the Dyson Brownian motion 
from random matrix theory, Thomson’s problem, distribution of wealth, opinion dynamics 
and clustering. Numerical results show that the methods can capture both the transient 
solutions and the global equilibrium in these problems.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

In natural and social sciences, there are many collective behaviors resulted from a huge number of interrelated indi-
viduals. Examples include swarming or synchronization described by the Vicsek model [1], flocking in school of fishes [2], 
groups of birds [3], chemotaxis of bacteria [4], consensus clusters in opinion dynamics [5], to name a few.

We are interested to develop random algorithms for these interacting particle systems to reduce computational cost. 
While the ideas also work for second order systems like Langevin dynamics [6] and the model in [3], let us firstly focus on 
the following first order systems:

dXi = −∇V (Xi)dt +
∑

k:k≤ J

αN,k

∑
C⊂{1,...,N}:i∈C ,|C |=k

K i(C )dt + σdBi, i = 1, . . . , N, (1.1)

where J is independent of N and αN,k are some constants. In other words, the interaction acting on each particle is the 
superposition of the ones for which the number of particles involved is independent of N . Here, Xi ∈ Rd are the labels 
for particles, −∇V (·) is some given external field, K i(·)’s are the interaction kernels and {Bi}’s are independent standard 
Brownian motions. Such systems could be the overdamped limit of Langevin equations, where dXi comes from the friction 
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term so that Xi is the location of the ith particle and the terms on the right hand side are forces. Of course, Xi can also 
have other interpretations depending on applications, like the velocity [3], the opinion or wealth (see section 5). We will 
loosely call Xi ’s the locations of particles, −∇V the external force and K (·) the interacting forces for convenience in this 
paper, unless there are clear meanings. If σ = 0, there is no diffusion effect. If σ > 0, we have diffusion, and the equation is 
a stochastic differential equation (SDE) in Itô’s sense [7]. We will mostly focus on J = 2, so that the systems are of binary 
interactions (i.e. each particle interacts with others separately). System (1.1) in the case of binary interaction can be written 
as

dXi = −∇V (Xi)dt + 1

N − 1

∑
j: j 	=i

K (Xi − X j)dt + σdBi, i = 1, . . . , N. (1.2)

We will present our algorithms and analysis for binary interactions (system (1.2)) and consider that the initial values 
Xi(0) =: Xi

0 are drawn independently from the same distribution:

Xi
0 ∼ ν, i = 1, . . . , N. (1.3)

Extensions to (1.1) are straightforward, though more involved (see section 2.3 and Remark 3.4). Although there are examples 
of many body interactions like Kac interaction in spin glasses [8,9] for (1.1), we remark that the binary interaction is much 
more important and ubiquitous in nature, like Coulomb’s interaction between electrons and nuclei, due to the superposition 
principles for forces. As another remark, we have assumed the additive noise for simplicity to illustrate our methodology. 
However, the discussion in this paper also applies for multiplicative noise (i.e. σ depends on x). (We in fact have one such 
example in Section 5.2.1.)

There may be two things we care about regarding (1.1) and (1.2), depending on applications. The first thing is the dynam-
ics, for example, in the opinion dynamics, we would like to know how the consensus of opinions are developed. Another 
thing is the equilibrium distribution of the N particles. If N is large, simulation of (1.1) and (1.2) is very expensive since 
for each time step during the evolution, the computational cost is of O (N J ). One possible method for studying large and 
complex systems where individuals interact with each other is the mean field approximation [10–12]. In this approximation, 
the effect of surrounding particles is approximated by a consistent averaged force field so that one obtains a one body prob-
lem. For example, regarding (1.2) that we will focus on, in the N → ∞ regime, the distribution μ of the particles formally 
satisfies the following nonlinear Fokker-Planck equation (see [13–19])

∂tμ = ∇ · (∇V (x)μ) − ∇ · (μK ∗ μ) + 1

2
σ 2�μ. (1.4)

It is expected that μ is close to the empirical measure for (1.2)

μN(t) := 1

N

N∑
i=1

δ(x − Xi(t)), (1.5)

which is a random measure. In fact, under certain assumptions on V and K , it can be shown that the uniform mean field 
limit holds ([20]). Both the marginal distribution of X1 in (1.2), denoted as μ(1)

N , and (1.5) are close to μ.
On the other hand, one often cares more about the mean field equations like (1.4) and its invariant measure π , but the 

mean field equation and π are hard or expensive to solve or compute. Using the mean field approximation, one can generate 
some artificial particle systems of the form (1.1) or (1.2). In this sense, the interacting particle systems (1.1) and (1.2) are 
Monte-Carlo particle methods for the mean field equation and π . Clearly, when N (the number of numerical particles) is 
large, one still wants to reduce the computational cost. Hence, no matter whether studying system (1.2) (and (1.1)) is due 
to its own interest or due to numerical simulation of the mean field equation, it is highly desirable to design some efficient 
algorithms to solve the particle system (1.2).

Nowadays, in the era of big data, many stochastic algorithms have been developed to reduce the computational cost 
while keep certain accuracy. Hence, one may borrow some ideas from these areas for the physical problems. The stochastic 
gradient descent (SGD) algorithm is developed to reduce the computational cost and for better exploring the high dimen-
sional parameter space [21,22] for supervised learning [23]. In SGD, a small batch of samples are chosen each time to 
form the noisy gradient. A similar algorithm is the stochastic coordinate descent where only a few coordinates are updated 
each time [24,25]. The idea of random batches also appears in the stochastic gradient Langevin dynamics (a Markov Chain 
Monte Carlo method (MCMC)), which can be applied for Bayesian inference [26–28]. Pretty much like SGD, the method uses 
random batch of data to update the parameters one needs to estimate. Besides, many random algorithms also appear for 
matrices, such as constructing approximate matrix decompositions by randomized Singular Value Decompositions [29] and 
the fast Monte Carlo algorithm for matrix-matrix product in low rank problems [30,31].

Motivated by the stochastic algorithms in machine learning and statistics, we develop Random Batch Methods (RBM) for 
interacting particle systems (1.2) and (1.1). The idea is quite simple: for a small duration of time, one randomly divides the 
particles into small batches and the interactions are only turned on inside each batch (see Section 2 for details). Numerical 
experiments in later sections show that RBMs work quite well for a wide range of applications with binary interactions from 
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Fig. 1. Illustration for the convergence of the RBMs.

physical, biological to data sciences. These algorithms reduce the computational cost per time step from O (N2) to O (N) for 
binary interactions (1.2) (O (N J ) to O (N) for (1.1)). They not only recover the equilibrium well in various problems, but 
also approximate dynamics of measures with very singular interaction kernels (see for example section 4.2). Moreover in 
section 3, under suitable conditions on the external potential, interaction force and batch size, we prove for one of the RBMs 
that the numerical error has a bound that only depends on the time step, independent of N and time. The key for the proof 
is Lemma 3.1, which guarantees that on average the random force is consistent with the full interaction.

The methodology of randomly choosing some objects has also been widely used in kinetic theory community. The multi-
level Monte Carlo (MLMC) method [32] runs simulations with different number of particles for McKean-Vlasov equation 
using the idea of subsampling. The authors used smaller numbers of particles for repeated simulations with a subset of 
random variables (such as the Brownian motions) for the finest simulation to reduce the computational cost, while keeping 
good enough MLMC estimator. Different from [32], RBMs use the idea of subsampling in computing interacting forces for 
one single simulation to approximate the distribution of particles. The Direct Simulation Monte Carlo (DSMC) method pro-
posed by Bird ([33,34]) uses randomly chosen simulation molecules to solve the Boltzmann equation with finite Knudsen 
number (see the work by Wagner [35] for the proof of convergence). Moreover, Nanbu’s simulation method directly derived 
from the Boltzmann equation has gained success and been proved to converge [36,37]. In [38], biological swarm models 
with random pair interactions have been studied and proven to converge to Kac-Boltzmann equation. In the reverse way to 
[38], the work by Albi and Pareschi ([39]) uses stochastic binary interaction algorithms for flocking and swarming dynamics. 
The algorithms in [39] are intrinsically doing similar things as our RBMs do; their Algorithm 4.3 is particularly alike RBM-1 
(see section 2) with p = 2. See a more recent application by Carrillo et al. [40]. In this sense, our RBMs are generalizations 
of symmetric Nanbu (Algorithm 4.3) in [39]. However, the numerical particle system in [39] was motivated by the mean-
field limit, in a way similar to the DSMC methods of binary collisions for the Boltzmann equation. It was aimed at solving 
the mean-field equation (corresponding to the right vertical line in Fig. 1). RBMs are motivated by the idea of mini-batch 
methods from machine learning. They are Monte-Carlo type approximations directly to the (physical) particle systems (1.2). 
They correspond to the left horizontal line in Fig. 1. Moreover, one of the RBMs will be proved (under special conditions) 
to converge, when time steps go to zero, to the particle system (1.2). The construction of RBMs, as well as the proof of 
their convergence, are obtained without the knowledge of the mean-field limit. Of course when N → ∞ its density measure 
also converges to the mean-field limit equation, as will be proven using the Wasserstein distance. Therefore, the RBMs are 
a class of Asymptotic-Preserving schemes for particle systems (1.2) or (1.1), in the sense of [41] (see Fig. 1). Lastly, the idea 
of turning on interactions inside the batches can be easily extended. For example, one can change the batch size to adjust 
the noise levels. Moreover, RBMs can also be extended to (1.1) involving more complex interactions.

Let us remark that RBMs can be straightforwardly applied to the second order particle systems. In Appendix A, we 
establish similar error estimates for a Hamiltonian system, valid in finite time, and perform the numerical verification in 
section 4.1.

The rest of the paper is organized as follows. In section 2, we propose the Random Batch Method without replacement 
(RBM-1) and with replacement (RBM-r), and give some discussions. In section 3, we obtain an error estimate, which only 
depends on time step but not on N and time, of the marginals for RBM-1 in the Wasserstein distance under some assump-
tions for the external and interacting forces. Though performed for binary interactions, the analysis should work for (1.1) as 
well. In section 4, we do numerical tests to verify the theoretic results in section 3 and use the Dyson Brownian motion to 
compare the RBMs. In particular, in section 4.2, we compute the law of the Dyson Brownian motions from random matrix 
theory where the interaction kernel is singular. Our method can capture the evolution of distribution and the equilibrium 
semicircle law, and the two algorithms (RBM-1 and RBM-r) give comparable results. In section 5, we use the RBMs to solve 
some interesting application problems with binary interactions. In section 5.1, we focus on Thomson’s problems where we 
solve the dynamics on the sphere. In section 5.2, we design stochastic dynamics for evolution of wealth and opinions. Lastly, 
we apply our randomized algorithms for efficient clusters in section 5.3. The paper is concluded in section 6.

2. The Random Batch Methods

In this section, we propose the RBMs by using random batches for the summation of the interacting force in (1.2). The 
extensions to (1.1) should be similar but are more involved, and we will give some discussion about this in section 2.3. For 
the setup, we pick a short duration of time τ and consider the discrete time
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tm = mτ . (2.1)

Suppose we compute up to time T and the number of iteration for the stochastic algorithm is

NT =
⌈

T

τ

⌉
. (2.2)

Clearly to simulate the ODE system (1.2) directly, the complexity is O (NT N2). If N is large, this is expensive. Motivated by 
the stochastic algorithms in the machine learning community, we will use a randomized strategy.

2.1. The first algorithm (RBM-1)

A natural idea is that at each time tm , we divide the N = np particles into n small batches with size p (p � N , often 
p = 2) randomly, denoted by Cq, q = 1, . . . , n, and then interact particles within each batch (For convenience, we have 
assumed that p divides N . In general, the last batch does not have to have size p.) The algorithm is called RBM-1 (shown 
in 1). Each iteration contains two main steps: (1) Randomly shuffling and dividing the particles into n batches; (2) evolving 
with interactions only turned on inside batches.

Algorithm 1 (RBM-1).
1: for m in 1 : [T /τ ] do
2: Divide {1, 2, . . . , pn} into n batches randomly.
3: for each batch Cq do
4: Update Xi ’s (i ∈ Cq ) by solving the following SDE with t ∈ [tm−1, tm).

dXi = −∇V (Xi)dt + 1

p − 1

∑
j∈Cq , j 	=i

K (Xi − X j)dt + σdBi . (2.3)

5: end for
6: end for

Clearly, the update equation (2.3) can be rewritten as

dXi = −∇V (Xi)dt + 1

N − 1

∑
j: j 	=i

K (X j − Xi)dt + σdBi + χm,i(X(t))dt, (2.4)

where

χm,i(X(t)) = 1

p − 1

∑
j∈Cq, j 	=i

K (Xi − X j) − 1

N − 1

∑
j: j 	=i

K (Xi − X j). (2.5)

For a given x = (x1, . . . , xN ) ∈RNd that is independent of the random division, we have (see Lemma 3.1 for the proof)

Eχm,i(x) = 0. (2.6)

This is a key observation which eventually leads to the convergence of the algorithms in expectation. As a remark, the 
position X = (X1, . . . , X N) itself depends on the random division. Hence, in general,

Eχm,i(X(t)) 	= 0.

Regarding the complexity, note that random division into n batches of equal size can be implemented using random per-
mutation. The latter can be realized in O (N) operations by Durstenfeld’s modern revision of Fisher-Yates shuffle algorithm 
[42]. (In MATLAB, one can use ’randperm(N)’ to generate a random permutation. Then, the first p elements are considered 
to be in the first batch, the second p elements are in the second batch, etc).

If one is to simulate up to time T , the total number of time steps is NT as in (2.2). The cost for each batch per iteration 
is � Cp2, where C is the unit time independent of N, p, τ . Since there are n = N/p batches, so the total cost per iteration 
is like � CpN . The total complexity is therefore

O (pNT N) = O
( p

τ
NT
)

.

The ration p/τ affects the total complexity. If p = 2 which we will use for the numerical simulations due to the simplicity 
in implementations, the complexity is O (NT N) = O (T N/τ ). The cost is reduced significantly from the naive simulation.

In section 3, one will see that the RBM converges due to some averaging effect in time, and the rate follows in a 
similar way as Law of Large Number results. The error bound is like C

√
τ/p. This means the ratio τ/p controls the error 

theoretically if the ODEs/SDEs can be solved accurately. Hence, if one wants the error to be smaller than some given accuracy 
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ε, the computational cost is like O (NT /ε2). The dependence in N is linear! The power for ε is 2, which is typical for Monte 
Carlo methods. To improve this, one may consider some variance reduction techniques (see for example [43]).

RBM-1 is in spirit similar to the stochastic gradient descent in machine learning ([21,22]). Recently, there are some 
analysis of SGD in the mathematical viewpoints and applications to physical problems [44–47]. RBM-1 can be used both for 
simulating the evolution of the measure (1.5) or (1.4) and for sampling from the equilibrium state π .

2.2. The Random Batch Method with replacement

RBM-1 requires the random division, and the elements in different batches are different. This is in fact the sampling 
without replacement. If one allows replacement, we have RBM-r′ .

Algorithm 2a (RBM-r′).
1: for m in 1 : [T /τ ] do
2: for k from 1 to N/p do
3: Pick a set Ck of size p randomly with replacement.
4: Update Xi ’s (i ∈ Ck) by solving the following SDE for time τ .⎧⎪⎪⎨

⎪⎪⎩
dY i = −∇V (Y i)dt + 1

p − 1

∑
j∈Ck, j 	=i

K (Y i − Y j)dt + σdBi ,

Y i(0) = Xi ,

(2.7)

i.e., solve (2.7) with initial values Y i(0) = Xi , and set Xi ← Y i(τ ).
5: end for
6: end for

RBM-r′ can be reformulated as Random Batch Method with replacement (RBM-r) that has some flavor of the stochas-
tic coordinate descent method [24,25]. Here, the pseudo-time s is introduced for convenience and sm = mτ . Roughly, tm
corresponds to smN/p .

Algorithm 2b (RBM-r).
1: for m in 1 : [T /τ ] ∗ (N/p) do
2: Pick a set C of size p randomly.
3: Update Xi ’s (i ∈ C) by solving the following with pseudo-time s ∈ [sm−1, sm).

dXi = −∇V (Xi)ds + 1

p − 1

∑
j∈C, j 	=i

K (Xi − X j)ds + σ dBi . (2.8)

4: end for

For such type of methods, we expect to have

ÑT = 1

p
N NT (2.9)

iterations to get comparable behaviors. However, each step is very cheap: one only needs O (p2) work. Hence, we still expect 
the complexity to be O (pN NT ).

Though the same as RBM-r′ , RBM-r does not have explicit concept of time, since the positions of the particles are not 
changing simultaneously. Intuitively, RBM-r can only give sampling for the invariant measure for the nonlinear Fokker-Planck 
equation (1.2) while unable to simulate the dynamics of the distribution. However, as RBM-r′ indicates, N/p iterations 
correspond to time τ and thus a single step in RBM-1, so it might still approximate the evolution of distributions. In fact, 
the example later confirms this and m(N/p) iterations indeed give acceptable approximation for the distribution at time mτ . 
As a last comment, we may sometimes choose random time step; for example τ ∼ Exp(�t) (the exponential distribution 
with parameter �t) such that Eτ = �t . Intuitively, this may help to increase the noise level and avoid being trapped in 
some local minimizers of V .

2.3. Some discussions about the algorithms

In this subsection we make some discussion about our algorithms and complementary remarks.

1. For system (1.1), the RBMs can be similarly developed. The batch size should be larger than or equal to J (p ≥ J ). After 
the random batch is chosen, the interactions only happen inside the randomly chosen batch. One should also adjust the 
magnitude of the interaction such that an analogy of Lemma 3.1 holds. In other words, the expectation of the random 
forces should equal to those in (1.1). The complexity clearly is reduced from O (N J ) to O (N).
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2. The sizes of batch do not have to be equal. One can even choose the sizes randomly. One can also adjust the batch size 
to adjust the noise level.

3. After the batches are obtained, one can do parallel computing to update the positions of X for RBM-1. However, one 
has to do regrouping after one time interval which stops the parallelism. There is no big efficiency improvement unless 
solving the SDEs is expensive. Regarding complexity, there is no big difference in complexity. For RBM-r, to get p indices, 
one needs to generate p random numbers from [0, 1], and the total complexity is O (N) for N/p iterations. For RBM-1, 
as in Durstenfld’s implementation of random permutation, one needs to generate N random numbers from [0, 1] while 
do some swapping operations for each element. (This may be different from the intuition established from drawing 
balls from a bag. For randomly dividing N balls, one can choose p from N balls first, then p from N − p, . . .. It seems 
that the complexity becomes smaller and smaller as the total number of balls is becoming smaller and smaller. This 
is indeed not the case because in computer one can use arrays to store the ’balls’ and one only needs to generate the 
indices without touching these ’balls’.)
In summary, there is no big difference in complexity for the two algorithms. The advantage of RBM-1 might be its 
ability for parallelism during one interval while the advantage of RBM-r is its simplicity so that it is likely more flexible 
for extensions.

4. In Lemma 3.1, for x independent of the random division, we prove that

Var(χm,i(x)) =
(

1

p − 1
− 1

N − 1

)
�i(x),

where �i(x) is independent of p. This means for larger p, the variance is smaller and the noise level is lower. This 
noise somehow reflects the fluctuation of the empirical measure μ̃(1)

N around μ(1)
N .

5. If K is a singular forcing (like Coulomb), we can do splitting method and have

dXi = 1

p − 1

∑
j∈C, j 	=i

K (Xi − X j)dt,

dXi = −∇V (Xi)dt + σdBi .

(2.10)

If p = 2, the singular forcing term can be often solved analytically. This is another advantage of the stochastic algorithm: 
for the N-particle system, if the forcing K is singular so that the problem is stiff, explicit scheme needs very small time 
step while implicit scheme is hard to invert. Using the stochastic algorithm plus time splitting, the evolution can be 
solved exactly, thus avoiding stability constraint.

6. Suppose one aims at the law of particles in (1.2) with very large N . By mean field limit, one can choose to solve (1.4)
directly. A possible way is to use particle method for (1.4) where the number of particles is much smaller than N and 
the masses for the particles in the numerical method can even be different (the particle blob method [48]). For the 
interacting particle system of this numerical purpose, our randomized algorithms also apply well. In this regard, we 
provided an efficient numerical particle method for the mean-field (or kinetic) equations. In fact this is exactly the 
starting point of the binary algorithms in [39].

7. To better simulate the invariant measure in the case of σ = 0, one may add the Brownian motion εN dBi where εN

decreases with N . For example, we may set

εN = 1

Nγ
, γ > 0.

8. If the initial distribution is far from the equilibrium and we aim to get the global equilibrium, one may need many 
iterations for convergence to the equilibrium. A possible way is to use the Gibbs distribution corresponding to V

ν(dx) ∝ exp(−V (x))dx

for initialization to reduce the number of iterations. This distribution can be sampled using the Markov chain Monte 
Carlo (MCMC) methods [49,50]. Of course, for special V such as quadratic functions, the initial distribution can be 
sampled directly without MCMC.

9. Compared with traditional treecode and fast multipole method [51] where the interaction kernels are required to decay, 
the RBMs work also for kernels that do not necessarily decay to reduce the computational cost to O (N). They can 
also be applied for kernels of the general form K (x, y) which may not be symmetric and may not have translational 
invariance.

3. An error analysis for RBM-1

In this section, we study RBM-1 proposed in Section 2.1. In particular, we will check how close it is to the fully coupled 
system (1.2). We leave the study of RBM-r to the future. However, as commented above, we expect RBM-r to also work when 
RBM-1 works. Recall that each iteraction consists of random division and evolution. The mechanism that makes RBMs work 
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is Lemma 3.1 and small step size. The philosophy is as following. Suppose that the system has certain chaotic property. 
When τ is small enough, the accumulative behavior along many time steps will be roughly comparable to the average 
behavior, which is (1.2) thanks to Lemma 3.1. This is similar to Law of Large Numbers, but on time.

We assume the following conditions on the confining and interacting potentials:

Assumption 3.1. Suppose V is strongly convex on Rd so that x �→ V (x) − r
2 |x|2 is convex, and ∇V , ∇2 V have polynomial 

growth (i.e. |∇V (x)| + |∇2 V (x)| ≤ C(1 + |x|q) for some q > 0). Assume K (·) is bounded, Lipschitz on Rd with Lipschitz 
constant L and has bounded second order derivatives. Moreover,

r > 2L. (3.1)

The condition r > 2L is to ensure that the evolution group for the deterministic part of (1.2) is a contraction. In particular, 
if

Ẋ i = −∇V (Xi) + 1

N − 1

∑
j: j 	=i

K (Xi − X j), Ẏ i = −∇V (Y i) + 1

N − 1

∑
j: j 	=i

K (Y i − Y j),

then

d

dt

N∑
i=1

|Xi − Y i |2 ≤ −(r − 2L)

N∑
i=1

|Xi − Y i|2. (3.2)

For such systems, one needs σ > 0 for a nontrivial equilibrium; otherwise, all the particles will go to a single point.
Our goal is to prove that the distribution generated by RBM-1 is close to the distribution of the marginal distribution of 

the N particle system in the Wasserstein distance. We recall that the Wasserstein-2 distance is given by [52]

W2(μ,ν) =
⎛
⎜⎝ inf

γ ∈�(μ,ν)

ˆ

Rd×Rd

|x − y|2dγ

⎞
⎟⎠

1/2

, (3.3)

where �(μ, ν) means all the joint distributions whose marginal distributions are μ and ν respectively.
In order to achieve this goal, we consider the synchronous coupling between (1.2) and (2.3). We denote Xi the solution 

obtained by the N interacting particle system while X̃ i the solution obtained by RBM-1. Correspondingly, B̃ i will denote 
the Brownian motion used in RBM-1. Note that both (1.2) and (2.3) have exchangeability. This means, for example, the joint 
distribution of Xi ’s is symmetric. Consequently, X̃ i and X̃ j (for all i and j) have the same distribution. We construct the 
coupling as follows. For i = 1, 2, . . . , N ,

X̃ i(0) = Xi(0) = Xi
0 ∼ ν,

Bi(t) = B̃ i(t).
(3.4)

With this coupling, we define the error process

Z i(t) := X̃ i(t) − Xi(t). (3.5)

Let ξm−1 denote the random division of batches at tm−1, and define the filtration {Fm}m≥0 by

Fm−1 = σ(Xi
0, Bi(t), ξ j; t ≤ tm−1, j ≤ m − 1). (3.6)

In other words, Fm−1 is the σ -algebra generated by the initial values Xi
0 (i = 1, . . . , N), Bi(t), t ≤ tm−1, and ξ j , j ≤ m − 1. 

Hence, Fm−1 contains the information of how batches are constructed for t ∈ [tm−1, tm). We also introduce the filtration 
{Gm}m≥0 by

Gm−1 = σ(Xi
0, Bi(t), ξ j; t ≤ tm−1, j ≤ m − 2). (3.7)

If we use σ(ξm−1) to mean the σ -algebra generated by ξm−1, the random division of batches at tm−1, then Fm−1 = σ(Gm−1 ∪
σ(ξm−1)). Throughout this section, C will denote generic constants whose concrete value can change from line to line. We 
use ‖ · ‖ to represent the L2(�) norm (� means the sample space):

‖v‖ =
√
E|v|2. (3.8)

We now state the theorem.
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Theorem 3.1. Suppose Assumption 3.1 holds. With the coupling constructed above,

sup
t≥0

‖Z 1(t)‖ ≤ C

√
τ

p − 1
+ τ 2, (3.9)

where C is independent of N, p and t. Consequently, let μ(1)
N (t) be the first marginal for (1.2) and μ̃(1)

N be the first marginal for system 
(2.3). Then

sup
t≥0

W2(μ
(1)
N (t), μ̃(1)

N (t)) ≤ C

√
τ

p − 1
+ τ 2 ≤ C

√
τ . (3.10)

We need some preparation for the proof. Lemma 3.1 is a type of consistency lemma for RBMs while Lemma 3.3 somehow 
shows the stability of RBM-1.

Lemma 3.1. Consider p ≥ 2 and a given fixed x = (x1, . . . , xN ) ∈RNd. Then, for all i,

Eχm,i(x) = 0, (3.11)

where the expectation is taken with respect to the random division of batches. Moreover, the variance is given by

var(χm,i(x)) = E|χm,i(x)|2 =
(

1

p − 1
− 1

N − 1

)
�i(x), (3.12)

where

�i(x) := 1

N − 2

∑
j: j 	=i

∣∣∣∣∣∣K (xi − x j) − 1

N − 1

∑
k:k 	=i

K (xi − xk)

∣∣∣∣∣∣
2

. (3.13)

Proof. We use I(i, j) = 1 to indicate that i, j are in the same batch. We rewrite

fm,i := 1

p − 1

∑
j:∈Cq, j 	=i

K (xi − x j) = 1

p − 1

∑
j: j 	=i

K (xi − x j)1I(i, j)=1.

We first show that

E1I(i, j)=1 = p − 1

N − 1
.

As is well-known, there are

M(n) := (pn)!
(p!)nn!

ways of dividing pn distinguishable objects into n batches of size p. For a given (i, j) pair, to compute E1I(i, j)=1 (the 
probability that i, j are in the same batch), we compute the number of ways to group (i, j) together. We first choose p − 2
objects from np − 2 to group with i, j and then form a batch. Then, divide the remaining into n − 1 batches. Hence, the 
number of ways to make i, j in the same batch is 

(np−2
p−2

)
M(n − 1) and thus

E1I(i, j)=1 =
(np−2

p−2

)
M(n − 1)

M(n)
= p − 1

N − 1
.

This then proves that

E fm,i = 1

N − 1

∑
j: j 	=i

K (xi − x j),

and thus (3.11) follows.
Now, let us consider the variance. We first compute the second moment of ξm,i :

E| fm,i|2 = 1

(p − 1)2

∑
j: j 	=i

|K (xi − x j)|2P (I(i, j) = 1)

+ 1

(p − 1)2

∑
j,k: j 	=k, j 	=i,k 	=i

K (xi − x j) · K (xi − xk)P (I(i, j)I(i,k) = 1).
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By similar argument,

P (I(i, j)I(i,k) = 1) =
(np−3

p−3

)
M(n − 1)

M(n)
= (p − 1)(p − 2)

(N − 1)(N − 2)
.

Hence,

E|χm,i(x)|2 = E| fm,i|2 − (E| fm,i|)2

=
(

1

p − 1
− 1

N − 1

)( 1

N − 1

∑
j 	=i

|K (xi − x j)|2

− 1

(N − 1)(N − 2)

∑
i, j: j 	=k, j 	=i,k 	=i

K (xi − x j) · K (xi − xk)
)

=
(

1

p − 1
− 1

N − 1

)
1

N − 2

∑
j: j 	=i

∣∣∣∣∣∣K (xi − x j) − 1

N − 1

∑
k:k 	=i

K (xi − xk)

∣∣∣∣∣∣
2

. �

The following simple fact of probability will be useful later.

Lemma 3.2. Fix i ∈ {1, . . . , N}. Let Cθ be the random batch of size p that contains i in the random division. Let Yi (1 ≤ i ≤ N) be N
random variables (or random vectors) that are independent of Cθ . Then,∥∥∥∥∥∥

1

p − 1

∑
j∈Cθ , j 	=i

Y j

∥∥∥∥∥∥≤ max
j

‖Y j‖. (3.14)

Proof. We again use I(i, j) = 1 to indicate that i, j are in the same batch. By the definition and independence,∥∥∥∥∥∥
1

p − 1

∑
j∈Cθ , j 	=i

Y j

∥∥∥∥∥∥
2

= 1

(p − 1)2
E

∣∣∣∣∣∣
∑
j: j 	=i

I(i, j)Y j

∣∣∣∣∣∣
2

= 1

(p − 1)2

∑
j,k: j 	=i,k 	=i

E(I(i, j)I(i,k))E(Y j · Yk)

≤ (max
j

‖Y j‖)2 1

(p − 1)2

∑
j,k: j 	=i,k 	=i

E(I(i, j)I(i,k))

= (max
j

‖Y j‖)2

∥∥∥∥∥∥
1

p − 1

∑
j∈Cθ , j 	=i

1

∥∥∥∥∥∥
2

.

The claim thus follows. Note that the independence is used in the second equality. �
We now move onto the estimates of X and X̃ .

Lemma 3.3. Suppose the coupling constructed in (3.4) and Assumption 3.1 hold. Then, for any q ≥ 2, there exists a constant Cq inde-
pendent of N such that for any i

sup
t≥0

(E|Xi(t)|q +E| X̃ i(t)|q) ≤ Cq. (3.15)

Besides, for any m > 0 and q ≥ 2,

sup
t∈[tm−1,tm)

∣∣∣E(| X̃ i(t)|q|Fm−1)

∣∣∣≤ C1| X̃ i(tm−1)|q + C2. (3.16)

holds almost surely.
Moreover, for t ∈ [tm−1, tm) and all i, there exist a constant C > 0 independent of ξm, m, N and an index q > 0 such almost surely 

that
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|E( X̃ i(t) − X̃ i(tm−1)|Fm−1)| ≤ C(1 + | X̃ i(tm−1)|q)τ , (3.17)

and in L2(�) that∥∥∥E(| X̃ i(t) − X̃ i(tm−1)|2|Fm−1

)∥∥∥≤ Cτ . (3.18)

Proof. Consider system (1.2) first. By Itô’s calculus,

d

dt
E|Xi |q = qE|Xi|q−2

⎛
⎝−Xi · ∇V (Xi) + 1

N − 1

∑
j: j 	=i

X i · K (Xi − X j)

⎞
⎠

+ 1

2
q(q + d − 2)σ 2E|Xi |q−2.

Note that

Xi · ∇V (Xi) = (Xi − 0) · (∇V (Xi) − ∇V (0)) + Xi · ∇V (0) ≥ r|Xi |2 + Xi · ∇V (0).

Recalling also that K is bounded,

d

dt
E|Xi |q ≤ −qrE|Xi |q + q(‖K‖∞ + |∇V (0)|)E|Xi |q−1 + 1

2
q(q + d − 2)σ 2E|Xi |q−2. (3.19)

By Young’s inequality,

E(|Xi |q−1) ≤ (q − 1)ν

q
E(|Xi |q) + 1

qνq−1 ,

the second term on the right hand side of (3.19) is therefore controlled. If q = 2, the last term on the right hand side 
of (3.19) is controlled by a constant. Otherwise, one can apply Young’s inequality similarly to control it with E(|Xi |q). 
Clearly, when choosing ν fixed but small enough, E|Xi |q can be uniformly bounded in time for any q ≥ 2, and the bound is 
independent of N .

For X̃ i , we first consider a given random division so that the equation is given by

dX̃ i = −∇V ( X̃ i)dt + 1

p − 1

∑
j∈Cθ , j 	=i

K ( X̃ i − X̃ j)dt + σdBi, (3.20)

where Cθ is the random batch that contains i from the random division at tm−1, or ξm−1. Now, consider that t ∈ [tm−1, tm). 
Conditioning on Fm−1 and applying Itô’s calculus on [tm−1, tm), one also has

d

dt
E(| X̃ i |q|Fm−1) = qE

[
| X̃ i |q−2(− X̃ i · ∇V ( X̃ i) +

X̃ i · 1

p − 1

∑
j∈Cθ , j 	=i

K ( X̃ i − X̃ j)))|Fm−1

]
+ 1

2
q(q + d − 2)σ 2E(| X̃ i |q−2|Fm−1).

Using similar estimates,

d

dt
E(| X̃ i |q|Fm−1) ≤ −r1E(| X̃ i |q|Fm−1) + C1,

for some r1 > 0 and constant C1 that are deterministic. This clearly yields (3.16). Taking expectation about the randomness 
in Fm−1 on both sides, one then obtains the same inequality as for X . Hence, (3.15) follows.

Equation (3.20) gives

E
(

X̃ i(t) − X̃ i(tm−1)

∣∣∣Fm−1

)
= −

tˆ

tm−1

E(∇V ( X̃ i)|Fm−1)ds

+
tˆ

tm−1

E

⎛
⎝ 1

p − 1

∑
j∈Cθ , j 	=i

K ( X̃ i − X̃ j)|Fm−1

⎞
⎠ ds.

Note that K is bounded and |∇V (x)| ≤ C(1 + |x|q) for some q > 0. Together with the first part of this lemma (moment 
control), this implies (3.17).
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For the last claim, Itô’s formula implies that

d

dt
E
[
( X̃ i(t) − X̃ i(tm−1))

2|Fm−1

]

= 2E

⎡
⎣( X̃ i(t) − X̃ i(tm−1)

)
· (−∇V ( X̃ i) + 1

p − 1

∑
j∈Cθ , j 	=i

K ( X̃ i − X̃ j))|Fm−1

⎤
⎦+ σ 2.

Similarly,∥∥∥∥∥∥E
⎡
⎣( X̃ i(t) − X̃ i(tm−1)

)
·
⎛
⎝−∇V ( X̃ i) + 1

p − 1

∑
j∈Cθ , j 	=i

K ( X̃ i − X̃ j)

⎞
⎠ |Fm−1

⎤
⎦
∥∥∥∥∥∥≤ C

is uniformly bounded by Hölder’s inequality for conditional expectations (though X̃ i(t) − X̃ i(tm−1) is small, there is no need 
to get finer bound since we have extra σ 2). The last claim also follows. �

The following gives the control on Z .

Lemma 3.4. For t ∈ [tm−1, tm),

‖Z i(t) − Z i(tm−1)‖ ≤ Cτ ,∣∣∣E((Z i(t) − Z i(tm−1)) · χm,i(X(t))
) ∣∣∣≤ ‖�i‖∞

τ

p − 1
+ C

(
τ 2 + ‖Z i(t)‖τ

)
.

(3.21)

Proof. By the coupling in (3.4), Z i satisfies on t ∈ [tm−1, tm)

dZ i = −(∇V ( X̃ i) − ∇V (Xi))dt + 1

p − 1

∑
j∈Cθ , j 	=i

K ( X̃ i − X̃ j)dt − 1

N − 1

∑
j: j 	=i

K (Xi − X j)dt. (3.22)

Since ∇V has polynomial growth, the claim for ‖Z i(t) − Z i(tm−1)‖ is then an easy consequence of the q-moment estimates 
in Lemma 3.3.

Moreover,

|∇V ( X̃ i) − ∇V (Xi)| ≤
1ˆ

0

|( X̃ i − Xi) · ∇2 V ((1 − z) X̃ i + zXi)|dz,

and ∇2 V ((1 − z) X̃ i + zXi) is controlled by C(| X̃ i |q1 + |Xi |q1) for some q1 > 0. Hence,

E|∇V ( X̃ i) − ∇V (Xi)||χm,i(X(t′))| ≤ ‖χm,i(X(t′))‖∞‖ X̃ i − Xi‖(E(| X̃ i |q1 + |Xi |q1)2)1/2

≤ C‖Z i(t)‖,
by Lemma 3.3, where t′ ∈ [tm−1, tm] is arbitrary.

Integrating (3.22) in time over [tm−1, t], then dotting with χm,i(X(t)) , and taking the expectation, one gets

∣∣∣E((Z i(t) − Z i(tm−1)) · χm,i(X(t)))
∣∣∣≤ C

tˆ

tm−1

‖Z i(s)‖ds +

tˆ

tm−1

E

⎡
⎣
⎛
⎝ 1

p − 1

∑
j∈Cθ , j 	=i

δKij(s)

⎞
⎠ · χm,i(X(t))

⎤
⎦ ds +E

tˆ

tm−1

χm,i(X(s)) · χm,i(X(t))ds,

where

δKij(s) := K ( X̃ i(s) − X̃ j(s)) − K (Xi(s) − X j(s)). (3.23)

Since ‖Z i(s)‖ ≤ ‖Z 1(t)‖ + Cτ , the first term is controlled by C‖Z i(t)‖τ + Cτ 2. Since K is Lipschitz continuous,

|δKij(s)| ≤ L(|Z i(s)| + |Z j(s)|).
Hence,
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∥∥∥∥∥∥
⎛
⎝ 1

p − 1

∑
j∈Cθ , j 	=i

δKij(s)

⎞
⎠
∥∥∥∥∥∥≤ L

⎛
⎝‖Z i(s)‖ +

∥∥∥∥∥∥
1

p − 1

∑
j∈Cθ , j 	=i

|Z j(s)|
∥∥∥∥∥∥
⎞
⎠ . (3.24)

Now, Z j(s) depends on Cθ so it cannot be estimated directly. Dotting (3.22) with Z i , one has 1
2

d
dt |Z i |2 ≤ C |Z i | almost surely, 

which gives

|Z i(s)| ≤ |Z i(tm−1)| + Cτ

almost surely. Since Z i(tm−1) is independent of Cθ , Lemma 3.2 then gives us that∥∥∥∥∥∥
1

p − 1

∑
j∈Cθ , j 	=i

|Z j(s)|
∥∥∥∥∥∥≤ ‖Z 1(tm−1)‖ + Cτ ≤ ‖Z 1(t)‖ + ‖Z 1(t) − Z 1(tm−1)‖ + Cτ .

Since ‖Z 1(t) − Z 1(tm−1)‖ ≤ Cτ by what has been just proved, this term is bounded by ‖Z 1(t)‖ + Cτ . Hence,∥∥∥∥∥∥
⎛
⎝ 1

p − 1

∑
j∈Cθ , j 	=i

δKij(s)

⎞
⎠
∥∥∥∥∥∥≤ 2L(‖Z 1(t)‖ + Cτ ). (3.25)

Since X is independent of Cθ , applying Lemma 3.1,

E
(
χm,i(X(s)) · χm,i(X(t))

)
≤ 1

p − 1
‖�i‖∞,

and the claim follows. �
Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. With the coupling (3.4), the continuous process Z i satisfies for t ∈ [tm−1, tm) that

dZ i = − (∇V ( X̃ i) − ∇V (Xi))dt

+ 1

N − 1

∑
j: j 	=i

(K ( X̃ i − X̃ j) − K (Xi − X j))dt + χm,i( X̃(t))dt.

Using the strong convexity of V and Lipscthitz continuity of K ,

1

2
dE

N∑
i=1

(Z i)2 ≤ −(r − 2L)E
N∑

i=1

(Z i)2 dt +
N∑

i=1

EZ i(t) · χm,i( X̃(t))dt,

where X̃ = ( X̃1, . . . , X̃ N) ∈RNd . Due to the exchangeability,

R(t) := 1

N

N∑
i=1

EZ i(t) · χm,i( X̃(t)) =EZ 1(t) · χm,1( X̃(t)). (3.26)

For notational convenience, we introduce

u(t) := 1

N
E

N∑
i=1

(Z i)2 = ‖Z 1(t)‖2. (3.27)

Then,

d

dt
u(t) ≤ −2(r − 2L)u(t) + 2R(t).

We now estimate R(t). We rewrite it as

R(t) =EZ 1(tm−1) · χm,1( X̃(tm−1)) +EZ 1(tm−1) · (χm,1( X̃(t)) − χm,1( X̃(tm−1)))

+E(Z 1(t) − Z 1(tm−1)) · χm,1(X(t))

+E(Z 1(t) − Z 1(tm−1)) · (χm,1( X̃(t)) − χm,1(X(t)))

=:I1 + I2 + I3 + I4.

(3.28)
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By Lemma 3.1, we have

I1 = E
(
E(Z 1(tm−1) · χm,1( X̃(tm−1)))|Gm−1

)
= E

(
Z 1(tm−1) ·E(χm,1( X̃(tm−1))|Gm−1)

)
= 0.

(3.29)

The second equality holds because Z 1(tm−1) is adapted to Gm−1 (note that Z 1 is continuous in time, so Z 1(t−
m−1) =

Z 1(tm−1)). Note that Gm−1 is independent of the random division at tm−1 and this is why we can get I1 = 0 by regard-
ing X̃(tm−1) as a given fixed point. Equation (3.29) is the consistency that ensures convergence.

For term I2,

I2 = E

(
Z 1(tm−1) ·E(χm,1( X̃(t)) − χm,1( X̃(tm−1))|Fm−1)

)

≤ C‖Z 1(tm−1)‖‖E(χm,i( X̃(s)) − χm,i( X̃(tm−1))|Fm−1)‖.
(3.30)

Clearly,

E(χm,i( X̃(s)) − χm,i( X̃(tm−1))|Fm−1) = 1

p − 1

∑
j∈Cθ , j 	=i

E(δ K̃ i j|Fm−1) − 1

N − 1

∑
j: j 	=i

E(δ K̃ i j|Fm−1),

where

δ K̃ i j = K ( X̃ i(s) − X̃ j(s)) − K ( X̃ i(tm−1) − X̃ j(tm−1)).

Denote δ X̃ j := X̃ j(s) − X̃(tm−1). Performing Taylor expansion around tm−1, one has

δ K̃ i j = ∇K ( X̃ i(tm−1) − X̃ j(tm−1)) · (δ X̃ i − δ X̃ j) + 1

2
M : (δ X̃ i − δ X̃ j) ⊗ (δ X̃ i − δ X̃ j),

with M being a random variable (matrix) bounded by ‖∇2 K‖∞ . By (3.17), one finds that

|E(δ K̃ i j|Fm−1)| ≤ C L(1 + | X̃ i(tm−1)|q + | X̃ j(tm−1)|q)τ + CE(|δ X̃ i |2 + |δ X̃ j|2|Fm−1).

By (3.18) and the fact that X̃ i(tm−1) is independent of Cθ , Lemma 3.2 then can control

I2 ≤ C‖Z 1(tm−1)‖τ ≤ C‖Z 1(t)‖τ + Cτ 2.

By Lemma 3.4, the third term on the right hand side of (3.28) is bounded by

I3 ≤ C
τ

p − 1
+ C‖Z 1(t)‖τ + Cτ 2.

The I4 term can be controlled by

I4 ≤ ‖Z 1(t) − Z 1(tm−1)‖
⎛
⎝∥∥∥ 1

p − 1

∑
j∈Cθ

δKij(t)
∥∥∥+

∥∥∥ 1

N − 1

∑
j: j 	=i

δKij(t)
∥∥∥
⎞
⎠ ,

where δKij(t) is defined in (3.23). The first term inside the parenthesis on the right hand side is estimated by (3.25). The 
second term is straightforward. Hence, noticing Lemma 3.4, one has

I4 ≤ ‖Z 1(t) − Z 1(tm−1)‖(4L‖Z 1(t)‖ + Cτ ) ≤ C‖Z 1(t)‖τ + Cτ 2.

Hence,

R(t) ≤ C‖Z 1(t)‖τ + C
τ

p − 1
+ Cτ 2

and thus

d

dt
u(t) ≤ −2(r − 2L)u(t) + C

√
u(t)τ + C

τ

p − 1
+ Cτ 2.

This inequality therefore implies that

sup
t≥0

E| X̃1 − X1|2 = sup
t≥0

u(t) ≤ C
τ

p − 1
+ Cτ 2.

The closeness between μ(1) and μ̃(1) in W2 distance is a simple application of definition (3.3). �
N N
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We point out that the constant C in Theorem 3.1 stays bounded as σ → 0. The proof in Theorem 3.1 is valid for σ = 0, 
when there is no Brownian motion. In I1 and I2, we used χm,i( X̃(tm−1)) to split the terms. If we use χm,i(X(t)) to split the 
terms and use similar techniques as in I3, I4, then there is no requirement on ∇2 K but we need r > 6L.

The first part in Theorem 3.1 in fact says that we can approximate the trajectories of the particles, which is the conver-
gence in strong sense.

It is straightforward to conclude that RBM-1 can approximate the mean field measure (solution to (1.4)) since the mean 
field result is well known (see, for example, [20,53,54]). In fact, as shown in Fig. 1, the triangle inequality yields the 
following.

Corollary 3.1. Suppose Assumption 3.1 holds, then

W2(μ̃
(1)
N (t),μ(t)) ≤ C(

√
τ + N−1/2+ε) (3.31)

for any ε > 0.

The error bound between μ̃(1)
N and μ(1)

N is C
√

τ uniformly in time with C independent of N . The error bound between 
μ

(1)
N and μ is given by C N−1/2+ε ([20]). As shown in the figure, if one takes N → ∞ first, one may get some measure μ̃(t), 

which is the mean field limit of the RBM-1 method. Analyzing this measure will be an interesting problem for the future.
As shown in Fig. 1, the RBMs are a class of Asymptotic-Preserving schemes [41] for particle system (1.2) under the 

scalings of mean field limit, in that they approximate the particle system (1.2) with an error of O (τ ) independent of N , and 
as N → ∞, they become good approximations to the limiting mean-field equation (1.4).

Remark 3.1. If the deterministic flow does not have the contraction property, we may only be able to prove the convergence 
of our methods on finite time interval [0, T ]. Moreover, the mean field limit by Dobrushin’s estimate holds on finite time 
interval [15,17,55]. Consequently, it is possible to show that

W2(μ̃
(1)
N (t),μ(t)) ≤ C(T )(

√
τ + N−1/2), ∀t ∈ [0, T ], (3.32)

for general interaction potentials, where the coefficient depends on T now.

Remark 3.2. For N � 1 when the theory of mean field limit takes effect, the chaos could be created or propagated (in terms 
of the distribution of exchangeable particles). In other words, the j-marginal will be the tensor product of j copies of one 
particle distribution. In this case, the joint distribution could be of low rank, which helps RBMs: the number of time steps 
NT can be much smaller than N/p to get reasonably good approximation ability. This is definitely something that can be 
explored in the future.

Remark 3.3. The fast Monte Carlo method in [30,31] uses subsampling in columns or rows for matrix-matrix multiplication. 
The idea of subsampling as unbiased estimator is the same as the one for RBMs. However, besides subsampling, another 
key idea of RBM is re-subsampling at later time intervals so that the dynamics will be averaged out in time, which differs 
from the random algorithms in matrix computations. This Law of Large Numbers type feature used in time guarantees the 
convergence of RBMs (as indicated by the Law of Large Number type error bound in Theorem 3.1).

Remark 3.4. The analysis here should also work for (1.1), provided some analogies of Lemma 3.1 hold (as discussed in 
section 2.3). For technical needs, one will assume r large enough so that the semigroup given by the deterministic flow is 
again a contraction. Besides, the analysis can be carried over directly to the O (1) time simulation of second order systems 
such as Hamiltonian dynamics, and we provide such an example in Appendix A.

Remark 3.5. If one considers particles associated with charges or masses, they are not exchangeable and the current error 
analysis does not work directly. The consistency lemma (Lemma 3.1) in fact has nothing to do with exchangeability and can 
be generalized to interactions that dependent on the specific chosen particles. The current proof of convergence seems to 
rely on exchangeability, but one can consider the charge or mass as an extended coordinate [48]. With this new insight, the 
new ’particles’ become exchangeable. We believe RBMs also work for such systems but we feel it better to leave this as a 
subsequent project.

4. Numerical verification

In this section, we run some numerical tests to evaluate the RBMs and verify our theory in section 3. The first example is 
a simple artificial example to test the dependence of the errors on N and τ , which satisfies the conditions in Theorem 3.1. 
The second example is the Dyson Brownian motion, and it does not satisfy the conditions in Theorem 3.1 as the kernel is 
singular. RBMs work well for both examples, which implies that the algorithms can be effective for systems far beyond the 
systems mentioned in section 3.
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Fig. 2. Error of RBM-1 versus time step. Blue circle is for N = 50, black star is for N = 500, red square is for N = 2000. (For interpretation of the colors in 
the figure(s), the reader is referred to the web version of this article.)

4.1. A simple test example

We now use the following simple test example to check how the error in RBM-1 depends on N , τ and T (T is the time 
point where we compute the numerical solutions). Here, the spatial dimension is 1 (d = 1)

Ẋ i = −β Xi + 1

N − 1

∑
j: j 	=i

X i − X j

1 + |Xi − X j|2 . (4.1)

The interaction is clearly smooth, bounded and with bounded derivatives. Moreover, it has a long-range interaction.

In principle, to evaluate E(T ) =
√
E| X̃1(T ) − X1(T )|2, we need to run many independent experiments and use empirical 

mean for the approximation. Doing this is clearly very expensive. Alternatively, we only run one experiment and use

Ê(T ) :=
√√√√ 1

N

N∑
i=1

| X̃ i(T ) − Xi(T )|2 (4.2)

to approximate E(T ).
In Fig. 2, we show the numerical results for T = 1. The initial distribution is taken from

ρ0(x) =
√

4 − x2

2π
,

by the Metropolis-Hastings MCMC algorithm [49]. The reference solution Xi(T ) is obtained by solving the fully coupled 
system using the forward Euler scheme with τ = 2−15. The solution X̃ i(T ) is generated by RBM-1 with p = 2. Each step is 
solved by the forward Euler method with τ from 2−7 to 2−4. We considered N = 50, 500, 2000 respectively. We plot the 
error Ê(T ) versus τ for these three N values. The first picture in Fig. 2 is for β = 0 while the second picture in Fig. 2 is 
for β = 1. Clearly, the error is insensitive to the change of N . When N is small, like N = 50, the fluctuation in the error is 
kind of clear. When N is large, in the log-log scale, the curve is already close to straight lines with slope approximately 0.5, 
meaning that the error indeed decays like 

√
τ .

In Fig. 3, we take N = 500. The reference solution is again computed by solving the fully coupled system using the 
forward Euler scheme with τ = 2−15. The algorithm is performed by taking τ = 2−7. If there is confining potential, the 
error stays bounded as T increases. However, if there is no confining potential, the error clearly grows, consistent with 
Remark 3.1. This is indeed natural even for usual ODE discretization for the fully coupled system (1.2). In fact, if there is no 
confining potential, the numerical error grows with T for the forward Euler method.

To test the practical performance of RBM-1, we show the error versus true CPU time in Fig. 4 for N = 100, 103, 104

respectively. The experiment was done using MATLAB R2015b on macOS Mojave system with 1.6 GHz Intel Core i5 processor 
and 4 GB DDR3 memory. The data were collected by computing the times and errors using forward Euler again for steps 
τ = 2−6 − 2−1, and then plotting errors versus times. The lines with circles are for RBM-1 while lines with diamonds are 
for direct computation using forward Euler discretization. One can see clearly that for the error tolerance ε � 10−2 when 
random algorithms are acceptable, RBM-1 saves a lot of time compared with the direct ODE solvers. For example, when 
N = 103, RBM-1 is faster to achieve the given error tolerance ε ≥ 10−2; for N = 104, RBM is much faster in the regime 
shown in the figure. However, since RBMs converge with only 1/2 order, the time needed for RBM can be larger if one 
desires very accurate result and N is not big, and even for this case, one can consider some variance reduction method to 
improve the accuracy of RBMs. For N � 106, direct method takes very long time (it scales like N2), and uses much memory 
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Fig. 3. Error for RBM-1 versus time.

Fig. 4. Error versus CPU time. Lines with circles are for RBM-1 while lines with diamonds are for direct computation using forward Euler discretization.

resource, so the direct method is already unacceptable. RBMs can be run in a reasonable time amount, and this is exactly 
one of the advantages of RBMs.

We now modify the above example to a second order system as studied in Appendix A, which is a Hamiltonian system, to 
show that RBM-1 also works for second order systems on finite time. How to develop random algorithms for Hamiltonian 
systems for long time is an interesting question, and we think it better to leave it for future research. In particular, we 
consider the following system of equations for i = 1, . . . , N:⎧⎪⎪⎨

⎪⎪⎩
Ẋ i = V i,

V̇ i = 1

N − 1

∑
j: j 	=i

X i − X j

1 + |Xi − X j|2 .
(4.3)

For time integration, we use the Verlet scheme⎧⎨
⎩Xi

1 = Xi
0 + V i

0τ + 1

2
F i

0τ
2,

Xi
n+1 = 2 ∗ Xi

n − Xi
n−1 + F i

nτ
2, n ≥ 1.

(4.4)

For the reference solution, F i is the full force using all the particles, while for the random algorithms, F i is computed using 
RBM-1 with p = 2 as before. We sample the initial positions again from ρ0(x) =

√
4−x2

2π while sample the initial velocities 
from the normal distribution N (0, 1). The error as in (4.2) is again computed at T = 1. We consider N = 50, 500, 2000
respectively and the reference solution is obtained using τ = 2−15. The results are shown in Fig. 5. The curves are close to 
straight lines in loglog scale with slope approximately 0.5, meaning that the errors indeed decay like 

√
τ for second order 

systems as well.
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Fig. 5. O (1) time simulation of a 1D Hamiltonian system. Blue star curve is for N = 50, red circle curve is for N = 500 while green diamond curve is for 
N = 2000. The black curve is E = 0.2τ 2 for reference.

4.2. The Dyson Brownian motion

Now, we consider a typical example in random matrix theory [56,57] to test the difference between RBM-1 and RBM-r. 
The random matrix we consider is a Hermitian matrix valued Ornstein-Uhlenbeck process

dA = −β A dt + 1√
N

dB, (4.5)

where the matrix B is a Hermitian matrix consisting of some Brownian motions. In particular, the diagonal elements are 
independent standard Brownian motions. The off-diagonal elements in the upper triangular half are of the form 1√

2
(B R +

iB I ) where B R and B I are independent standard Brownian motions. The lower triangular half elements are determined 
using the Hermitian property. By Itô’s calculus [56–58], it can be shown that the eigenvalues of A satisfy the following 
system of SDEs (1 ≤ j ≤ N), called the Dyson Brownian motion:

dλ j(t) = −βλ j(t)dt + 1

N

∑
k:k 	= j

1

λ j − λk
dt + 1√

N
dB j, (4.6)

where {B j}’s are independent standard Brownian motions. The Brownian motion effect is small when N is large. This system 
therefore should have similar effects as system (1.2) with σ = 0. The limiting equation for N → ∞ is given by [59]

∂tρ(x, t) + ∂x(ρ(u − βx)) = 0, u(x, t) = π(Hρ)(x, t), (4.7)

where ρ is the density for λ as N → ∞, H(·) is the Hilbert transform on R, and π = 3.14 . . . is the circumference ratio.
Below we consider

β = 1. (4.8)

It is shown that the corresponding limiting equation (4.7) has an invariant measure, given by the semicircle law:

ρ(x) = 1

π

√
2 − x2 (4.9)

To numerically test the behavior of our methods, we note an analytic solution to the limiting equation (4.7)

ρ(x, t) =
√

2σ(t) − x2

σ(t)π
, σ (t) = 1 + e−2t . (4.10)

The prefactor for the interaction in the equation is 1/N . For convenience, we change it to 1/(N −1) without introducing sig-
nificant difference. For each iteration, since the force is singular, we adopted the splitting strategy mentioned in section 2.3. 
In particular, define

Xij := Xi − X j. (4.11)

The SDE solving step in RBM-1 is given by
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Fig. 6. The RBM-1 simulation of the Dyson Brownian motion. The empirical densities at various times are plotted. The red curve is the density distribution 
predicted by the analytic solution (4.10). The black curve is the equilibrium semicircle law (4.9).

Fig. 7. The RBM-r simulation of Dyson Brownian motion. The ’time’ is regarded as τ = 10−3 for N/2 iterations. The red curve is the density distribution 
predicted by analytic solution (4.10). The black curve is the equilibrium semicircle law (4.9).

•

Y i
m = 1

2
(Xi

m−1 + X j
m−1) + sgn(Xij

m−1)

√
|Xij

m−1|2 + 4τ ,

Y j
m = 1

2
(Xi

m−1 + X j
m−1) − sgn(Xij

m−1)

√
|Xij

m−1|2 + 4τ .

•
Xi

m = Y i
m − τ Y i

m +
√

τ

N
zi, X j

m = Y j(tm) − τ Y j
m +

√
τ

N
z j.

Here, zi, z j ∼N (0, 1).
In Fig. 6, we show the numerical results using RBM-1 in section 2.1. The initial data (setting t = 0 in (4.10)) are sampled 

using the Metropolis Hastings algorithm [49]. We plot the results at t = 0.5 and t = 5. The number of particles is N = 105

while we use τ = 10−3 for time step. As can be seen, RBM-1 can successfully recover the evolution of distribution and the 
equilibrium semicircle law (4.9), as desired. In Fig. 7, the results of RBM-r are shown. Again, we take N = 105 and τ = 10−3. 
Within one iteration, the same splitting scheme above is used. We find that RBM-r indeed has comparable results with 
RBM-1. Though RBM-r seemingly cannot simulate the dynamics of the distributions, N/2 iterations in fact has comparable 
behavior for time τ . This interesting observation confirms that RBM-r can capture the dynamics for some examples.

Since both stochastic algorithms give similar behaviors, in later examples, we only use one of them to implement for each 
example. If we care more about the dynamical behavior, we use RBM-1 (see the two examples in Section 5.2). Otherwise, 
we use RBM-r. (In fact, the two algorithms do not show significant difference, even for evolutional problems.)

5. Applications

In this section, we apply RBMs to some examples from physics, social and data sciences. Most of these examples do not 
fit into the theoretic framework of the analysis in section 3. For example, in section 5.1, the kernel is singular; in 5.2, the 
equilibrium still exists though the confining potential does not exist. Even though the analysis in section 3 does not apply 
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for some applications, RBMs turn out to work quite well. For the wealth problem in 5.2, we can recover the equilibrium 
extremely well, though the interaction kernel does not decay and there is no confining potential. On one hand, the positive 
results give more supports to the algorithms; on the other hand, for some applications, the stochastic algorithms can be 
regarded as new models for the underlying problems.

5.1. Charged particles on the sphere

The traditional Thomson problem is to determine the stable configuration of N electrons on a sphere. When N becomes 
large, this could lead to the so-called spherical crystals ([60–62]). The configuration may have some meta-states (local 
minimizers of the energy surface). When the number of particles is large, the spherical crystals have defects due to the 
topology of the sphere [61,62].

In the N → ∞ limit, hopefully, we will have a continuous distribution of charges on the sphere ρ(·). The problem then 
corresponds to determining ρ such that the energy

E(ρ) = 1

2

¨

S×S

1

|x − y|ρ(x)ρ(y)dSxdS y (5.1)

is minimized. It is unclear how the energies corresponding to local minimizers are distributed (if there are any).
Regarding charges with surface densities, let us make a mathematical remark. Suppose S is a surface that divides the 

whole space Rd into two halves. Assume there is a continuous distribution of charges on S with density ρ . Let ϕ±(x) be 
the limits of the potential on the two sides of S , and ϕ(x) := ϕ+(x) + ϕ−(x). Then, one has

(−�)
1/2
S ϕ + s(ϕ) = ρ, (5.2)

where (−�)
1/2
S is the 1/2 fractional Laplacian on S and s(ϕ) is some pseudo-differential operators with a symbol of degree 

lower than 1. In other words, to the leading order, the 1/2 fractional Laplacian of ϕ equals ρ . In the case that S is a plane 
or a circle in 2D plane, s(ϕ) = 0. In general, s(ϕ) 	= 0. In fact, by the jump condition of electric fields,

ρ = E+ · n+ + E− · n− = −∂ϕ+

∂n+ − ∂ϕ−

∂n− . (5.3)

It is well-known that the Dirichlet to Neumann operator L is related to the 1/2-fractional Laplacian by

Lϕ = −(−�)
1/2
S f + r( f ), (5.4)

where n is the normal vector pointing into the side where the harmonic extension is performed and r( f ) includes lower 
terms. In the case that S is a plane r( f ) = 0 [63]. (In fact, if S is the base of cylinders, L = −(−�)

1/2
S as well. See [64].) In 

the case of the unit circle in 2D plane, one can refer to [65]. For spheres in higher dimensions, s 	= 0. With (5.4) and (5.3), 
(5.2) follows.

Interacting particle systems on the sphere can be realized experimentally by beads on water droplets immersed in oil 
[66]. By adjusting the environmental solution, the interacting kernel K (·) can also be changed, which does not have to 
be the Coulomb interaction. For such systems, the particles clearly have heat exchange with the environment so that the 
interacting particle system may be described by certain Langevin equations on the sphere:

dXi = V i dt,

mdV i = −γ V i dt + PS

⎛
⎝ 1

N − 1

∑
j 	=i

F (Xi − X j)

⎞
⎠ dt + √

2D dBi
S

(5.5)

Here, PS is the projection onto the tangent space of the sphere while Bi
S is the spherical Brownian motion to guarantee 

that the particle stays on the sphere. For theories of SDEs on manifolds, one may refer to [67]. Here, D and γ must be 
related as in the classical fluctuation-dissipation theorem [68].

In the overdamped limit and with suitable scaling, we then have interacting particle system on the sphere (D1 = D/γ 2)

dXi = PS

⎛
⎝ 1

N − 1

∑
j 	=i

F (Xi − X j)

⎞
⎠ dt +√

2D1dBi
S (5.6)

Numerically discretizing such SDEs on the sphere is an interesting topic which we leave for the future. In this work, we 
consider the Coulomb interaction with σ := √

2D1 = 0, and use RBM-r as the stochastic strategy. The following simple 
scheme for the SDE on the sphere is then adopted.
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Fig. 8. Charged particles on the sphere. The first row is for N = 60 while the second row corresponds to N = 800. The first column shows the distributions 
at the end of simulation while the second column shows how the energy changes with ’time’.

• Randomly picking two indices. Then, solve the following for time t ∈ [tm−1, tm)

dXi =
∑

j:I(i, j)=1

Xi − X j

|Xi − X j|3 dt, (5.7)

where I(i, j) = 1 means that i, j are in the same batch. This can be solved analytically. In particular, defining

v̂m = (Xi
m−1 − X j

m−1)/|Xi
m−1 − X j

m−1|, (5.8)

one then has:

Xi
m = (Xi

m−1 + X j
m−1) + v̂m(|Xi

m−1 − X j
m−1|3 + 6τ )1/3,

X j
m = (Xi

m−1 + X j
m−1) − v̂m(|Xi

m−1 − X j
m−1|3 + 6τ )1/3

(5.9)

• Project the obtained points back to the sphere by dividing its magnitude.

The reason for setting σ = √
2D1 = 0 is that we would like to explore energy stable configurations. We desire low tempera-

ture regime for the ground state. Besides, the stochastic algorithm also introduces randomness so that we still have chance 
to get out of the local minimizers.

To check whether the method can give the desired ground state approximately, we randomly choose initial points on 
the sphere and run the above stochastic algorithms for enough iterations. We do many experiments and check whether we 
always obtain the same final energy level.

In Fig. 8, we show the numerical results in two experiments. The number of particles are chosen as N = 60 and N = 800
respectively. The initial points are chosen randomly. The time step is chosen as τ = 10−4. As before, we regard the ’time’ 
to be τ after N/2 iterations. For N = 60, we see that in the eventual near stable configuration, each particle has 5 or 
6 neighbors, and this agrees with the known results by physicists [61,62]. This configuration is quite different from the 
fullerene C60 structure which is induced by the special properties of Carbon atoms. For the N = 800 case, the particles are 
roughly distributed uniformly. For both figures, there is only one stable energy level during the whole process. This means 
the system was only trapped in the final stable configuration.

To check whether there are other possible stable energy configurations, we collect in Fig. 9 the energies for N = 800
after 3 ∗ (N/2)/τ iterations (T = 3) in 25 experiments. The simulation shows that one can find the ground state of the 
configuration almost surely using the stochastic algorithm and it is not easy to be trapped in local minimizers, if there are 
any. As studied by the physicists, there are many energy levels for the Thomson sphere. However, the numerical results here 
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Fig. 9. Energy statistics. This histogram shows the terminal energy for 25 experiments. The terminal ’time’ is T = 3.

seem to suggest that the stochastic algorithms can obtain the ground state with high probability and the local minimizers of 
the energy landscape probably has small energy barriers. Maybe, some interesting phenomena happen for large N ’s which 
needs further investigation.

5.2. Two examples from economics and social science

In this section, we apply RBM-1 for two important models in social sciences, namely the evolution of wealth [69] and 
opinion dynamics [5]. The obtained stochastic processes not only are algorithms for the original models, but also can be 
viewed as new models which consider the fact that only a few individuals commute during a short time.

5.2.1. Stochastic dynamics of wealth
We consider the model proposed by Degond et al. [69], which tries to understand the evolution of N market agents with 

two attributes: the economic configuration Xi and its wealth Y j .

Ẋ i = V (Xi, Y i),

dY i = − 1

N − 1

∑
k:k 	=i

ξik�(|Xi − Xk|)∂yφ(Y i − Y k)dt + √
2DY idBi .

(5.10)

The first equation describes the evolution of the economic configuration, which is driven by the local Nash equilibrium and 
it is related to mean-field games [12,70]. The second equation describes the evolution of the wealth, which contains two 
mechanisms: the trading model proposed by Bouchaud and Mezart [71], and the geometric Brownian motion in finance 
proposed by Bachelier in 1900 [72]. The quantity 

√
2D is the volatility. The function φ is the trading interaction potential, 

while ξik�(|Xi − Xk|) is the trading frequency. Often one assumes that ξik depends on the number of trading agents in the 
economic neighborhoods of i and k:

ξik = ξ

(
ρ i,� + ρk,�

2

)
, ρ i,� = 1

N − 1

∑
�	= j

�(|X� − Xi|). (5.11)

The mean field Fokker-Planck equation is given by

∂t f + ∂x(V (x, y) f ) + ∂y(F f ) = D∂yy(y2 f ) (5.12)

where

F (x, y, t) = −
ˆ

x′≥0,y′≥0

ξ

(
1

2
(ρ�(x, t) + ρ�(x′, t))

)
�(|x − x′|)

× ∂yφ(y − y′) f (x′, y′, t)dx′dy′, (5.13)

and

ρ�(x, t) =
ˆ

′ ′
�(|x − x′|) f (x′, y′, t)dx′dy′.
x >0,y >0
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Now, if one considers the homogeneous case where the wealth dynamics is independent of the position in the economic 
configuration space, then � is a constant. In this case, the dynamics is reduced to the interacting particle system, except 
that one has multiplicative noise

dY i = − κ

N − 1

∑
k:k 	=i

∂yφ(Y i − Y k)dt + √
2DY idBi, (5.14)

where κ := �ξ
( 1

2 (ρ i� + ρk,�)
)

is now a constant. The mean field equation is now given by

∂tρ(y) = −∂y(F (y)ρ(y)) + D∂yy(y2ρ(y)), (5.15)

where

F (y) = −κ

ˆ

y≥0

∂yφ(y − y′)ρ(y′)dy′.

The equilibrium distribution is given by

ρ∞(y) ∝ exp

(
−α(y)

D

)
,

where α satisfies

∂yα(y) = − 1

y2
F (y) + 2D

y
.

We now apply RBM-1 with p = 2 to (5.14) and have for t ∈ [tm−1, tm)

dY i = −κ∂yφ(Y i − Y θ )dt + √
2DY idBi, i = 1, . . . , N, (5.16)

where θ is a random index that is grouped with i in the random division. In some sense, the stochastic dynamics described 
by this algorithm can model what is happening in the real world: each agent only trades with a small number of random 
agents at a time. Then, after some time interval, the agents trade with others. Hence, (5.16) is not just an algorithm but also 
it can be viewed as a new model.

For numerical test, choose the quadratic trading interaction as in [69, section 3.4]

φ(y) = 1

2
y2.

This interaction function may not be practical as it increases with y (intuitively, as y → ∞, it should go to zero). The good 
thing is that with this interaction function, one can find the equilibrium distribution of wealth for (5.14) as

ρ∞(y) = (κη/D)κ/D+1

�(κ/D + 1)
y−(2+κ/D) exp

(
− κη

D y

)
1y>0. (5.17)

This distribution is the inverse Gamma distribution and agrees with the Pareto power law for large y. Here, η is the mean 
wealth.

Now, we take κ = D = 1 and consider the random dynamics (5.16):

dY i = −(Y i − Y θ )dt + √
2Y idBi, i = 1, . . . , N.

In Fig. 10, we plot the empirical distribution of the wealth with N = 105 agents. We choose τ = 10−3 and do the 
simulation to T = 3. The SDE again is solved by the splitting strategy. Note that the splitting scheme preserves the mean 
wealth. For the test, we choose initial data as Xi = |Y i | with Y i ∼N (0, 1). The reference curve is (5.17) with

η =
√

2√
π

. (5.18)

Clearly, the numerical results agree perfectly with the expected wealth distribution.
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Fig. 10. Wealth distribution for stochastic dynamics.

Fig. 11. Stochastic opinion dynamics versus time. Plots of three experiments of the stochastic dynamics with the same initial data. No Brownian motion 
(εN = 0).

5.2.2. Stochastic opinion dynamics
In this section, we consider some stochastic revisions of the opinion dynamics in [5], where the following two models 

are mentioned

d

dt
Xi = α

1

N − 1

∑
j 	=i

φ(|X j − Xi|)(X j − Xi) (5.19a)

and

d

dt
Xi = α

∑
j 	=i

φ(|X j − Xi|)∑
k φ(|Xk − Xi |) (X j − Xi). (5.19b)

Here, φ is called the influence function. These models are introduced for the emergence of consensus of opinions. Note that 
in the original model, the prefactor is 1/N and we use 1/(N − 1) here. The effect of chis change is minor.

Here, (5.19b) is not convenient for stochastic algorithms because of the denominator. Instead, we consider RBM-1 applied 
to (5.19a), and have the following:

dXi = αφ(|Xθ − Xi |)(Xθ − Xi)dt + εNdBi, (5.20)

where θ , again as before, is a random index that is fixed for t ∈ [tm−1, tm). If εN = 0, this is the stochastic algorithm of 
(5.19a) directly. The parameter εN is to represent the random fluctuation on its opinions. If the number of agents is large, 
we believe this should be small. In fact, this stochastic algorithm seems closer to what is happening in the world: each 
person only talks to one or few people at a time. Combining its previous opinion, it forms a new opinion.

Let us consider the influence function

φ(r) = χ[0,1] (5.21)

as in [5, Section 3.3].
In Fig. 11, we show the numerical results. The figure shows the results of three experiments with the same initial 

data. We choose N = 103 and τ = 10−4, α = 40. Clearly, the final stationary consensus is sensitive with respect to initial 
distribution. With the same initial data, though the dynamics is stochastic, the main behavior is the same for the three 
experiments. There are four main clusters of consensus. However, interestingly, in some experiments (like the third picture), 
there are may be some individuals that do not belong to any cluster, which seems to be the case in real world: some 
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Fig. 12. Opinion dynamics versus time. The first figure has no Brownian motion. The second is with εN = N−1/3. The two figures are with the same initial 
data.

individuals are isolated at the early stage, and after the main clusters of consensus form, they are not affected by these 
groups since they are so different. The randomness introduced by the algorithms does not quite affect the main clusters of 
consensus, and only a few individuals might behave differently due to the randomness. After certain time, when the clusters 
of consensus are formed, the randomness does not play any roles any more: the individuals only talk to members in their 
own clusters.

In Fig. 12, we show the numerical results for the stochastic opinion dynamics with Brownian motion εN = 1
N1/3 . The N , 

τ , α parameters are the same. The evolution of clusters of consensus is roughly the same with or without the Brownian 
motion. However, Brownian motions indeed introduce fluctuation of opinions within the clusters. This means that the 
fluctuation is not very important when the main clusters of opinions are formed.

5.3. Clustering through interacting particle system

In this section, we consider using the interacting particle system (1.2) for clustering, as discussed in [73]. The idea is 
like this: consider N particles with a given adjacency matrix A = (aij), aij ≥ 0. Then, we construct the interacting particle 
system as

d

dt
Xi = α

N − 1

∑
j: j 	=i

(aij − β)(X j − Xi) (5.22)

where α and β are some parameters. This is designed such that the particles with positive aij − β attract with each other 
so that they tend to gather together, while those with negative aij − β repel each other so that they separate. The hoping is 
that the intrinsic clusters will emerge automatically.

With the RBM-r, the computational cost is significantly reduced and this then becomes a practical method. Each time, 
we pick a random set C that contains p = 2 elements. The dynamics we consider is then

d

dt
Xi = α(aiθ − β)(Xθ − Xi) (5.23)

where θ is again the random index that is constant on [tm−1, tm). Clearly, the random batch can be picked from those with 
nonzeros of aij only to improve the efficiency.

The update formula is

Xi
m = [(Xi

m−1 + X j
m−1) + (Xi

m−1 − X j
m−1)exp(−2α(aij − β)τ )]/2;

X j
m = [(Xi

m−1 + X j
m−1) − (Xi

m−1 − X j
m−1)exp(−2α(aij − β)τ )]/2.

5.3.1. Cluster for stochastic block model
Let us consider the stochastic block model ([74,75]). The model is like this: suppose there are k clusters. For i, j in the 

same cluster, P (aij = 1) = p and P (aij = 0) = 1 − p. Otherwise, P (aij = 1) = q and P (aij = 0) = 1 − q. The entries aij are 
assumed to be independent. We assume that we only know the adjacent matrix in one experiment (if we know the matrices 
for several experiments, we can then combine them to get more accurate clusters). Clearly, the adjacent matrix is noisy. We 
are going to test whether or not we can still recover the clusters using the noisy adjacent matrix.

In Fig. 13, we show the adjacent matrix from one experiment. In this example, we have N = 1200 particles. The first 
200 particles are designed to be in the first cluster, the next 400 are in the second cluster and the last 600 are in the third 
cluster. The probabilities are chosen as

p = 0.7, q = 0.3.

In the matrix, yellow dots mean 1 while blue dots mean 0. As expected, most of the entries in the off-diagonal blocks are 0
with some yellow ’dust’ scattered inside them. Most of the entries in the diagonal blocks are 1 with blue dots inside them.
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Fig. 13. Clustering: an adjacent matrix for the stochastic block model.

Fig. 14. Clustering using a noisy adjacent matrix from the stochastic block model. The plots show the positions of the particles at different ’time’ points. 
The desired clusters can be recovered with few mistakes.

In the experiment, we set β = 1
2 and α = 40, τ = 10−3. We initialize their positions randomly on [0, 50]. The numerical 

results in an experiment are shown in Fig. 14. Again the “time” is regarded as τ after N/2 iterations. From the figure, it is 
clear that the clusters can be recovered correctly though the adjacent matrix is noisy.

5.3.2. Reordering for sparse matrix
As another example, let us consider reordering sparse matrices as a byproduct of the clustering. The point is that large 

aij entry tends to group the two indices together. If we use the terminal Xi ’s to sort, the reordered matrix can have large 
entries near the diagonal. If there are several distinct clusters, we will then have diagonal block matrix.

Consider the matrix given by

A1 = B BT + I,

where B is the ’west0479’ matrix, which is a sparse matrix in the standard database of MATLAB. Consequently, A1 is a 
sparse matrix. Since matrix A1 can have negative entries, we define A = (aij) with aij = |A1(i, j)| to get a suitable adjacent 
matrix. Since A is sparse, we do sampling over the nonzero entries only.

Fig. 15 shows the matrices min(P , 10) (“min” here means the entry-wise minimum), where the meaning of P is as 
follows: in the first figure, P is A; in the second figure, P is the reordered matrix using our strategy at T = 5; P in the 
third figure is the matrix with approximated minimal degree ordering. Clearly, our strategy gathers all the big entries near 
the diagonal, which means particles with strong interactions indeed form clusters.

The ordering resulted from our clustering strategy works not that good as the minimal degree ordering using the criterion 
from sparse matrix theory. For example, in the Cholesky decomposition, there are 37896 nonzero entries. Meanwhile, by 
the approximated minimal degree ordering, there are 14493 nonzero entries in the Cholesky decomposition. However, the 
ordering using clustering gathers big entries near diagonals, which can yield better stability and may be advantageous for 
some applications.

6. Conclusions

We have developed Random Batch Methods for interacting particle systems with large number of particles and they 
reduce the computational cost significantly for N(N � 1) particles from O (N J ) to O (N) per time step. For RBM-1, the 
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Fig. 15. A sparse adjacent matrix: clustering and reordering.

method without replacement, we have given a particle number independent error estimate under some special interactions. 
We have applied these methods to some representative problems of binary interactions in math, physics, social science and 
data science, and numerical results have supported our theory and expectations. The random algorithms are powerful for 
systems with large number of individuals and high dimensions.

As well accepted, in stochastic gradient descent, adding momentum could help to find flatter minimizers and improve 
results. In other words, the Langevin dynamics seems better for optimization and sampling [76,77]. Hence, considering the 
interacting particles with mass might be better for sampling the invariant measure of the nonlinear Fokker-Planck equation. 
This is left for future research. Besides, there are many interesting projections ahead, for example, proof of convergences for 
more general external and interacting potentials, and for RBMs with replacements. It is also interesting to develop similar 
particle methods for the mean field equations, whenever they are available, as was done in [39] but for more general mean 
field equations.
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Appendix A. An error analysis for a Hamiltonian system

In this section, we give a convergence proof of the RBM-1 for the following second order (Hamiltonian) system

Ẋ i = V i,

V̇ i = b(Xi) + 1

N − 1

∑
j: j 	=i

K (Xi − X j),
(A.1)

where the dot means time derivative. Note that the variable ’V ’ here is reserved for the velocity so we use b(·) to represent 
the external force field corresponding to −∇V in the main text.

Similarly, the processes generated by RBM-1 are determined by the following ODEs for t ∈ [tm−1, tm)

˙̃Xi = U i,

U̇ i = b( X̃ i) + 1

p − 1

∑
j∈Cq : j 	=i

K ( X̃ i − X̃ j),
(A.2)

where Cq is the batch in which i lives.
Assume that the initial data are drawn randomly and independently:

Assumption A.1. Systems (A.1) and (A.2) share the same initial data Xi(0) = X̃ i(0) = Xi
0 and V i(0) = U i(0) = V i

0, and the 
initial data (Xi , V i ) are i.i.d. sampled from some common distribution.
0 0
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With the setup, one can show the convergence of RBM-1 similarly.

Theorem A.1. Let Assumption A.1 hold. Suppose b(·) ∈ C1(Rd) with b and ∇b being bounded, and K is bounded and Lipschitz contin-
uous. Then the RBM-1 converges on [0, T ] in the sense that

sup
0≤t≤T

(
E

1

N

N∑
j=1

(|X j(t) − X̃ j(t)|2 + |V j(t) − U j(t)|2)
)1/2 =

sup
0≤t≤T

(
E(|Xi(t) − X̃ i(t)|2 + |V i(t) − U i(t)|2)

)1/2 ≤ C(T )

√
τ

p − 1
,

(A.3)

for all i ∈ {1, . . . , N} and some C(T ) > 0 independent of N.

To prove this, one similarly introduces the error processes:

Z i = X̃ i − Xi,

W i = U i − V i
(A.4)

Clearly, the error processes satisfy for t ∈ [tm−1, tm) that

Ż i = W i,

Ẇ i =
(

b( X̃ i) − b(Xi)
)

+ 1

N − 1

∑
j: j 	=i

δKij(t) + χm,i( X̃),
(A.5)

where again

δKij = K ( X̃ i − X̃ j) − K (Xi − X j), (A.6)

and the error of the interaction force is given by

χm,i(x) := 1

p − 1

∑
j∈Cθ , j 	=i

K (xi − x j) − 1

N − 1

∑
j: j 	=i

K (xi − x j). (A.7)

The notation Cθ is used as we want to emphasize that it is a random set over all experiments instead of the realization in 
one experiment (for which we use Cq).

The following lemmas are some preparation for the proof of the convergence, which are analogies of the lemmas in 
Section 3 but are much easier due to the absence of Brownian motions.

Lemma A.1. For any q > 1, the q-moments are bounded almost surely. More precisely, there exists Cq(T ) > 0 such that it holds almost 
surely that

sup
0≤t≤T

(| X̃ i(t)|q + |U i(t)|q) ≤ Cq(T ), (A.8)

and

sup
0≤t≤T

(|Xi(t)|q + |V i(t)|q) ≤ Cq(T ). (A.9)

The proof is very straightforward for which we omit the details. For example, regarding system (A.2), it holds almost 
surely that for t ∈ [tm−1, tm]:

d

dt
(| X̃ i |q + |U i |q) = q| X̃ i |q−2 X̃ i · U i + q|U i|q−2U i ·

⎛
⎝b( X̃ i) + 1

p − 1

∑
j∈Cθ : j 	=i

K ( X̃ i − X̃ j)

⎞
⎠

≤ C | X̃ i |q−1|U i | + C |U i |q−1

≤ C1(| X̃ i |q + |U i |q) + C2.

This will give the uniform bound of | X̃ i |q + |U i |q on [0, T ].
With the moments bound, it is easy to conclude the following for which we omit the proof.
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Lemma A.2. For all t ∈ [tm−1, tm),

‖ X̃ i(t) − X̃ i(tm−1)‖ + ‖U i(t) − U i(tm−1)‖ ≤ C(T )τ , (A.10)

where ‖ · ‖ again means the L2(�) norm. Also, almost surely, it holds that

|U i(t) − U i(tm−1)| + |V i(t) − V i(tm−1)| ≤ C(T )τ . (A.11)

Proof of Theorem A.1. Define again

u(t) = E
1

N

N∑
j=1

(|Z j|2 + |W j|2). (A.12)

Due to exchangeability,

u(t) = E(|Z i|2 + |W i |2), ∀i ∈ {1, . . . , N}. (A.13)

For t ∈ [tm−1, tm), taking time derivative, one has

d

dt
u = 2E

⎛
⎝Z i · W i + W i · (b( X̃ i) − b(Xi)) + W i · 1

N − 1

∑
j: j 	=i

δKij

⎞
⎠

+ 2EW i(t) · χm,i(Y (t)).

Since K is Lipschitz continuous,

E

⎛
⎝Z i · W i + +W i · (b( X̃ i) − b(Xi)) + W i · 1

N − 1

∑
j: j 	=i

δKij

⎞
⎠

≤ CE(|Z i||W i |) + C
1

N − 1

∑
j: j 	=i

E|W i||Z j|

≤ Cu(t).

The second inequality above is due to exchangeability.
Now, one can do the same trick as in Section 3:

EW i(t) · χm,i( X̃(t)) = EW i(tm−1) · χm,i( X̃(tm−1)) +EW i(tm−1) · (χm,i( X̃(t)) − χm,i( X̃(tm−1)))

+E(W i(t) − W i(tm−1)) · χm,i(X(t))

+E(W i(t) − W i(tm−1)) · (χm,i( X̃(t)) − χm,i(X(t))) =: I1 + I2 + I3 + I4. (A.14)

Similarly, I1 = 0, due to Lemma 3.1. Also,

I2 ≤ ‖W i(tm−1)‖
∥∥∥∥∥∥

1

p − 1

∑
j∈Cθ , j 	=i

|δK ij| + 1

N − 1

∑
j: j 	=i

|δK ij|
∥∥∥∥∥∥ ,

where

δK ij := K ( X̃ i(t) − X̃ j(t)) − K ( X̃ i(tm−1) − X̃ j(tm−1)).

Clearly, due to the Lipschitz continuity of K and the equation of X̃ i , it holds

|δK ij| ≤ C

⎛
⎜⎝

tˆ

tm−1

|U i(s)|ds +
tˆ

tm−1

|U j(s)|ds

⎞
⎟⎠≤ C(|U i(tm−1)|τ + |U j(tm−1)|τ + τ 2),

where the almost sure bound of U i(t) − U i(tm−1) in Lemma A.2 has been used. Applying Lemma 3.2 regarding the norm of 
random sum, one therefore obtains

I2 ≤ C‖W i(tm−1)‖τ ≤ C(‖W i(t)‖τ + τ 2).
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Similar as in Section 3, one has

I3 ≤ C
√

uτ + ‖�i‖∞
(

1

p − 1
− 1

N − 1

)
τ .

Similarly as I2, one can control I4 by

I4 ≤ ‖W i(t) − W i(tm−1)‖
∥∥∥∥∥∥

1

p − 1

∑
j∈Cθ , j 	=i

|δKij| + 1

N − 1

∑
j: j 	=i

|δKij|
∥∥∥∥∥∥ ,

where

δKij(t) = K ( X̃ i(t) − X̃ j(t)) − K (Xi(t) − X j(t)).

Using the Lipschitz continuity of K again and the equation of Xi, X̃ i , one has

|δKij| ≤ | X̃ i − Xi |(tm−1) + |U i(tm−1) − V i(tm−1)|τ
+ | X̃ j − X j|(tm−1) + |U j(tm−1) − V j(tm−1)|τ + Cτ 2.

Since ‖W i(t) − W i(tm−1)‖ ≤ Cτ and applying again Lemma 3.2, one has

I4 ≤ C
√

uτ + Cτ 2.

The claim then follows by Grönwall inequality as in Section 3. �
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