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INTERACTING PARTICLE SYSTEMS∗

SHI JIN†, LEI LI‡, AND YIQUN SUN§

Abstract. We investigate several important issues regarding the random batch method (RBM)
for second order interacting particle systems. We first show the uniform-in-time strong convergence of
RBM for second order systems under suitable contraction conditions when the interaction kernels are
regular. Second, we propose some variants of RBM for second order systems that can have singular
interaction kernels via a kernel splitting strategy, and investigate numerically the application of such
methods to molecular dynamics.
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1. Introduction. A significant number of important phenomena in physical,
social, and biological sciences are described at the microscopic level by interacting
particle systems, which exhibit interesting features. Examples include fluids and
plasma [21, 6], swarming [51, 11, 10, 17], chemotaxis [28, 3], flocking [16, 25, 1],
synchronization [14, 24], and consensus [45], to name a few. These interacting particle
systems can be described in general by the first order systems

dXi = b(Xi) dt+ αN
∑
j:j 6=i

K(Xi −Xj) dt+ σ dW i, i = 1, 2, . . . , N,(1.1)

or the second order systems

dXi = V i dt,

dV i =

b(Xi) + αN
∑
j:j 6=i

K(Xi −Xj)− γV i
 dt+ σ dW i.

(1.2)

Here, Xi ∈ Rd are the labels for the particles, and b(·) is some given external field. The
stochastic processes {W i}Ni=1 are i.i.d. Wiener processes, or the standard Brownian
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742 SHI JIN, LEI LI, AND YIQUN SUN

motions. We will loosely call Xi the “locations” or “positions,” and V i the velocities
of the particles, though the specific meaning can be different in different situations.
The function K(·) : Rd → Rd is the interaction kernel. If γ = σ = 0 and b = −∇U for
some potential U , one has a Hamiltonian system like the one for electrons in plasma
[53]. For the molecules in the heat bath [35, 9], Xi and V i are the physical positions
and velocities, described by the underdamped Langevin equations, where σ and γ
satisfy the so-called fluctuation-dissipation relation

σ =
√

2γ/β,(1.3)

where β is the inverse of the temperature (we assume all the quantities are scaled
and hence dimensionless so that the Boltzmann constant is absent). The first order
system (1.1) can be viewed as the overdamped limit of the second order systems (1.2)
with the fluctuation-dissipation relation satisfied.

If one directly discretizes (1.1) or (1.2), the computational cost per time step is
O(N2). This is undesired for large N . The fast multipole method (FMM) [48] is able
to reduce the complexity to O(N) for fast enough decaying interactions. However,
the prefactor in the linear scaling could be large and the implementation of FMM is
nontrivial. A simple random algorithm, called the random batch method (RBM), was
proposed in [31] to reduce the computation cost per time step from O(N2) to O(N),
based on the simple “mini-batch” idea. The “random mini-batch” idea is famous
for its application in the so-called stochastic gradient descent (SGD) [47, 7, 8] for
machine learning problems. The idea was also used for Markov chain Monte Carlo
methods like the stochastic gradient Langevin dynamics (SGLD) by Welling and Teh
[54] and the random batch Monte Carlo methods [42], and also for the computation
of the mean-field flocking model [1, 11] motivated by Nanbu’s algorithm of the direct
simulation Monte Carlo method [5, 46, 2]. The key behind the mini-batch idea is
to find some cheap unbiased random estimator for the original quantity with the
variance being controlled. Depending on the specific applications, the design can be
different. For interacting particle systems in [31], this is realized by random grouping
and then allowing the particles to interact only within the groups for each small time
subinterval. Compared with FMM, the accuracy of RBM is lower, but RBM is much
simpler to implement and is valid for more general potentials (e.g., the SVGD ODE
[40]). In addition, the prefactor in the linear scaling is small (see section 4.2 for more
discussions). The method converges due to the time average in time, and thus the
convergence is like that in the law of large numbers, but in time (see [31] for a more
detailed explanation). Hence, one may understand such methods as certain Monte
Carlo methods. If there is mixing and ergodicity for the systems, the simulation can
converge well.

RBM for interacting particle systems has been used or extended in various di-
rections, from sampling [40, 42, 33] to molecular dynamics [32, 41] and control of
synchronization [4, 36]. RBM has been shown to converge for finite time intervals if
the interaction kernels are good enough [40, 31], and in particular an error analysis
for deterministic Newton-type second order systems is given in the appendix of [31].
Moreover, a convergence result of RBM for the N -body Schrödinger equation is also
obtained in [23]. For long time behaviors, it is expected that the method works for
systems that have ergodicity and mixing properties, like systems in contact with a
heat bath and that converge to equilibria. Previous rigorous studies of such systems
mainly focus on first order systems due to good contraction and mixing properties [31,
30]. Second order systems are, however, more common in nature, especially systems
in contact with a heat bath that are very important for molecular dynamics [21].
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 743

Whether RBM can be applied directly to obtain good results for direct molecular
dynamics simulation needs careful study both in theory and in practice. For closed
systems that are Hamiltonian, like the particle systems for the Vlasov–Poisson equa-
tions (in this case γ = σ = 0), RBM may be applied to get correct simulation for
finite time, but the long time behavior is not clear for these systems. Hence, in this
work we mainly focus on systems that are in contact with a heat bath.

In this work, our goal is two-fold. First, we aim to prove rigorously that RBM
converges for large times with certain contraction conditions for second order systems
(1.2). The theoretic analysis is possible for systems with regular interaction kernels
while it becomes challenging for singular kernels. The singular kernels, however, are
very common in applications like in molecular dynamics simulations. In fact, not only
is analysis challenging for singular kernels, but direct application of RBM could also
bring in numerical instability. Hence, as a second goal, we aim to combine the random
grouping with the kernel splitting strategies as in [43, 26, 42] so that RBM could be
practically applied for systems with singular kernels (see section 2.2) and thus applied
to molecular dynamics simulations (see section 4).

Now let us discuss the regimes to consider. In the mean field limit regime [49, 22,
37], one chooses

αN =
1

N − 1
(1.4)

so that as N →∞ the empirical distribution µ(N) := N−1
∑N
i=1 δ(x−Xi)⊗δ(v−V i)

converges almost surely under the weak topology to the solutions of the limiting PDE

∂tf = −∇x · (vf)−∇v ·
(

(b(x) +K ∗x f − γv)f
)

+
1

2
σ2∆vf.(1.5)

The particle system (1.2) can also be regarded as a numerical particle method for
solving the mean field PDE (1.5). Examples of such PDEs include the granular media
equations [12] and the Vlasov equations for which γ = σ = 0 [53]. In [31], it has been
shown that RBM is asymptotic-preserving for first order systems regarding the mean-
field limit, which means the algorithm can approximate the one-marginal distribution
with error bound independent of N . Below, we show in section 3 that RBM is also
asymptotic-preserving regarding the mean-field limit for second order systems under
suitable conditions.

In the molecular dynamics simulations, one chooses αN = 1, and the equations
are basically given by

dXi = V i dt,

dV i =

−∑
j:j 6=i

∇φ(Xi −Xj)

 dt+ dξi.
(1.6)

Here, φ(·) is the interaction potential and dξi means the interaction with the environ-
ment that changes the momentum, which we will discuss in section 4.1. Depending on
how to model the coupling to the heat batch, one may choose different thermostats like
the Andersen thermostat, the Langevin dynamics, or the Nosé–Hoover thermostat,
etc., so different expressions for dξi can be used (see section 4.1). Though αN = 1 is
often chosen for molecular dynamics, one may do time and spatial rescalings to match
the mean field regime αN = 1/(N − 1) factor. However, the scaling is not crucial for
simulation of molecular dynamics (see the discussion in section 4.2); hence, in this
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744 SHI JIN, LEI LI, AND YIQUN SUN

molecular dynamics regime with αN = 1, we will apply RBM directly when it has
benefits without scaling it to the mean-field regime.

The rest of the paper is organized as follows. In section 2, we give a brief intro-
duction to RBM and introduce the potential splitting so that RBM can be applied
for systems with singular interaction kernels. In section 3, we establish the long
time strong error estimate for regular kernels under certain contraction conditions.
We provide some discussions on the details on applying RBM with kernel splitting
to simulations of molecular dynamics in section 4. Some numerical experiments are
performed in section 5 to verify the claims and validate the methods.

2. The algorithms. In this section, we give a detailed explanation of RBM
for second order interacting particle systems and then propose the variants of RBM
for singular interaction kernels via a kernel splitting strategy. The analysis, which
is currently possible for regular kernels, will be given in section 3. The details of
implementation of RBM with kernel splitting for one of the important applications of
second order systems with singular kernels, the molecular dynamics simulations, will
be given in section 4.

Let us briefly explain the random grouping strategy for RBM in [31] that realizes
the mini-batch idea for interacting particle systems. Let T > 0 be the simulation time,
and choose a time step τ > 0. Pick a batch size p� N , p ≥ 2 that divides N (RBM
can also be applied if p does not divide N ; we assume this only for convenience).
Consider the discrete time grids tk := kτ , k ∈ N. For each subinterval [tk−1, tk),
the method has two substeps: (1) at tk−1, divide the N particles into n := N/p
groups (batches) randomly; (2) let the particles evolve with interaction only inside
the batches.

2.1. RBM for regular kernels. Applying the above strategy to the second
order system (1.2) with interacting forces that do not have singularity yields the
method as shown in Algorithm 2.1.

The method shown in Algorithm 2.1 shares some similarity with the stochastic
gradient Hamiltonian Monte Carlo (SGHMC) method with friction proposed in [13,
sections 3.2–3.3], which is a Markov chain Monte Carlo method for Bayesian inference
and machine learning. The difference is that the method shown in Algorithm 2.1 uses
random grouping for interacting particles, while SGHMC uses random samples to
compute the approximating gradients; i.e., the ways to implement mini-batch are

Algorithm 2.1 (RBM for (1.2)).
1: for k in 1 : [T/τ ] do
2: Divide {1, 2, . . . , N = pn} into n batches randomly.
3: for each batch Cq do
4: Update Xi’s (i ∈ Cq) by solving for t ∈ [tk−1, tk) the following:

dXi = V i dt,

dV i =

b(Xi) +
αN (N − 1)

p− 1

∑
j∈Cq,j 6=i

K(Xi −Xj)− γV i
 dt+ σ dW i.

(2.1)

5: end for
6: end for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

5/
22

 to
 2

02
.1

20
.8

.2
10

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 745

different. The SGHMC in [13] is a sampling method and the momentum will be
resampled occasionally. Since the underdamped Langevin system does not satisfy
the detailed balance, using it as a block for the Markov chain may result in some
systematic error. The method shown in Algorithm 2.1 is a direct simulation approach
for the underdamped Langevin equation, so it can be used for dynamical simulation to
capture the transition behaviors approximately, and it can also be used for sampling
from the equilibrium.

Remark 2.1. Despite the difference mentioned above, we remark that the random
grouping strategy can be viewed as a particular stochastic gradient as in [47, 54]
when K(x) = −∇φ(x). In fact, for this case, we introduce the Nd-dimensional
vector X := (X1, . . . , XN ) and consider the full interacting energy corresponding to
αN = 1/(N − 1):

E(X) :=
1

2(N − 1)

∑
i 6=j

φ(Xi −Xj).(2.2)

In [47, 54], the stochastic gradient can be computed by choosing any subset of terms
in the sum (2.2). For random grouping in [31], one is only allowed to choose the
summands in a particular way. For a given set of random batches C = {C1, . . . , Cn},
one may use the random variable

Ẽ(X) :=
1

2(p− 1)

n∑
q=1

∑
k,`∈Cq

φ(Xk −X`)(2.3)

to approximate E(X), and using its gradient for the dynamics leads to the random
grouping in [31] in the case K = −∇φ, though RBM in [31] applies to more general
kernels.

2.2. RBM with kernel splitting. If the interaction kernel K is singular at
x = 0, which is often the case in applications like the molecular dynamics simulations
[15, 21], direct discretization of the equations in Algorithm 2.1 can lead to numerical
instability. For first order systems, in the case p = 2, one may take advantage of the
time-splitting method to accurately solve the singular part to eliminate the instability
[31, 41]. For second order systems or first order systems with p ≥ 3, the time splitting
trick does not apply anymore, and applying RBM directly leads to poor results. To
resolve this issue, we adopt the splitting strategy in [43, 26, 42].

In fact, one decomposes the interacting force K into two parts:

K(x) = K1(x) +K2(x).(2.4)

Here, K1 has short range that vanishes for |x| ≥ r0, where r0 is a certain cutoff
chosen to be comparable to the mean distance of the particles. The part K2(x) is a
bounded smooth function. With this decomposition, we then apply RBM to the K2

part only. The resulted method is shown in Algorithm 2.2. Now, if the particles do
not accumulate and the local density remains low, the summation in K1 can be done
practically in O(1) time for given i due to the short range. This can be implemented
using data structures like cell-list [21, Appendix F]. In many applications, K1 is a
repulsive force. One may put the particles on a lattice at t = 0 as in a solid, and
the repulsive term K1 could forbid them from getting too close so that the particles
could stay separated in simulations. Hence, the cost per time step is practically O(N)
though not theoretically guaranteed.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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746 SHI JIN, LEI LI, AND YIQUN SUN

Algorithm 2.2 RBM with splitting for (1.1) and (1.2).
1: Split K =: K1 +K2, where K1 has short range, while K2

has long range but is smooth.
2: for k in 1 : [T/τ ] do
3: Divide {1, 2, . . . , N = pn} into n batches randomly.
4: for each batch Cq do
5: Update Xi’s (i ∈ Cq) by solving for t ∈ [tk−1, tk)

dXi =

(
b(Xi) + αN

∑
j:j 6=i

K1(Xi −Xj)

+
αN (N − 1)

p− 1

∑
j∈Cq,j 6=i

K2(Xi −Xj)

)
dt+ σ dW i,

(2.5)

or

dXi = V i dt,

dV i =

b(Xi) + αN
∑
j:j 6=i

K1(Xi −Xj)− γV i
 dt

+
αN (N − 1)

p− 1

∑
j∈Cq,j 6=i

K2(Xi −Xj) dt+ σ dW i.

(2.6)

6: end for
7: end for

SinceK2 is bounded, RBM can be applied well due to the boundedness of variance,
without introducing too much error. Moreover, we are not applying RBM on the K1

part, which is a repulsive force as in many applications, so that the particles will not
get too close. Hence, in practical simulations, the singularity in K1 may not be seen
and one may use a reasonable time step for the numerical simulations. We discuss
some implementation details of the application to the molecular dynamics simulations
in section 4 and show some numerical results in section 5.2.

3. A strong convergence analysis. In this section, we perform a strong con-
vergence analysis of RBM for the second order systems (1.2) in the mean field regime
(i.e., αN = 1/(N − 1)). For the theoretic analysis, we only consider regular inter-
action kernels. In the appendix of [31], a convergence analysis of RBM for second
order systems was given, but only for finite time horizon. In this work, we aim to
establish the long time error control under certain conditions. The proof of such re-
sults largely makes use of the underlying contraction property for the underdamped
Langevin equations [44, 20]. Note that, due to the degeneracy of the noise terms, the
contraction should be proved by suitably chosen variables and Lyapunov functions.

For notational convenience, we denote (Xi, Vi) to be the solutions given by (1.2).
We denote by (X̃i, Ṽi) the solutions given by the RBM process (2.1). We again use
the synchronization coupling as in [31, 30]:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 747

Xi(0) = X̃i(0) ∼ µ0, W
i = W̃ i.(3.1)

Let C(k)
q be the batches at tk where 1 ≤ q ≤ n. Define

C(k) :=
{
C(k)

1 , . . . , C(k)
n

}
(3.2)

to be the random division of batches at tk. By the Kolmogorov extension theo-
rem [19], there exists a probability space (Ω,F ,P) such that the random variables
{Xi

0,W
i, C(k) : 1 ≤ i ≤ N, k ≥ 0} are all defined on this probability space and

are independent. Then E corresponds to the integration on Ω with respect to the
probability measure P. We introduce the L2(·) norm

‖v‖ =
√
E|v|2,(3.3)

and the filtration {Fk}k≥0 is given by

Fk−1 = σ(Xi
0,W

i(t), C(j); t ≤ tk−1, j ≤ k − 1).(3.4)

Thus, Fk−1 is the σ-algebra generated by the initial values Xi
0, W i(t), and C(j)

for all i = 1, . . . , N , t ≤ tk−1, and j ≤ k − 1. Clearly, Fk−1 contains the information
on how batches are constructed for t ∈ [tk−1, tk).

For finite time intervals, the convergence of RBM is straightforward, as shown
below in Proposition 3.1. The proof is similar to that of the results in [31, 30], and
so we omit it.

Proposition 3.1. Let b(·) be Lipschitz continuous, and |∇2b| has polynomial
growth. The interaction kernel K is Lipschitz continuous. Then

sup
t∈[0,T ]

√
E|X̃1 −X1|2 + E|Ṽ 1 − V 1|2 ≤ C(T )

√
τ

p− 1
+ τ2,(3.5)

where C(T ) is independent of N .

Below, we consider the error estimate for long times. This is important if one uses
RBM as a sampling method for the invariant measure of (1.2). The main challenge
in establishing the uniform-in-time error control compared with the proof in [31] is
determining how to make use of the contraction property for second order random
systems. The following conditions will give certain contraction property for the second
order systems, which can be utilized by considering new variables as in (3.20).

Assumption 3.1. Suppose b = −∇U for some U ∈ C2(Rd) that is bounded below
(i.e., infx U(x) > −∞), and there exist λM ≥ λm > 0 such that the eigenvalues of
H := ∇2U satisfy

λm ≤ λi(x) ≤ λM ∀ 1 ≤ i ≤ d, x ∈ Rd.

The interaction kernel K is bounded and Lipschitz continuous. Moreover, the friction
γ and the Lipschitz constant L of K(·) satisfy

γ >
√
λM + 2L, λm > 2L.(3.6)

Remark 3.2. The assumptions here are a little different from those for first order
systems (see [31, 30]): (1) b is assumed to be Lipschitz instead of one-sided Lipschitz;

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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748 SHI JIN, LEI LI, AND YIQUN SUN

(2) we are not assuming the second derivatives of K to be bounded, as there is no
white noise in the equations for Xi so trajectories of Xi’s are much smoother; (3) the
second requirement in (3.6) is the same as the contraction assumption for first order
systems in [31], while the first requirement in (3.6) is something new for second order
systems to ensure the contraction property.

Under the assumptions above, we are able to establish the following uniform
strong convergence estimate.

Theorem 3.3. Under Assumption 3.1 and the coupling (3.1), the solutions to
(1.2) and (2.1) satisfy

sup
t≥0

√
E|X̃1(t)−X1(t)|2 + E|Ṽ 1(t)− V 1(t)|2 ≤ C

√
τ

p− 1
+ τ2,(3.7)

where the constant C does not depend on p and N .

We give some lemmas which will be useful later. Below, the generic constants (like
C and Cq, etc.) are independent of time t and particle number N unless explicitly
stated otherwise. Their concrete meanings may change from line to line.

Denote

X = (X1, . . . , XN ), X̃ = (X̃1, . . . , X̃N ).(3.8)

For a given configuration x := (x1, . . . , xN ) ∈ RNd, denote the random batches of
{1, . . . , N} as C := {C1, . . . , Cn}. We introduce the random variables Iij to indicate
whether the two particles are in the same batch or not:

Iij =

{
1 ∃ Cq, {i, j} ⊂ Cq,
0 otherwise,

1 ≤ i, j ≤ N.(3.9)

Accordingly, we use I
(k)
ij to indicate whether particles i and j are in the same batch

or not at tk, corresponding to C(k). Moreover, we will set

θ(i) := q

for which i ∈ Cq.
The auxiliary results, Lemmas 3.4–3.6 below, are in [30], and we omit their proofs.

Lemma 3.4. For i 6= j, it holds that

EIij =
p− 1

N − 1
,(3.10)

and for distinct i, j, `, it holds that

P(IijIi` = 1) = EIijIi` =
(p− 1)(p− 2)

(N − 1)(N − 2)
.(3.11)

For a given configuration x = (x1, . . . , xN ) ∈ RNd, we introduce the error of the
interacting force for the ith particle.

χi(x) :=
1

p− 1

∑
j∈Cθ(i)

K(xi − xj)− 1

N − 1

∑
j:j 6=i

K(xi − xj).(3.12)
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 749

Lemma 3.5. It holds that

Eχi(x) = 0.(3.13)

Moreover, the second moment is given by

E|χi(x)|2 =

(
1

p− 1
− 1

N − 1

)
Λi(x),(3.14)

where

Λi(x) :=
1

N − 2

∑
j:j 6=i

∣∣∣∣∣∣K(xi − xj)− 1

N − 1

∑
`:` 6=i

K(xi − x`)

∣∣∣∣∣∣
2

.(3.15)

Lemma 3.6. Fix i ∈ {1, . . . , N}. Let θ(i) be defined as above. Let Yj ( 1 ≤ j ≤ N)
be N random variables (or random vectors) that are independent of C. Then, for
p ≥ 2, ∥∥∥∥∥∥ 1

p− 1

∑
j∈Cθ(i),j 6=i

Yj

∥∥∥∥∥∥ ≤
 1

N − 1

∑
j:j 6=i

‖Yj‖2
1/2

.(3.16)

Below, we establish some moment estimates so that we can establish the stability for
the RBM and thus prove convergence.

Lemma 3.7. Under Assumption 3.1, for q ≥ 1, it holds for some Cq independent
of N that

sup
t>0

(
E(|Xi(t)|q + |V i(t)|q) + E(|X̃i(t)|q + |Ṽ i(t)|q)

)
≤ Cq.(3.17)

In addition, for any k > 0 and q ≥ 2,

sup
t∈[tk−1,tk)

∣∣∣E(|X̃i(t)|q + |Ṽ i(t)|q|Fk−1)
∣∣∣ ≤ C(1 + |X̃i(tk−1)|q + |Ṽ i(tk−1)|q)(3.18)

holds almost surely, where C is independent of N .

Proof. Here, we show the moment bounds for (X̃i, Ṽ i) only, as the estimates for
the moments of (Xi, V i) are similar (and easier).

Following [44], section 3], we consider the Lyapunov function

`(X̃i, Ṽ i) :=
1

2
(|X̃i|2 + |X̃i + αṼ i|2) + α2U(X̃i).

By Assumption 3.1, we can assume without loss of generality that

inf
x
U(x) = 0.

Due to Assumption 3.1, the second moments of X̃i and Ṽ i can be controlled easily
by this Lyapunov function.

Then, by Itô’s formula, for any r ≥ 1, and for t ∈ [tk−1, tk),

d

dt
E
[
[`(X̃i, Ṽ i)]r|Fk−1

]
= E[L[`(X̃i, Ṽ i)]r|Fk−1],
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750 SHI JIN, LEI LI, AND YIQUN SUN

where L is the generator for the SDE (2.1) given by

L =

N∑
i=1

vi · ∇xi +

N∑
i=1

−∇U(xi) +
1

p− 1

∑
j∈C(k−1)

θ(i)
,j 6=i

K(xi − xj)− γvi

 · ∇vi
(3.19)

+
1

2

N∑
i=1

σ2∆vi ,

where clearly C(k−1)
θ(i) indicates the batch that particle i belongs to at tk−1. Note that

xi ∈ Rd and vi ∈ Rd. Direct computation reveals that

L[`(xi, vi)]r = r[`(xi, vi)]r−1L`(xi, vi) +
σ2

2
r(r − 1)[`(xi, vi)]r−2|∇vi`|2.

Clearly, |∇vi`|2 ≤ χ(α)`(xi, vi) for some number χ depending on α. That means

σ2

2
r(r − 1)[`(xi, vi)]r−2|∇vi`|2 ≤ C[`(xi, vi)]r−1.

The power r−1 indicates that this term can be controlled without difficulty. Moreover,

L`(xi, vi)
= vi ·

(
xi + (xi + αvi) + α2∇U

)
+

−∇U(xi)− γvi +
1

p− 1

∑
j∈C(k−1)

θ(i)
,j 6=i

K(xi − xj)

 · α(xi + αvi) +
1

2
σ2α2d

= −αxi · ∇U(xi) + (α− α2γ)|vi|2 + (2− αγ)xi · vi

+
α

p− 1
xi ·

∑
j∈C(k−1)

θ(i)
,j 6=i

K(xi − xj) +
α2

p− 1
vi ·

∑
j∈C(k−1)

θ(i)
,j 6=i

K(xi − xj) +
1

2
σ2α2d.

Taking α = 2/γ, one finds that

L`(xi, vi) ≤ − 2

γ
λm|xi|2 −

2

γ
|vi|2 + C(|xi|+ |vi|+ 1) ≤ −β`(xi, vi) + C

for some β > 0. Hence,

d

dt
E
[
[`(X̃i, Ṽ i)]r|Fk−1

]
≤ −rβE

[
[`(X̃i, Ṽ i)]r|Fk−1

]
+ CE

[
[`(X̃i, Ṽ i)]r−1|Fk−1

]
.

Using the fact that U(xi) ≤ C(1 + |xi|2) (since ‖∇2U‖2 ≤ λM ), (3.18) then follows
easily.

Similarly, taking full expectation leads to

d

dt
E
[
[`(X̃i, Ṽ i)]r

]
≤ −rβE

[
[`(X̃i, Ṽ i)]r

]
+ CE

[
[`(X̃i, Ṽ i)]r−1

]
.

The moment control (3.17) then follows for q ≥ 2. The moments for q ∈ [1, 2) are
controlled by the q = 2 moment by the Hölder inequality.
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 751

Next, we introduce some notation for better presentation. First of all, due to
the degeneracy of the white noise in the equations for Xi’s, the generator of the
underdamped Langevin does not have the ellipticity. The proof of the ergodicity for
the corresponding Fokker–Planck equation relies on the hypocoercivity [52, 18], and
one needs to use the transport term to compensate for the degeneracy. In terms of
particle formulation (SDEs), one may consider the following variables to compensate
for the degeneracy (see [44], section 3] or [20]):

Zi := X̃i −Xi, Ẑi := X̃i −Xi + α(Ṽ i − V i).(3.20)

Moreover, we denote

δKij(t) := K(X̃i(t)− X̃j(t))−K(Xi(t)−Xj(t)).(3.21)

Using this notation, we can conveniently write

1

p− 1

∑
j∈Cθ(i),j 6=i

K(X̃i − X̃j)− 1

N − 1

∑
j 6=i

K(Xi −Xj)

=
1

N − 1

∑
j 6=i

δKij + χi(X̃)

=
1

p− 1

∑
j∈Cθ(i),j 6=i

δKij + χi(X).

(3.22)

By the definition of Ẑi, for t ∈ [tk−1, tk),

d

dt
Ẑi = (1−αγ)(Ṽ i(t)−V i(t))−α

(
∇U(X̃i)−∇U(Xi)

)
+

1

p− 1

∑
j∈C(k−1)

θ(i)
,j 6=i

δKij+χi(X).

Lemma 3.8. Suppose Assumption 3.1 holds. For t ∈ [tk−1, tk),

‖Zi(t)− Zi(tk−1)‖+ ‖Ẑi(t)− Ẑi(tk−1)‖ ≤ Cτ.(3.23)

Also, almost surely, it holds that for τ ≤ 1,

|Zi(t)|+ |Ẑi(t)| ≤ (|Zi(tk−1)|+ |Ẑi(tk−1)|)(1 + Cτ) + Cτ.(3.24)

Proof. The first part is an easy consequence of the moment control in (3.17).
Direct computation shows that for t ∈ [tk−1, tk)

d

dt
|Zi| ≤ 1

α
|Ẑi − Zi|,

d

dt
|Ẑi| ≤

∣∣∣∣∣ (1− αγ)(Ẑi − Zi)
α

+ α

(
−∇U(X̃i) +∇U(Xi)

+
1

p− 1

∑
j∈C(k−1)

θ(i)
,j 6=i

δKij + χi(X)

)∣∣∣∣∣.
Hence, one has

d

dt
(|Zi|+ |Ẑi|) ≤ C(|Zi|+ |Ẑi|) + C.

The claim then follows.
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752 SHI JIN, LEI LI, AND YIQUN SUN

Proof of Theorem 3.3. We remark again that in this proof, C is a generic constant
that is independent of time t and particle number N , and the concrete meaning can
change from line to line.

Note that we aim to estimate how the quantity evolves:

u(t) :=
1

N

N∑
i=1

(E|X̃i −Xi|2 + E|V i − Ṽ i|2)

= E|X̃1 −X1|2 + E|Ṽ 1 − V 1|2.

(3.25)

Direct estimation of this quantity is not easy. As mentioned above already, we consider
the following motivated by [20]:

J(t) :=
1

2
(E|Z1|2 + E|Ẑ1|2)

=
1

2

[
E|X̃1 −X1|2 + E|X̃1 −X1 + α(Ṽ 1 − V 1)|2

]
,

(3.26)

where α is to be determined later. Then J is equivalent to u but it can be treated
more easily, as we shall see below. Below, we consider t ∈ [tk−1, tk).

Step 1. Contraction. Recall

1

p− 1

∑
j∈Cθ(1),j 6=1

K(X̃1 − X̃j)− 1

N − 1

∑
j 6=1

K(X1 −Xj) =
1

N − 1

∑
j 6=1

δK1j + χ1(X̃),

where Cθ(1) is the random batch that contains particle 1, and define

B(X̃1, X1) :=

∫ 1

0

∇2U(sX̃1 + (1− s)X1) ds.(3.27)

Direct computation yields

d

dt
J = α−1EZ1 · (Ẑ1 − Z1) + αEẐ1·

(
α−2(Ẑ1 − Z1)−B · Z1

+
1

N − 1

∑
j 6=1

δK1j + χ1(X̃)− γ

α
(Ẑ1 − Z1)

)
.

By symmetry, ‖Zj‖ = ‖Z1‖, and thus

EẐ1 · 1

N − 1

∑
j 6=1

δK1j ≤ L(‖Ẑ1‖‖Z1‖+
∑
j 6=1

‖Ẑ1‖‖Zj‖) ≤ 2LJ(t).

Then

J̇ ≤ −E
(

[Z1, Ẑ1]T
[

α−1Id
1
2 (αB − γId)

1
2 (αB − γId) γ − α−1Id

] [
Z1

Ẑ1

])
(3.28)

+ 2αLJ(t) + αEẐ1 · χ1(X̃).

Let the eigenvalues of B be λ̃i, which are bounded below and above by λm, λM ,
respectively. The eigenvalues of the matrix in (3.28) are given by

µi,± =
1

2

(
γ ±

√
γ2 + 4α−1(α−1 − γ) + (αλ̃i − γ)2

)
.
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 753

Choosing α = 2/γ, all the eigenvalues are {λ̃i/γ, γ − λ̃i/γ}di=1. Hence,

J̇ ≤ − 2

γ

[
min(λm − 2L, γ2 − (λM + 2L))

]
J(t) +

2

γ
EẐ · χ1(X̃).

Under Assumption 3.1, the coefficient of J(t) on the right-hand side is negative so
that the Langevin dynamics has the contraction property.

Step 2. The local error estimate. We now estimate the local error term
EẐ1 · χ1(X̃(t)), which we decompose as

EẐ1 · χ1(X̃(t)) = EẐ1(tk−1) · χ1(X̃(t)) + E[Ẑ1(t)− Ẑ1(tk−1)] · χ1(X̃(t))

=: I1 + I2.

Substep 2.1. Estimation of I1. Using the consistency result in Lemma 3.5,

EẐ1(tk−1) · χ1(X̃(tk−1)) = 0,

and thus one has

I1 = EẐ1(tk−1) · [χ1(X̃(t))− χ1(X̃(tk−1))]

= E
(
Ẑ1(tk−1) · E[χ1(X̃(t))− χ1(X̃(tk−1))|Fk−1]

)
≤ ‖Ẑ1(tk−1)‖

∥∥∥E[χ1(X̃(t))− χ1(X̃(tk−1))|Fk−1]
∥∥∥ .

Introducing

δK̃1j := K(X̃1(t)− X̃j(t))−K(X̃1(tk−1)− X̃j(tk−1)),

δX̃j = X̃j(t)− X̃j(tk−1),

one has

|E[χ1(X̃(t))− χ1(X̃(tk−1))|Fk−1]|

≤ 1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

|E(δK̃1j(t)|Fk−1)|+ 1

N − 1

∑
j 6=1

|E(δK̃1j(t)|Fk−1)|.(3.29)

Note that δK̃1j is different from δK1j in (3.21).
Now, we estimate∥∥∥∥∥∥∥

1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

|E(δK̃1j(t)|Fk−1)|

∥∥∥∥∥∥∥
≤ L‖E(δX̃1|Fk−1)‖+

L

p− 1

∥∥∥∥∥∥∥
∑

j∈C(k−1)

θ(1)
,j 6=1

|E(δX̃j |Fk−1)|

∥∥∥∥∥∥∥ .
Since δX̃j =

∫ t
tk−1

Ṽ j(s) ds, we find easily that

|E(δX̃j |Fk−1)| ≤
∫ t

tk−1

E(|Ṽ j(s)||Fk−1) ds

≤
∫ s

tk−1

√
E(|Ṽ j(s)|2|Fk−1) ds

≤ C
(√

1 + |X̃j(tk−1)|2 + |Ṽ j(tk−1)|2
)
τ.
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754 SHI JIN, LEI LI, AND YIQUN SUN

Now, since
√

1 + |X̃j(tk−1)|2 + |Ṽ j(tk−1)|2 is independent of C(k−1), applying Lemma
3.6, one has ∥∥∥∥∥∥∥

L

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

√
1 + |X̃j(tk−1)|2 + |Ṽ j(tk−1)|2

∥∥∥∥∥∥∥ ≤ C.
The other term in (3.29) is similar, but much simpler.

Hence, we find

I1 ≤ C‖Ẑ1(tk−1)‖τ ≤ C‖Ẑ(t)‖τ + Cτ2.

Substep 2.2. Estimate of I2. Now, we estimate I2:

I2 = E[Ẑ1(t)− Ẑ1(tk−1)] · χ1(X̃)

= E[Ẑ1(t)− Ẑ1(tk−1)] · χ1(X) + E[Ẑ1(t)− Ẑ1(tk−1)] · [χ1(X̃)− χ1(X)]

=: I21 + I22.

For I21, we recall the matrix B defined in (3.27), and its spectral radius by Assumption
3.1 is controlled by

ρ(B(X̃1, X1)) ≤ λM .

Then one has

Ẑ1(t)− Ẑ1(tk−1) =

∫ t

tk−1

(α−1 − γ)(Ẑ1 − Z1)ds− α
∫ t

tk−1

Z1 ·B(X̃1(s), X1(s))ds

+

∫ t

tk−1

1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

δK1j ds+

∫ t

tk−1

χ1(X(s)) ds.

(3.30)

Noting Lemma 3.8, α−1 − γ = −γ/2, and that ‖χi‖∞ ≤ 2‖K‖∞, one has

E

(∫ t

tk−1

1

2
γ(Ẑ1 − Z1)ds− α

∫ t

tk−1

Z1 ·B(X̃1, X1)ds

)
· χ1(X(t)) ≤ C

√
J(t)τ + Cτ2,

where we used EZ1 ·B(X̃1(s), X1(s)) · χ1(X(t)) ≤ CλM‖Z1(s)‖ ≤ C‖Z1(t)‖+ Cτ .
For the third term in (3.30) dotted with χi, one has

E


∫ t

tk−1

1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

δK1j ds

 · χ1(X(t))


≤ ‖χ1‖∞ sup

s∈[tk−1,tk)

∥∥∥∥∥∥∥
1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

δK1j(s)

∥∥∥∥∥∥∥ τ.
Clearly,∥∥∥∥∥∥∥

1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

δK1j(s)

∥∥∥∥∥∥∥ ≤ L
‖Z1(s)‖+

∥∥∥ 1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

|Zj(s)|
∥∥∥
 .(3.31)
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 755

By Lemma 3.8, one has almost surely that

|Zj(s)| ≤ |Zj(tk−1)|+ Cτ,

and thus ∥∥∥∥∥∥∥
1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

|Zj(s)|

∥∥∥∥∥∥∥ ≤
∥∥∥∥∥∥∥

1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

|Zj(tk−1)|

∥∥∥∥∥∥∥+ Cτ.

Since {|Zj(tk−1)|}’s are independent of C(k−1), Lemma 3.6 then gives∥∥∥∥∥∥∥
1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

|Zj(tk−1)|

∥∥∥∥∥∥∥ ≤
 1

N − 1

∑
j 6=i

‖Zj(tk−1)‖2
1/2

= ‖Z1(tk−1)‖.

Hence, one in fact has∥∥∥∥∥∥∥
1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

δK1j(s)

∥∥∥∥∥∥∥ ≤ 2L‖Z1(tk−1)‖+ Cτ

≤ 2L‖Z1(t)‖+ Cτ.

(3.32)

The fourth term can be easily controlled using Lemma 3.5 so that

E
∫ t

tk−1

χ1(X(s)) · χ1(X(t)) ds ≤
( 1

p− 1
− 1

N − 1

)
‖Λ1‖∞τ.

Now, we move to the estimate of I22 term, which is much easier. In fact,

I22 = E[Ẑ1(t)− Ẑ1(tk−1)] · [χ1(X̃)− χ1(X)] ≤ Cτ‖χ1(X̃)− χ1(X)‖,

where ‖Ẑ1(t)− Ẑ1(tk−1)‖ ≤ Cτ by Lemma 3.8.
Now, by the definition of χi,

‖χ1(X̃)− χ1(X)‖ ≤

∥∥∥∥∥∥∥
1

p− 1

∑
j∈C(k−1)

θ(1)
,j 6=1

δK1j(s)

∥∥∥∥∥∥∥+

∥∥∥∥∥∥ 1

N − 1

∑
j:j 6=1

δK1j(s)

∥∥∥∥∥∥ .
The first term has been estimated in (3.32). The second term is easily bounded with
the same bound as in (3.32). Hence, I2 is controlled as

I2 ≤ C
√
J(t)τ + Cτ2 +

1

p− 1
‖Λ1‖∞τ.

Step 3. Final error estimate. Combining all the estimates above, one has for any
k ≥ 1 and t ∈ [tk−1, tk) (and hence all t ≥ 0) that

J̇ ≤ − 2

γ

[
min(λm − 2L, γ2 − (λM + 2L))

]
J(t)+

C

γ

(√
J(t)τ + τ2 +

1

p− 1
τ

)
.(3.33)

Applying Grönwall’s inequality then gives the desired result.
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756 SHI JIN, LEI LI, AND YIQUN SUN

4. Applications to molecular dynamics simulations. In this section, we
discuss the details of RBM with kernel splitting for one of the important applications
of the second order systems with singular kernels: molecular dynamics simulations.

Molecular dynamics (MD) refers to computer simulation of atoms and mole-
cules, and the goals include but are not limited to understanding proteins, large
biomolecules, etc.; computing the statistics of the distribution; and investigating the
properties of solids and fluids [15, 21]. In this section, we will only consider pairwise
interactions. In standard MD simulations, there could be interactions involving three
or more bodies like torques. The application of RBM to such interactions should also
be possible, as mentioned in [31], and is left for future exploration.

Consider N “molecules” (each might be a model for a real molecule or a nu-
merical molecule that is a packet of many real molecules) that interact with each
other:

dXi = V i dt,

dV i =

−∑
j:j 6=i

∇φij(Xi −Xj)

 dt+ dξi.
(4.1)

Here, φij(·) is the interaction potential and dξi means some other possible terms that
change the momentum, which we will discuss below. Typical examples include the
Coulomb potentials,

φij(x) =
qiqj
r
,(4.2)

where qi is the charge for the ith particle and r = |x|, and the Lennard–Jones potential

φij(x) = φ(x) = 4

(
1

r12
− 1

r6

)
.(4.3)

In this work, we will consider only the Lennard–Jones potential only so that

φij(x) ≡ φ(x), K(x) = −∇φ(x).

The generalization to general cases should be straightforward but notationally heavy.
By modeling the ions or molecules as point particles in simulations, both poten-

tials of the forms (4.2) and (4.3) can exist for ions, while (4.3) may be the main inter-
action for charge-neutral molecules. We remark, however, that Lennard–Jones inter-
action intrinsically also arises from the electromagnetic interactions between charges
inside the molecules (especially the electron clouds), so they are intrinsically the same
type of interaction. Of course, there can be other types of interaction that are not
mentioned here.

To model solids or fluids with large volumes, one often uses a box with length L,
equipped with the periodic conditions for the simulations.

4.1. Coupling with a heat bath. To model the interaction between molecules
with a heat bath, one may consider some thermostats so that the temperature of the
system can be controlled at a given value. Typical thermostats include the Andersen
thermostat, the Langevin thermostat, and the Nosé–Hoover thermostat [21].
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 757

In the Andersen thermostat [21, section 6.1.1], one does the simulation for

dξi = 0,

but a particle can collide with the heat bath each time. In particular, assume the
collision frequency is ν, so in a duration of time t� 1 the chance that a collision has
happened is given by the exponential distribution

1− exp(−νt) ≈ νt, t� 1.(4.4)

If a collision happens, the new velocity is then sampled from the Maxwellian distri-
bution with temperature β−1 (i.e., the normal distribution N (0, β−1)).

Since the potential φij(x) ≡ φ(x) is often singular at x = 0, we need to split
the interaction kernel (or the potential) for the simulation and apply RBM for the
long-range but smooth part. Hence, Algorithm 2.2 can be applied when evolving the
dynamics. To discretize the equations in Algorithm 2.2, one may in principle use a
smaller time step ∆t than τ . However, since the random batch system has already
introduced a strong error of the magnitude

√
τ , it seems that there is no need to use

smaller time steps for the simulation. Of course, if one regards the random batch
system as a new model and discretizes it, one may consider using smaller time steps.
Below and in section 5, we will always use ∆t = τ as the time step for discretization.

Here is some subtlety. If we discretize (2.6) using some second order integration
methods like the Verlet method [21, section 4.3.1], we need to evaluate the forces at
t−k and t+k . The force at t−k corresponds to the batches for [tk−1, tk), while the force
at t+k corresponds to batches for [tk, tk+1). This is not quite efficient, as one needs to
evaluate the force at tk twice, so for practical implementation, we evaluate the forces
only at t+k . Then we introduce a variant of the Verlet scheme, where the velocity is
updated using

V ik+1 = V ik +
1

2

[
F ik+ + F i(k+1)+

]
τ.(4.5)

In fact, it is known that the Verlet scheme is equivalent to the leapfrog scheme ((4.3.1)–
(4.3.2) in [21, section 4.3.1]) and (4.5) corresponds to applying RBM to the leapfrog
scheme. We will call the corresponding algorithm “Andersen-RBM,” which is shown
in Algorithm 4.1. Note that any reasonable separation that makes K1 short-ranged
and K2 regular should be fine for Algorithm 4.1.

In the underdamped Langevin dynamics, one chooses

dξi = −γV i dt+

√
2γ

β
dW i,

so that the “fluctuation-dissipation relation” is satisfied and the system will evolve
to the equilibrium with the correct temperature. It is well known that the invariant
measure of such systems is given by the Gibbs distribution

π(x, v) ∝ exp

(
−β

(
1

2

N∑
i=1

|vi|2 + E(x)

))
,
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758 SHI JIN, LEI LI, AND YIQUN SUN

Algorithm 4.1 Andersen-RBM.
1: Split K =: K1 +K2: K1 has short range, while K2 has long range but is regular.
Take a temperature β−1.
2: Sample Xi, V i for all i.
3: Obtain a set of random batches. For each i, find the batch Cθ(i)
where i lives, and compute:

F i =
∑
j:j 6=i

K1(Xi −Xj) +
N − 1

p− 1

∑
j∈Cθ(i),j 6=i

K2(Xi −Xj).(4.6)

4: for k = 1, 2, · · · do
5: For each i, generate ζi ∼ U [0, 1], the uniform distribution on [0, 1].
If ζi ≤ 1− exp(−ντ), sample Vi ∼ N (0, β−1).
6: Update the positions:

Xi ← Xi + V iτ +
1

2
F iτ2.(4.7)

7: Set F io ← F i for all i.
8: Obtain a new set of random batches, and compute the forces for all particles
i ∈ {1, · · · , N} as in (4.6).
9: Update the velocities for all i:

V i ← V i +
1

2
[F io + F i]τ.

10: end for

where x = (x1, . . . , xN ) ∈ RNd and v = (v1, . . . , vN ) ∈ RNd. Algorithm 2.2 can be
applied directly for Langevin dynamics, and one possible way to discretize (2.6) is the
“BAOAB” splitting scheme proposed in [39, 38]:

Vk+ 1
2

= Vk +
1

2
Fkτ, (B)

Xk+ 1
2

= Xk +
1

2
Vk+ 1

2
τ, (A)

V̂k+ 1
2

= c1Vk+ 1
2

+ c2Rk+1, (O)

Xk+1 = Xk+ 1
2

+
1

2
V̂k+ 1

2
τ, (A)

Vk+1 = V̂k+ 1
2

+
1

2
Fk+1τ, (B)

(4.8)

where Fk means the force computed at time tk = kτ and {Rk+1}k≥0 are independent
standard normal random vectors. The coefficients c1 = e−γτ , c2 =

√
(1− c21)/β,

where γ is the friction coefficient. Clearly, for second order schemes like this BAOAB
splitting scheme, the forces Fk should be computed by applying RBM on the K2 part.
Again, there can be two possible forces at tk depending on whether the batches for
[tk−1, tk) or the batches for [tk, tk+1) are being used. Similarly as in Algorithm 4.1, we
use the forces at t+k . The resulting algorithm is similar to Algorithm 4.1 so we omit
it. The resulting discretized scheme will be called “Langevin-RBM,” which does not
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RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 759

correspond to the discretization of (2.6) directly, but we believe there is no significant
difference.

In this work, we adopt the Andersen or the underdamped Langevin thermostat
in simulations later in section 5. We remark that RBM can potentially increase
temperature of the system by E|χ(x)|2τ/(2γ) ∼ τ/(pγ) due to the variance in the
force computation. This numerical heating is not good if one wants to obtain some
accurate results. Hence, a thermostat that can achieve better temperature control may
be more desirable. Larger friction coefficients or smaller time steps could reduce this
numerical heating effect. The Nosé–Hoover thermostat [21, section 6.1.2] sometimes
can lead to better temperature control in some systems. In this work, we choose not
to apply such sophisticated thermostats; the Andersen and Langevin thermostats can
already yield acceptable results, as seen in section 5.

4.2. Discussion. Below, we first discuss the benefits of RBM in the molecular
regime and the choice of the splitting K = K1 +K2. Suppose that r0 is the effective
range of K1 (i.e., when |x| � r0, the effects of K1 can be neglected). Hence, to enjoy
the benefits of RBM, we may desire to choose r0 so that there are only O(1) particles
in the ball B(Xi, r0) centered at a typical particle Xi.

• For kernels whose range covers effectively only a few particles (like Lennard–
Jones fluid with low density), one can pick r0 large enough. In this case, by
the fast decay of the potential,

∑
j:j 6=iK2(Xi −Xj) is negligible. Using the

random approximation N−1
p−1

∑
j∈Cθ(i),j 6=iK2(Xi−Xj) is not quite necessary.

For short-range potentials with O(1) density, though one may make use of
the rapid decay of the potential to make the full simulation cheaper, RBM
with splitting can still speed up the simulation for such cases since the batch
size p can be smaller than the effective number of neighbors (see Remark 5.1
for Lennard–Jones potentials).

• If the range of K is comparable to the size of the simulation domain (like the
Lennard–Jones fluid with period box length L = 1 and long-range interactions
like the Coulomb potentials) or the density is not low, then each particle can
feel the effects from a significant number of other particles. In this case,
we pick r0 small so that B(Xi, r0) contains O(1) particles. RBM can speed
up computation per iteration. Moreover, we also expect that the time step
needed for RBM will be comparable to the time step for the full simulation.
RBM will indeed save computational cost for these cases.

• Compared with the mean-field regime where RBM is asymptotic-preserving
and the variance is controlled uniformly in N , the variance scales like O(N2)
in the molecular regime. In fact, the factor (N − 1)/(p − 1) could make the
random variable N−1

p−1

∑
j∈Cθ(i),j 6=iK2(Xi−Xj) differ a lot in magnitude if K2

changes a lot in magnitude. For example, if one applies RBM to Lennard–
Jones fluid with high density where one chooses r0 very small, then |K2|
changes from a large value to a small value from r0 to L/2. Then, applying
RBM with small batch size like p = 2 could result in noticeable effects like
the numerical heating in molecular dynamics simulations. One has to take
some actions like increasing p, decreasing τ , or other advanced techniques to
reduce such effects (see section 5.2).

• The fast multipole method [48] is among the popular methods that can also
compute the long-range interactions efficiently in O(N) scaling. However,
since the implementation needs to keep the data structures, the prefactor in
the linear scaling can be large and the implementation is nontrivial. RBM
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760 SHI JIN, LEI LI, AND YIQUN SUN

with small batch sizes can have a small prefactor in the linear scaling and the
implementation is easy. Hence, if the accuracy desired is not so high, RBMs
can be preferable due to the efficiency.

Since RBM is asymptotic-preserving in the mean-field limit and the variance is
controlled uniformly in N with a factor 1/(N−1) in the interaction term, one may be
curious whether we should do scalings to have such a factor in the molecular dynamics
simulation using RBM. For example, if the interacting forces are homogeneous (like
the Coulomb interaction) in space, one may also zoom out in both time and space so
that the prefactor 1/(N−1) could appear. Another direct way to obtain the 1/(N−1)
factor is to do the time scaling t̃ = (N − 1)t, which corresponds to zooming in time.
We remark that there is no intrinsic change in the physics due to the scaling, so
applying RBM in the original regime (like a molecular regime) does the same thing.
Scaling, however, changes the step sizes allowed. For example, if one does the time
scaling t̃ = (N − 1)t, one takes time steps of order O(1) for the new time variable
t̃ while one takes time steps of order O(1/N) in the original molecular regime. This
small step size restriction is not due to RBM. In fact, for the full simulation, the step
size also has to be small due to the summation of N − 1 terms. Since there is no
intrinsic difference by scaling, we will apply RBM directly in the molecular regime
when it has benefits, as discussed.

5. Numerical experiments. In this section, we perform some numerical ex-
periments to verify the theoretic claims in section 3 and validate RBM with kernel
splitting (in particular, Andersen-RBM and Langevin-RBM) via the molecular dy-
namics simulations for Lennard–Jones fluids. In all the simulations in this section,
the time step for discretization is the same as the time step in the RBM, i.e., ∆t = τ .
All the numerical experiments in this section are performed via MATLAB R2020a on
a Mac Pro laptop with Intel i5-6360U CPU @ 2 GHz and 8 GB memory.

5.1. A simple illustrative example. First, we consider an underdamped
Langevin equation for (Xi, V i) ∈ R × R. This example is mainly designed to ver-
ify that Algorithm 2.1 works for regular kernels and confirm the theoretical results in
section 3. In particular, we consider the following interacting particle system on R
for i = 1, . . . , N :

dXi = V i dt,

dV i = −λXidt+
1

N − 1

∑
j:j 6=i

Xi −Xj

1 + |Xi −Xj |2
dt− γV idt+

√
2γ/β dW i.

(5.1)

The kernel

K(x) =
x

1 + |x|2

satisfies |K| ≤ 1
2 and |K ′| ≤ 1.

Below in the simulations we take

λ = γ = 2.5

so that the conditions in Theorem 3.3 hold, and the temperature is taken as β−1 =
1. The discretization will be the BAOAB scheme (4.8). The initial positions Xi

0’s
are sampled i.i.d. from U [−0.5, 0.5] (the uniform distribution on [−0.5, 0.5]), while
the initial velocities are also sampled from U [−0.5, 0.5] but with the empirical mean
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-3 -2 -1 0 1 2 3
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0.1
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0.5

0.6
Ref.
RBM

Fig. 1. The equilibrium density distribution by RBM (red dashed line) for (5.1) with N = 500,
p = 2, and τ = 0.02. The blue solid line is the reference distribution by the full simulation without
RBM with step size τ = 10−3.

subtracted V i0 ← V i0 − V̄0 and then the magnitude rescaled such that the average of
(V i0 )2 is the temperature (i.e., N−1

∑
i(V

i
0 )2 = β−1). For RBM simulations in this

example, we always take batch size

p = 2.

To verify the effectiveness of RBM, we first do the simulation for N = 500 particles
and check the computed equilibrium distribution. The system after time t = 50 is
regarded to be in the equilibrium. Hence, we collect the {Xi}’s from many iterations
after t = 50 as the samples. In Figure 1, we show the results by RBM where the
Langevin equations are discretized by the BAOAB with step size τ = 0.02. We
collect the N = 500 particles as some samples with a time gap 0.5 (or 25 iterations
for τ = 0.02) up to t = 300. Hence, there are 500 ∗ (300 − 50)/0.5 = 2.5 × 105

sample points to reduce the random fluctuation in Monte Carlo approximations. The
reference distribution is plotted using samples at the same time points in the full
simulation (i.e., running the Langevin dynamics (5.1) using BAOAB scheme without
RBM) with a step size τ̃ = 0.001. Clearly, the equilibrium distribution density is
recovered by RBM with good accuracy.

To confirm the sampling correctness quantitatively, we compute the relative weak
errors:

errw =

∣∣∣∣∣
∑Ns
i=1 f(Xi)

Ns
−
∑N̄s
i=1 f(X̂i)

N̄s

∣∣∣∣∣/
∑N̄s
i=1 f(X̂i)

N̄s

for various test functions f , where X̂i’s are the corresponding computed reference
solutions. Here, Ns and N̄s are the numbers of samples for RBM and reference,
respectively. In particular, we again run the simulation for N = 500 with step sizes
taken as τ = 1, 2−1, . . . , 2−3. The samples are again taken with a time gap 0.5 from
t = 50 to t = 300. The samples for the reference are computed using the full simulation
with the BAOAB scheme and step size τ̃ = 2−10. The results are listed in Table 1,
where we take f(x) = e2x, x2, 1/((x − 0.1)2 + 0.001), 1/(1 + x2). Clearly, the weak
error in fact tends to zero as we decrease τ , which means RBM indeed can recover the

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

5/
22

 to
 2

02
.1

20
.8

.2
10

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



762 SHI JIN, LEI LI, AND YIQUN SUN

Table 1
The weak errors using RBM for equilibrium distribution of (5.1) with N = 500.

τ = 1 τ = 2−1 τ = 2−2 τ = 2−3

e2x 0.1098 0.0785 0.0337 9.229× 10−5

x2 0.0256 0.0252 0.0051 2.7128× 10−4

1
(x−0.1)2+0.001

0.0046 0.0016 0.0152 0.0014
1

1+x2 0.0045 0.0049 6.5742× 10−4 0.0016

equilibrium distribution. Due to the Monte Carlo fluctuation, the weak convergence
order (which should be order 1 or the weak error scales like O(τ) motivated by the
results in [30]) is not quite evident in Table 1 (only f(x) = e2x shows first order
convergence, while other test functions already give very small errors even for τ = 1).

The weak error results above indicate that the equilibrium can be correctly cap-
tured by RBM as well, consistent with the claim in the theorem that the error control
is uniform in time.

To verify the strong convergence order claimed in Theorem 3.3, we consider the
relative strong errors:

errs =

√∑N
i=1(Xi − X̂i)2

N

/∑N
i=1(X̂i)2

N
,(5.2)

where Xi’s are numerical solutions by RBM at T = 2 and X̂i’s are the reference
solutions. The results are shown in Figure 2. Figure 2 (a) compares RBM with full
simulation using the BAOAB scheme for N = 2000, while Figure 2 (b) compares
the convergence results of RBM for sizes N = 100, 500, 2000. The reference solution
is obtained using the full batch (the original particle system) using BAOAB with
step size τ = 2−10. The same Brownian motions are used for the reference solution
and RBM solution (i.e., the realizations of Brownian motions used for the reference
solution are stored and then applied for the RBM simulation) for the strong solution.
The simulation results above indicate that RBM can indeed obtain the 1/2 strong
order for the underdamped Langevin equations with regular kernels, agreeing with
our theory in Theorem 3.3.

Lastly, let us take a look at the efficiency. Figure 3 shows the CPU costs needed
by RBM compared to the full simulation for system (5.1) with N = 2000 at time
T = 2, both implemented using the BAOAB scheme. Figure 3 (a) clearly shows that
the cost of RBM scales like O(N), while the full simulation scales like O(N2) as the
system size increases. Note that for small sizes like N . 500, such scalings are not
evident due to the matrix operations in MATLAB. Figure 3 (b) plots the strong error
defined in (5.2) against the CPU cost. Clearly, RBM has better efficiency for the
regime we consider here.

5.2. The Lennard–Jones fluid. In this section, we test RBM with splitting,
especially the methods discussed in section 4, on the Lennard–Jones fluids to validate
these methods. In fact, our experience indicates that applying Algorithm 2.1 directly
to such systems truly yields numerical instability, so RBM with splitting is desired for
such applications. The potential φ in (4.1) is then given by (x ∈ R3) in this setting:

φ(x) = 4

(
1

r12
− 1

r6

)
, r = |x|.(5.3)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/2

5/
22

 to
 2

02
.1

20
.8

.2
10

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



RBM FOR SECOND ORDER INTERACTING PARTICLE SYSTEMS 763
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Fig. 2. The strong errors errs at time T = 2 vs. time step size τ of RBM for (5.1). (a)
Comparison between RBM and full simulation for N = 2000. The black solid line is E = 0.3τ , while
the black dashed line is E = 0.2τ1/2 for reference. (b) RBM with different system sizes. The black
solid line is E = 0.2τ1/2 for reference. The convergence order of RBM for strong error is 1/2.
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Fig. 3. Comparison of the CPU costs between RBM and full simulation for (5.1) for solutions
at T = 2. (a) The CPU cost versus system size. The solid lines are the curves Time = 10−5N2 and
Time = 10−4N , respectively. (b) The strong error versus CPU cost for N = 2000.

As mentioned in section 4, the periodic boxes are used to approximate the fluids of
large extent. Let L be the length of the box. With the periodic setting, a particle
interacts with not only another particle but also its periodic images. Thanks to the
fast decaying properties of the Lennard–Jones potential, one can pick a cutoff length
rc so that the interaction between two particles (including particle-image interaction)
with distance larger than rc will be treated in a mean-field fashion (see [21, Chapter
3] for more details). Following [21, Chapter 3], we choose

rc = L/2.

With the cutoff mentioned here, the pressure formula is given approximately by (see
[21, section 3.4], [42, section 4.2])

P =
ρ

β
+

8

V

N∑
i=1

∑
j:j>i,r̃ij<rc

(2r̃−12
ij − r̃−6

ij ) +
16

3
πρ2

[
2

3

(
1

rc

)9

−
(

1

rc

)3
]
,(5.4)
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where β−1 is the scaled temperature, V = L3 is the volume, and we have introduced

r̃ij = |~rij + ~nL|, ~rij = xi − xj

for some suitable three-dimensional integer vector ~n so that |~rij + ~nL| is minimized.
Since rc = L/2, there is at most one image of particle j (including itself) that falls
into B(xi, rc). Hence, when implementing the methods, the forces between particles
are computed using the nearest image (see [21, section 4.2.2]).

To apply the methods in section 4, in all the simulations below, we take r0 = 6
√

2,
where φ has a minimum (the force is repulsion if r < r0, while the force is attraction
for r > r0) and split the potential φ:

φ(x) =: φ1(x) + φ2(x),(5.5)

where

φ1(x) =

{
4
(

1
r12 −

1
r6

)
+ 1, 0 < r < 6

√
2,

0, r ≥ 6
√

2,
(5.6)

and

φ2(x) =

{
−1, 0 < r < 6

√
2,

4( 1
r12 −

1
r6 ), r ≥ 6

√
2.

(5.7)

The force K = −∇φ is split correspondingly. That means the part of interaction force
for r ≤ 6

√
2 is regarded to have short range and the part for r > r0 = 6

√
2 is regarded

to have long range. The long-range parts (−∇φ2) will be computed using RBM. Note
that the threshold r0 = 6

√
2 is different from the cutoff rc = L/2 above. The cutoff rc

above means that the molecular interactions are computed explicitly only for r ≤ rc,
while the ones for r ≥ rc are treated in a mean-field fashion.

Remark 5.1. With the cutoff rc = L/2, direct simulation has a complexity
O(N2) per time step. Since the Lennard–Jones potential decays fast and the density
considered in this section is O(1), one may use smaller cutoff rc to reduce the com-
plexity to roughly linear and obtain roughly correct results. However, our experience
indicates that applying RBM with r0 = 6

√
2 still saves time as the batch size p (which

is 2 in the experiments below) is much less than the effective number of particles that
interact with one particular particle.

For the simulation, the temperature is taken to be β−1 = 2 and the length of the
box is set as

L = (N/ρ)1/3

for a given density ρ. The particles are initially put on the cubic lattice with grid
size L/N1/3. The initial velocities are randomly chosen from uniform distribution
U3[−0.5, 0.5], and then shifted and rescaled so that the instantaneous temperature
matches the desired value (i.e., N−1

∑
i |V i0 |2 = 3β−1).

For the thermostats, we use both the Andersen thermostat and the underdamped
Langevin dynamics for simplicity, as indicated in section 4.1, and the resulting schemes
are Andersen-RBM and Langevin-RBM, as already explained in section 4.1. The
batch size is taken as p = 2 for all the experiments here.
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We first run the simulations with the collision coefficient ν = 10 for Andersen-
RBM and the friction coefficient γ = 10 for Langevin-RBM. The simulation before
time T = 50 is regarded as the burn-in phase, and we compute the pressure using
the viral formulation (5.4) at a given time point (after T = 50). We compute 105

such pressures (each for one iteration) and then take the average as the computed
value. The computed values using N = 100 and N = 500 are shown in Figure 4 for
various densities. The reference curve (black solid line) is the fitting curves in [34].
The results show that RBM with splitting strategy (5.5)–(5.6) can work reasonably
well for the Lennard–Jones fluid in the considered regime. Another observation from
Figure 4 is that when N = 500 the extra variance brought by RBM can result in
noticeable numerical heating and thus greater pressure (the variance depends on N
in the molecular regime; see the discussion in section 4.2). Moreover, our experience
indicates that direct application of RBM without splitting (Algorithm 2.1) to the
Lennard–Jones potential (5.3) indeed results in numerical instability.

To reduce the numerical heating as shown in Figure 4 (b) or increase the tem-
perature control ability, we try two strategies. The first strategy is to decrease the
step size as the iteration goes on to decrease the numerical heating since the effective
temperature rise is like E|χ(x)|2 ∗ τ/(2γ). This idea is similar to the one in simulated
annealing [50, 29]. The second strategy is to increase the friction coefficient (i.e., the ν
and γ in the Andersen thermostat and Langevin dynamics, respectively). Increasing
the collision or friction coefficient clearly makes the system relax faster to the quasi-
equilibrium, but it may also bring in some unphysical effects [27, 21]. We show the
numerical results in Figure 5. Figure 5 (a) shows the results using the first strategy
(i.e., decreasing step size), where we take

τk = 0.001/ log(k + 1).

The reason to take such τk is that we do not desire the step size to decrease too
quickly. Figure 5 (b) shows the results using the second strategy (i.e., using a larger
friction coefficient so that the temperature control is better) where we take γ = ν =
50. Clearly, after these two approaches are applied, the numerical heating effects

ρ

P
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P

ρ

(a) (b)N = 100 N = 500

Fig. 4. The pressure computed by Andersen-RBM and Langevin-RBM for Lennard–Jones fluid.
The black solid line is the reference fitting curve in [34]. The blue circles are the pressure computed
by Andersen-RBM, and the red squares denote the pressure computed by Langevin-RBM. ν = 10;
γ = 10; the time is T = 50; the step size is τ = 0.001.
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Fig. 5. The pressure obtained by Andersen-RBM and Langevin-RBM using two strategies to
reduce numerical heating for Lennard–Jones fluid with N = 500. The blue circles are those by
Andersen-RBM, while the red squares are by Langevin-RBM.
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Fig. 6. The CPU time vs. size of the system for Andersen-RBM (blue circles) and Langevin-
RBM (red diamonds). Clearly, the computational time scales linearly with the size of the system for
both methods

are reduced significantly, and the correct equation of state is obtained. As another
possible thermostat for better temperature control, one may consider the Nosé–Hoover
thermostat [21, Chapter 6].

Lastly, we validate the claim that the complexity of our algorithm is O(N) in
Figure 6, where the CPU time is plotted versus the size of the Lennard–Jones system.
The simulation is performed up to time 30 with step size τ = 2−10 for systems with
density ρ = 0.5. Clearly, both Andersen-RBM and Langevin-RBM scale linearly with
the size of the system, and this result thus verified our claim.
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