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We study the geometric ergodicity and the long-time behavior of the Random Batch
Method for interacting particle systems, which exhibits superior numerical performance

in recent large-scale scientific computing experiments. We show that for both the inter-

acting particle system (IPS) and the random batch interacting particle system (RB–IPS),
the distribution laws converge to their respective invariant distributions exponentially,

and the convergence rate does not depend on the number of particles N , the time step

τ for batch divisions or the batch size p. Moreover, the Wasserstein-1 distance between
the invariant distributions of the IPS and the RB–IPS is bounded by O(

√
τ), showing

that the RB–IPS can be used to sample the invariant distribution of the IPS accurately
with greatly reduced computational cost.
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1. Introduction

Simulation of large-size dynamical systems has always been a computational bot-

tleneck in optimization and stochastic sampling. One of the main difficulties is that

the complexity of updating in a single time step is extremely high, which is often

beyond the linear scaling with respect to the size of the system. In the past years,

various approximate simulation methods have been developed to reduce the com-

putational cost with tolerable numerical error, for example, the stochastic gradient

descent (SGD)4 and the stochastic gradient Langevin dynamics (SGLD).40 These

methods have been widely used in machine learning for efficient simulation, and

one may refer to Refs. 5, 10, 32, 36, 43 for the corresponding error analysis.

In this work, we focus on the interacting particle system (IPS), which is of vital

importance in computational physics16, 19 and computational chemistry.17, 29 The

study of their mean-field limits has also been of significant research interest.3, 18, 24

Consider a system of N particles represented by a collection of position variables

Xt = {Xi
t}Ni=1, where is Xi

t ∈ Rd the position of the ith particle. The system of

particles Xt is evolved by the overdamped Langevin dynamics:

dXi
t = b(Xi

t)dt+
1

N − 1

∑
j 6=i

K(Xi
t −X

j
t )dt+ σdW i

t , i = 1, . . . , N. (1.1)

Here, b(·) : Rd → Rd is the drift force, K(·) : Rd → Rd is the interaction force,

σ > 0 is a scalar constant, and Wt = {W i
t }Ni=1 denotes N independent standard

Wiener processes in Rd.
With certain additional assumptions on the parameters, there exists an invariant

distribution π ∈ P(RNd) associated with the IPS (1.1), and thus (1.1) can be

utilized to produce samples of π by time integration. In fact, if the drift force b(x) =

−∇U(x) and the interaction force K(x) = −∇V (x) for some potential functions

U(x), V (x) with σ =
√

2 and V (x) being even, then the invariant distribution π

can be explicitly expressed as

π(dx) ∝ exp

− N∑
i=1

U(xi)− 1

N − 1

∑
1≤i<j≤N

V (xi − xj)

dx. (1.2)

To simulate the IPS (1.1) numerically, one has to discretize (1.1) in time and applies

numerical integration in each time step. For an IPS of N particles, it requires

O(N2) complexity to compute all the interaction forces {K(Xi
t − X

j
t )}i6=j , hence

the computational cost per time step is O(N2), which results in inefficiency of the

simulation. Therefore, it is desirable to apply an approximate simulation method

which is able to reduce the computational cost and still produce reliable samples

of the invariant distribution π.

The Random Batch Method (RBM) proposed in Ref. 25 is a simple random

algorithm to reduce the computational cost per time step from O(N2) to O(N). As

supported by extensive numerical tests,27, 31, 41 the RBM is not only an efficient

algorithm for the evolution of the system, it also preserves the invariant distribution

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

67
-1

02
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I 
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/3

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 22, 2023 17:0 WSPC/103-M3AS 2350003

Ergodicity of the RBM 69

π in an approximate sense, thus can be used to obtain statistical samples of the

invariant distribution of the IPS (1.1). Yet, theoretical justification for the sampling

accuracy of the RBM is still lacking.

The idea of the RBM is illustrated as follows. Let τ > 0 be the time step for

batch divisions and define tn := nτ . For each n ≥ 0, let the index set {1, . . . , N}
be randomly divided into q batches D = {C1, . . . , Cq}, where each batch C ∈ D has

size p = N/q. The IPS (1.1) within the time interval t ∈ [tn, tn+1) is approximated

as the SDE of another particle system X̃t = {X̃t}Ni=1 in RNd, given by

dX̃i
t = b(X̃i

t)dt+
1

p− 1

∑
j 6=i,j∈C

K(X̃i
t − X̃

j
t )dt+ σdW i

t , i ∈ C, t ∈ [tn, tn+1),

(1.3)

where C ∈ D is the batch that contains i. For the next time interval, the previous

division D is discarded and another random division D′ is employed for the dynam-

ics (1.3). We point out that the RBM is not only a numerical method for the IPS

(1.1), it is also a stochastic model for interacting particle systems, in which particles

interact, within each time interval of length τ , with a small number (p−1) of parti-

cles. In the following, the dynamical system (1.3) will be referred to as the random

batch interacting particle system (RB–IPS), as a comparison to the IPS (1.1). For

the convenience of analysis, assume both (1.1) and (1.3) are exactly integrated in

time, and thus there is no error due to numerical discretization.

If one numerically integrates (1.1) and (1.3) in each time step, then the RB–IPS

reduces the computational cost per time step from O(N2) to O(Np), because one

only needs to compute the interaction forces within each batch C to update (1.3) in

a single time step. Since the batch C is expected to capture the binary interactions

in the IPS (1.1), the least choice of the batch size is p = 2.

The goal of this paper is to answer: does the RB–IPS (1.3) produce accurate

samples of the invariant distribution π. Specifically, our question is two-fold:

(1) Does the RB–IPS (1.3) has an invariant distribution π̃ ∈ P(RNd)?
(2) If so, what is the difference between the invariant distributions π and π̃?

In general, the analysis of invariant distributions (which is for the long-time

behavior) of the stochastic process, is more challenging than the analysis of strong

and weak error in the finite time. The strong and weak error analysis for the RB–IPS

(1.3) has been systematically studied in Ref. 26, while the theoretical understanding

of the invariant distribution is very limited, except in a random batch consensus

model.21 Intuitively, we expect the trajectory X̃t generated by the RB–IPS (1.3)

is a good approximation to Xt generated by the IPS (1.1), since the RB–IPS (1.3)

provides an unbiased approximation of the interaction forces:

E

 1

p− 1

∑
j 6=i,j∈C

K(xi − xj)

 =
1

N − 1

∑
j 6=i

K(xi − xj), ∀x ∈ RNd, (1.4)
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where i is a fixed index in {1, . . . , N}, and the remaining (p − 1) elements of the

batch C are randomly chosen from {1, . . . , N}\{i}. The unbiased feature (1.4) of

the RB–IPS (1.3) is very similar to the SGD and the SGLD. Unfortunately, (1.4)

is not sufficient to tell the long-time behavior of the RB–IPS (1.3). Essentially, we

lack the knowledge of the geometric ergodicty.

The geometric ergodicity of a general stochastic process depicts how fast the

distribution law converges to the invariant distribution. For the overdamped and

the underdamped Langevin dynamics, the classical approaches to derive geometric

ergodicity include the hypocoercivity method,28, 29, 38 functional inequalities2, 20

and the Harris ergodic theorem.9, 22, 23, 33, 35 However, it is not clear how these

approaches could be applied to the RB–IPS (1.3). The main difficulty within the

RB–IPS (1.3) is that, the structure of the SDE varies in different time steps, pre-

venting direct analysis of the infinitesimal generator.

Recently, the reflection coupling12, 13 has been employed to prove the geomet-

ric ergodicity of the overdamped Langevin dynamics, which is purely probabilistic

and is rather different from the classical PDE approaches. In this paper, we aim

to adopt the reflection coupling to prove the geometric ergodicity of the RB–IPS

(1.3). The basic idea of reflection coupling is to couple the Wiener processes of two

dynamics Xt, Yt in a specially designed regime, and prove their distance E[ρ(Xt, Yt)]

decays exponentially in time. In particular, the reflection coupling does not require

the strong convexity of the potential function U(x) in (1.2). So far, the reflection

coupling has been employed to prove the geometric ergodicity of a large variety

of dynamical systems: first-order IPS,11, 13, 15 underdamped Langevin dynamics,14

Hamiltonian Monte Carlo7, 8 and the Andersen dynamics.6 In particular, it has

been proved in Ref. 13 that the convergence rate of the IPS (1.1) does not depend

on the number of particles N .

The geometric ergodicity together with the Banach fixed point theorem yields

the existence of the invariant distribution π̃ of the RB–IPS (1.3), thus answers

the first question. For the second question, we shall employ the triangle inequality

framework described below to estimate the difference between π and π̃. Denote the

transition kernels of the IPS (1.1) and the RB–IPS (1.3) by pt and p̃t, respectively.

After choosing a distance function d(·, ·) of probability distributions, the estimate

of d(π, π̃) relies on two key conclusions:

(1) Geometric ergodicity. For the RB–IPS (1.3), there exist C1, c > 0 such that

d(µp̃t, νp̃t) ≤ C1e
−ctd(µ, ν), ∀ t ≥ 0 (1.5)

for any probability distributions µ, ν in RNd. The geometric ergodicity can be

derived using the reflection coupling.

(2) Finite-time error estimation. Roughly speaking, we aim to prove

sup
0≤t≤T

d(νpt, νp̃t) ≤ C2(T )τα (1.6)
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for given initial distribution ν and some exponent α > 0, and C2(T ) depends

on simulation time T . The strong error estimation derived in Ref. 26 implies

(1.6) with d(·, ·) being the Wasserstein-1 distance and α = 1/2.

Using these conclusions, d(π, π̃) can be estimated as follows. For any t ≥ 0, one has

the triangle inequality

d(π, π̃) = d(πpt, π̃p̃t)

≤ d(πpt, πp̃t) + d(πp̃t, π̃p̃t)

≤ d(πpt, πp̃t) + C1e
−ctd(π, π̃). (1.7)

By choosing t satisfying C1e
−ct = 1/2, one obtains

d(π, π̃) ≤ 2 · d(πpt, πp̃t) ≤ 2C2(t)τα. (1.8)

The triangle inequality (1.7), inspired from Refs. 33, 34 and 37, is the key step

in our framework of estimating d(µ, µ̃). The logic behind this framework is sim-

ple: geometric ergodicity and finite time error estimation imply error in invariant

distributions.

Our main result of this paper is briefly described below. Under appropriate

dissipation conditions on the drift force b(·) and the interaction force K(·), the RB–

IPS (1.3) has geometric ergodicity and the convergence rate does not depend on the

number of particles N , the time step τ or the batch size p. Also, the Wasserstein-1

distance (defined in (3.3)) between π and π̃ is estimated as

W1(π, π̃) ≤ C
√

τ

p− 1
+ τ2, (1.9)

where the constant C does not depend on N, τ, p. We would like to point out that

our result shows that the RBM, even as an approximate simulation method of the

invariant distribution — which corresponds to the steady state of the system —

has a convergence rate independent of N .

To utilize the RB–IPS (1.3) as a practical algorithm, one has to employ time-

discretization, e.g. the Euler–Maruyama scheme. In terms of the time step τ , the

error due to random batch divisions is O(
√
τ) (see Theorem 3.2), while the error due

to time-discretization is no greater than O(
√
τ) (order of strong error). Therefore,

one may simply choose the time step in the random batch divisions and time-

discretization to be exactly the same. The error analysis of the resulting discrete-

time RB–IPS can be found in a subsequent work.42

The paper is organized as follows. Section 2 proves the geometric ergodicity of

both the IPS (1.1) and the RB–IPS (1.3). Section 3 proves of existence of invariant

distributions π, π̃ and the strong error estimation in finite time, then estimates

the difference between the invariant distributions π, π̃ of the IPS and the RB–IPS.

Section 4 briefly summarizes the result in this paper.
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2. Geometric Ergodicity of RB–IPS

In this section, we prove the geometric ergodicity of the RB–IPS (1.3), and the main

technique is the reflection coupling.12, 13 Following the methodology of Ref. 13, we

first study the geometric ergodicity of a general multiparticle system: the product

model, then apply the results to the IPS (1.1) and the RB–IPS (1.3).

The product model refers to the stochastic process of the particle system Xt =

{Xi
t}Ni=1 in RNd, which is given by the SDE

dXi
t = bi(Xt)dt+ σdWt, i = 1, . . . , N. (2.1)

Here, bi(·) : RNd → Rd is the total force exerted on the ith particle. The product

model (2.1) is so named because it is defined on the product space RNd = ⊗Ni=1Rd.
Assume bi(x) is given by

bi(x) = b(xi) + γi(x), i = 1, . . . , N, (2.2)

where b(·) : Rd → Rd is the drift force and γi(·) : RNd → Rd is the perturbation

exerted on each particle. Formally, the IPS (1.1) and the RB–IPS (1.3) can be

unified in the product model (2.1). In fact, the product model directly becomes the

IPS (1.1) by choosing

γi(x) =
1

N − 1

∑
j 6=i

K(xi − xj), i = 1, . . . , N. (2.3)

Within each time interval [tn, tn+1), the RB–IPS (1.3) can be viewed as the product

model with

γi(x) =
1

p− 1

∑
j 6=i,j∈C

K(xi − xj), i ∈ C, (2.4)

where C is the batch that contains i. Note that γi(x) in the RB–IPS (1.3) varies

in every time step due to the use of random batches, but we have suppressed the

appearance of such dependence for simplicity.

In the following, we shall use the notation Xt = {Xi
t}Ni=1 to represent both the

IPS (1.1) and the product model (2.1), and the notation X̃t = {X̃i
t}Ni=1 to represent

the RB–IPS (1.3). Using the same notation for the IPS (1.1) and the product

model (2.1) will not be ambiguous since the two dynamics are directly related

by (2.3).

2.1. Product model

We prove the geometric ergodicity of the product model (2.1) using the reflection

coupling. Basically, we shall show that the transition kernel pt of the product model

is contractive, i.e. for some c > 0 it holds that

d(µpt, νpt) ≤ e−ctd(µ, ν) (2.5)

for any probability distributions µ, ν in RNd. The constant c is also referred to as

the contraction rate of the dynamics. The contractivity (2.5) can be achieved by
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considering a coupled dynamics {(Xt, Yt)}t≥0 in RNd×RNd, which is described as:

(1) The initial values X0 ∼ µ and Y0 ∼ ν (not necessarily independent).

(2) Both {Xt}t≥0 and {Yt}t≥0 are weak solutions to the product model (2.1).

(3) Xt, Yt are driven by two Wiener processes WX
t ,W

Y
t , respectively, while

WX
t ,W

Y
t are coupled in a specific regime.

The coupled dynamics {(Xt, Yt)}t≥0 can also be written as the SDE{
dXi

t = bi(Xt)dt+ σdWX,i
t

dY it = bi(Yt)dt+ σdWY,i
t

i = 1, . . . , N, (2.6)

where WX,i
t ,WY,i

t are the ith arguments of the Wiener processes WX
t ,W

Y
t in RNd.

If one proves for some distance function ρ(·, ·) in RNd × RNd, the expectation

E[ρ(Xt, Yt)] has exponential decay in time, i.e. for some c > 0 it holds that

E[ρ(Xt, Yt)] ≤ e−ctE[ρ(X0, Y0)], (2.7)

then the contractivity (2.5) holds with d(·, ·) being the Wasserstein distance

d(µ, ν) := inf
γ∈Π(µ,ν)

∫
RNd×RNd

ρ(x, y)γ(dxdy), (2.8)

where Π(µ, ν) is the set of joint distributions in RNd×RNd with marginal distribu-

tions µ, ν. The concept of Wasserstein distance has been widely adopted in optimal

transport,1, 39 where Π(µ, ν) is known as the set of transport plans.

In the definition of the coupled dynamics {(Xt, Yt)}t≥0, we expect that the

coupling scheme between the Wiener processes WX
t ,W

Y
t attracts Xt, Yt together so

that (2.7) holds. Note that the coupling scheme between WX
t ,W

Y
t does not impact

the fact that Xt ∼ µpt and Yt ∼ νpt, as long as one fixes the initial distributions

µ, ν. In other words, the choice of the coupling scheme between WX
t ,W

Y
t is flexible

in the proof of contractivity (2.5). Therefore, our goal is to find an appropriate

coupling scheme between WX
t ,W

Y
t so that the contractivity (2.7) holds.

The simplest coupling scheme is WX
t = WY

t , which is also known as the syn-

chronous coupling.12 The synchronous coupling can be used to prove the contrac-

tivity (2.7) when b(x) = −∇U(x) and U(x) is strongly convex. Unfortunately, the

synchronous coupling cannot directly apply when U(x) is not convex.

Another choice is the reflection coupling. In Ref. 12, the reflection coupling is

used to prove the contractivity of the overdamped Langevin dynamics of a single

particle. Later in Ref. 13, this approach is used to prove the contractivity of the

product model (2.1). In this paper, we shall review the reflection coupling for the

product model and extend the results to the IPS (1.1) and the RB–IPS (1.3).

Consider the coupling scheme for the product model (2.1) introduced in Ref. 13.

In the product model (2.1), each pair of particles {(Xi
t , Y

i
t )}t≥0 is evolved by{

dXi
t = bi(Xt)dt+ σ(rc(Zit)dW

i
t + sc(Zit)dW̃

i
t ),

dY it = bi(Yt)dt+ σ(rc(Zit)(I − 2eit(e
i
t)

T)dW i
t + sc(Zit)dW̃

i
t ),

(2.9)
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where Zit = Xi
t − Y it , eit = Zit/|Zit |, and {W i

t }Ni=1, {W̃ i
t }Ni=1 are independent Wiener

processes in Rd. Besides, rc(z), sc(z) are smooth functions satisfying

rc2(z) + sc2(z) = 1, ∀ z ∈ Rd (2.10)

with rc(z) = 0 for |z| ≤ δ/2 and rc(z) = 1 for |z| ≥ δ. Clearly, “rc” denotes

the reflection coupling and “sc” denotes the synchronous coupling. For each i ∈
{1, . . . , N}, the dynamics Xi

t , Y
i
t ∈ Rd are driven by the stochastic processes

WX,i
t =

∫ t

0

(
rc(Zis)dW

i
s + sc(Zis)dW̃

i
s

)
, (2.11)

WY,i
t =

∫ t

0

(
rc(Zis)(I − 2eis(e

i
s)

T)dW i
s + sc(Zis)dW̃

i
s

)
, (2.12)

respectively. We present some intuitive explanations of the coupled dynamics (2.9):

(1) The coupled dynamics (2.9) is a mixture of the synchronous coupling (dW̃ i
t ) and

the reflection coupling (dW i
t ). The matrix I − 2eit(e

i
t)

T ∈ Rd×d is the reflection

transform with respect to the normal plane of eit, which is the reason the (dW i
t )

part is called reflection coupling.

(2) By Levy’s characterization,30 the normalizing condition (2.10) ensures that

both WX,i
t ,WY,i

t are standard Wiener processes in Rd. Therefore, both dynam-

ics Xt, Yt are weak solutions to the product model (2.1).

(3) δ > 0 is a free parameter in the definition of the coupled dynamics (2.9). Since

Zit = Xi
t − Y it is the relative displacement between Xi

t , Y
i
t , we have:

(a) When |Zit | ≥ δ, rc(Zit) ≡ 1 and (2.9) is fully reflection coupling.

(b) When |Zit | ≤ δ/2, (2.9) degenerates to fully synchronous coupling.

When δ is sufficiently small, we expect that rc(z) is close to the constant func-

tion 1 and thus the reflection coupling dominates the coupled dynamics (2.9).

Remark 2.1. In Ref. 12, the coupling scheme for a single particle is fully reflection

coupling, i.e. rc(z) ≡ 1. However, if we simply choose rc(z) ≡ 1 in the product

model (2.1), it is inconvenient to define the coupled dynamics after the occurrence of

Zit = 0. Also as indicated in Ref. 13, it is difficult to make the proof of contractivity

rigorous when rc(z) ≡ 1.

From the coupled dynamics (2.9), the displacement Zit satisfies the SDE

dZit = (bi(Xt)− bi(Yt))dt+ 2σrc(Zit)|Zit |−1ZitdB
i
t, (2.13)

where Bit is the 1D Wiener process defined by

Bit =

∫ t

0

(eis)
TdW i

s . (2.14)
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The synchronous coupling (dW̃ i
t ) vanishes in (2.13), and the diffusion coefficient

σrc(Zit) comes from the reflection coupling (dW i
t ). In the following proof, the diffu-

sion term σrc(Zit) is the main reason that brings the two particles Xi
t , Y

i
t together.

Let rit = |Zit |, then rit satisfies the SDE

drit = (rit)
−1Zit · (bi(Xt)− bi(Yt))dt+ 2σrc(Zit)dB

i
t. (2.15)

Choosing a distance function f(r) ∈ C2[0,+∞), by Itô’s formula, one obtains

df(rit) = 2σrc(Zit)f
′(rit)dB

i
t +

(
(rit)
−1Zit · (bi(Xt)− bi(Yt))f ′(rit)

+ 2σ2rc2(Zit)f
′′(rit)

)
dt, (2.16)

hence the rate of change for E[f(rit)] is

d

dt
E[f(rit)] = E

(
(rit)
−1Zit · (bi(Xt)− bi(Yt))f ′(rit) + 2σ2rc2(Zit)f

′′(rit)
)
. (2.17)

Now define the distance ρ(·, ·) between the systems Xt, Yt ∈ RNd by

ρ(Xt, Yt) :=
1

N

N∑
i=1

f(rit), (2.18)

then the rate of change for E[ρ(Xt, Yt)] is completely given by (2.17), (2.18).

In order to prove E[ρ(Xt, Yt)] has exponential decay in time, we impose some

technical assumptions on the drift forces {bi(x)}Ni=1. The distance function f(r) will

also be chosen according to these assumptions. Since each bi(x) = b(xi) + γi(x), we

only need to consider the drift force b(·) and the perturbation γi(·).
For the drift force b(·) : Rd → Rd, suppose there is a function κ(r) satisfying

κ(r) ≤ inf

{
− 2

σ2

(x− y) · (b(x)− b(y))

|x− y|2
: x, y ∈ Rd, |x− y| = r

}
. (2.19)

Roughly speaking, when b(x) = −∇U(x), the function κ(r) depicts the convexity

of the potential function U(x). If the Hessian ∇2U(x) stays positive definite outside

a finite spherical region, then κ(r) is positive for sufficiently large r. Therefore, it

is reasonable to require the asymptotic positivity of κ(r).

Assumption 2.1. The function κ(r) defined in (2.19) satisfies

(1) κ(r) is continuous for r ∈ (0,+∞);

(2) κ(r) has a lower bound for r ∈ (0,+∞);

(3) limr→∞ κ(r) > 0.

For the perturbation γi(·) : RNd → Rd, assume the Lipschitz condition holds.

Assumption 2.2. There exists a constant L such that

N∑
i=1

|γi(x)− γi(y)| ≤ L
N∑
i=1

|xi − yi|, ∀x, y ∈ RNd. (2.20)
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Remark 2.2. If a non-continuous function κ(r) satisfies (2.19) and the latter two

conditions in Assumption 2.1, we can find another continuous function κ̄(r) ≤ κ(r)

which satisfies all conditions in Assumption 2.1. Therefore, the continuity of κ(r) is

not an essential condition in Assumption 2.1. We assume the continuity of κ(r)

merely for technical convenience.

Remark 2.3. Assumption 2.1 can also be interpreted as the dissipation condition.

In fact, the asymptotic positivity of κ(r) implies there exist A,B > 0 such that

−x · b(x) ≥ A|x|2 −B, (2.21)

which is commonly adopted in the study of geometric ergodicity.14, 20

Following Refs. 12 and 13, we choose the distance function f(r) according to

the following lemma.

Lemma 2.1. If the function κ(r) defined in (2.19) satisfies Assumption 2.1, then

there exists a function f(r) defined in r ∈ [0,+∞) such that

(1) f(0) = 0, and f(r) is concave and strictly increasing in [0,+∞);

(2) f(r) ∈ C2[0,+∞) and there exists a constant c0 > 0 such that

f ′′(r)− 1

4
rκ(r)f ′(r) ≤ −c0

2
f(r), ∀ r ≥ 0. (2.22)

(3) There exists a constant ϕ0 > 0 such that

ϕ0

4
r ≤ f(r) ≤ r, ∀ r ≥ 0. (2.23)

The constants c0, ϕ0 only depend on the function κ(r).

The proof of Lemma 2.1 is in Appendix A.

The positivity of c0 in (2.22) is essential in the proof of contractivity of the

product model (2.1). Figure 1 is an example of the distance function f(r) in the

case κ(r) = max{r/2
√

2− 1, 1}. The graphs of κ(r) and f(r) are shown.

Fig. 1. (Color online) Graphs of κ(r) (left) and f(r) (right), where f(r) is defined according to
Lemma 2.1.
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In Fig. 1, we observe that the distance function f(r) is concave for small r and

almost linear for large r. Here is an intuitive explanation how this feature of f(r)

is related to the inequality (2.22). When rit = |Xi
t − Y it | is large, the particles

Xi
t , Y

i
t are attracted together due to the dissipation of the drift force b(x). When

rit is small, the concavity of f(r) makes the quantity f(rit) more sensitive to the

decreasing rather than increasing of the relative distance rit, and thus we can expect

the decreasing of E[f(rit)] even without the global convexity.

Using the distance function f(r) defined in Lemma 2.1, we are able to estimate

the rate of change for E[ρ(Xt, Yt)]. The following lemma is a key step to derive the

estimation.

Lemma 2.2. Under Assumptions 2.1 and 2.2, let f(r) be the distance function

given in Lemma 2.1. Given δ > 0, let rc(z) be a smooth continuous function with

|rc(z)| ≤ 1 and rc(z) = 1 for |z| ≥ δ. If the constant L in Assumption 2.2 satisfies

L <
c0ϕ0σ

2

8
,

then the following inequality holds with c := c0σ
2/2,

N∑
i=1

(
(ri)−1Zi · (bi(X)− bi(Y ))f ′(ri) + 2σ2rc2(Zi)f ′′(ri)

)

≤ Nm(δ)− c
N∑
i=1

f(ri), (2.24)

where X,Y ∈ RNd, Z = X − Y, ri = |Zi| and m(δ) is defined by

m(δ) =
σ2

2
sup
r<δ

(rκ(r)−) + c0σ
2δ. (2.25)

Here x− = −min{x, 0} denotes the negative part of x ∈ R.

The proof of Lemma 2.2 is in Appendix A, and is similar to the proof of Theo-

rem 7 of Ref. 13. (2.24) is also the condition of Lemma 5 of Ref. 13.

Remark 2.4. We have some remarks on Lemma 2.2.

(1) δ and rc(z) in Lemma 2.2 correspond to parameters in the coupled dynamics

(2.9). The additional term m(δ) appears in the right-hand side of (2.24) because

rc(z) is not identical to 1, i.e. we are not using the fully reflection coupling. By

Assumption 2.1, κ(r)− is bounded for r ∈ (0,+∞), and thus limδ→0m(δ) = 0.

(2) The distance function f(r), the upper bound of L and the contraction rate c

are all independent of δ, thus we may pass δ to the limit 0 without changing

the value of c.

(3) Compared to (2.22), the left-hand side of (2.24) involves both the drift force

b(xi) and the perturbation γi(x). According to Lemma 2.1, the dissipation of
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the drift force is essential to produce the negative coefficient −c0 in the right-

hand side of (2.22). Therefore, the perturbation should be moderately small

so that the coefficient in (2.24) is still negative (see (A.21) in the proof of

Lemma 2.2). In fact, if the perturbation is too large, the convergence rate of

the IPS (1.1) can depend on N , and the mean-field dynamics can have multiple

invariant distributions.11

Using Lemma 2.2, we can obtain the contractivity of the coupled dynamics (2.9).

Lemma 2.3. Under Assumptions 2.1 and 2.2, let f(r) be the distance function

defined in Lemma 2.1, and c := c0σ
2/2. If the constant L in Assumption 2.2 satisfies

L <
c0ϕ0σ

2

8
,

then for ρt := ρ(Xt, Yt) defined in (2.18), one has

d

dt
E[ρt] ≤ m(δ)− c · E[ρt], ∀ t ≥ 0, (2.26)

where m(δ) is defined in (2.25).

Proof. Since ρt =
∑N
i=1 f(rit)/N , one has

d

dt
E[ρt] =

1

N

N∑
i=1

d

dt
E[f(rit)]. (2.27)

Using (2.17), one obtains

d

dt
E[ρt] =

1

N

N∑
i=1

E
(
(rit)
−1Zit · (bi(Xt)− bi(Yt))f ′(rit) + 2σ2rc2(Zit)f

′′(rit)
)
.

(2.28)

Applying the estimate in Lemma 2.2, one obtains

d

dt
E[ρt] ≤ m(δ)− c · E[ρt], (2.29)

which is exactly the desired result.

Integrating (2.26) in the time interval [0, t) gives

E[ρt] ≤ e−ctE[ρ0] +
m(δ)(1− e−ct)

c
, ∀ t ≥ 0, (2.30)

which can be used to derive the contractivity for the probability distributions.

To describe the probability distributions precisely, introduce the following termi-

nologies. Let P1 be the set of probability distributions in RNd with finite first-order

moments, i.e.

P1 =

{
µ is a probability distribution in RNd :

N∑
i=1

∫
RNd
|xi|µ(dx) < +∞

}
.

(2.31)
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For probability distributions µ, ν ∈ P1, define the normalized Wasserstein distances

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
RNd×RNd

(
1

N

N∑
i=1

|xi − yi|

)
γ(dxdy), (2.32)

Wf (µ, ν) = inf
γ∈Π(µ,ν)

∫
RNd×RNd

(
1

N

N∑
i=1

f(|xi − yi|)

)
γ(dxdy). (2.33)

Then (P1,W1(·, ·)) is a complete metric space (see Theorem 6.18 of Ref. 39). Note

that f(r) does not satisfy the triangle inequality, Wf is a semimetric rather than

a metric. Nevertheless, Lemma 2.1 implies W1 and Wf that are equivalent in the

sense
ϕ0

4
W1(µ, ν) ≤ Wf (µ, ν) ≤ W1(µ, ν), ∀µ, ν ∈ P(RNd). (2.34)

Using the estimate (2.30), one obtains the following result.

Theorem 2.1. Under Assumptions 2.1 and 2.2, let f(r) be the distance function

defined in Lemma 2.1, and c := c0σ
2/2. Let pt be the transition kernel of the product

model (2.1). If the Lipschitz constant L in Assumption 2.2 satisfies

L <
c0ϕ0σ

2

8
,

then one has

Wf (µpt, νpt) ≤ e−ctWf (µ, ν), ∀ t ≥ 0 (2.35)

for any probability distributions µ, ν ∈ P1.

The proof of Theorem 2.1 is similar to the proof of Theorem 7 of Ref. 13.

Proof. For given distributions µ, ν ∈ P1, let γ ∈ Π(µ, ν) satisfies∫
RNd

(
1

N

N∑
i=1

f(|xi − yi|)

)
γ(dxdy) ≤ Wf (µ, ν) + ε, (2.36)

where ε > 0 is an arbitrary small constant. Let {(Xt, Yt)}t≥0 be evolved by the

coupled dynamics (2.9) with the initial value (X0, Y0) ∼ γ, then Xt ∼ µpt and

Yt ∼ νpt. From the inequality (2.30) one obtains

E[ρ(Xt, Yt)] ≤ e−ctE[ρ(X0, Y0)] +
m(δ)(1− e−ct)

c

≤ e−ctWf (µ, ν) +
m(δ)(1− e−ct)

c
+ ε. (2.37)

Using the definition of Wf ,

E[ρ(Xt, Yt)] ≥ inf
γ∈Π(µpt,νpt)

∫ (
1

N

N∑
i=1

f(|xi − yi|)

)
γ(dxdy) =Wf (µpt, νpt),

(2.38)
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hence one obtains

Wf (µpt, νpt) ≤ e−ctWf (µ, ν) +
m(δ)(1− e−ct)

c
+ ε. (2.39)

Note that the evolution of µpt and νpt does not depend on the coupling scheme,

we can directly pass δ and ε to 0 and obtain

Wf (µpt, νpt) ≤ e−ctWf (µ, ν), (2.40)

which is exactly the contractivity we need.

2.2. Exact dynamics: IPS

We apply Theorem 2.1 to derive the geometric ergodicity of the IPS (1.1). For the

IPS (1.1), the perturbation γi(·) : RNd → Rd is given by (2.3). Suppose LK is the

Lipschitz constant of the interaction K(·) : Rd → Rd, then for any x, y ∈ RNd,

|γi(x)− γi(y)| ≤ 1

N − 1

∑
j 6=i

|K(xi − xj)−K(yi − yj)|

≤ LK
N − 1

∑
j 6=i

(
|xi − yi|+ |xj − yj |

)
.

Summation over i ∈ {1, . . . , N} gives

N∑
i=1

|γi(x)− γi(y)| ≤ 2LK

N∑
i=1

|xi − yi|. (2.41)

Hence Assumption 2.2 holds with the constant L = 2LK . In terms of the interaction

force K(·), we may replace Assumption 2.2 by the following one.

Assumption 2.3. There exists a constant LK such that

max{|K(x)|, |∇K(x)|, |∇2K(x)|} ≤ LK , ∀x ∈ Rd. (2.42)

Remark 2.5. Assumption 2.3 is stronger than Assumption 2.2 because we require

not only ∇K(·) but also K(·) and ∇2K(·) to be uniformly bounded. The bound-

edness of K(·) and ∇2K(·) is not necessary to prove the geometric ergodicity, but

will be useful in the strong error estimation in Sec. 3.

For completeness, we explicitly write the coupling scheme for the IPS (1.1). The

coupled dynamics {(Xt, Yt)}t≥0 in RNd × RNd is given by

dXi
t = b(Xi

t)dt+
1

N − 1

∑
j 6=i

K(Xi
t −X

j
t )dt

+σ
(
rc(Zit)dW

i
t + sc(Zit)dW̃

i
t

)
,

dY it = bi(Yt)dt+
1

N − 1

∑
j 6=i

K(Y it − Y
j
t )dt

+σ
(
rc(Zit)(I − 2eit(e

i
t)

T)dW i
t + sc(Zit)dW̃

i
t

)
,

(2.43)

for i = 1, . . . , N . Theorem 2.1 then immediately implies the following.
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Theorem 2.2. Under Assumptions 2.1 and 2.3, let f(r) be the distance function

defined in Lemma 2.1, and c := c0σ
2/2. Let pt be the transition kernel of the IPS

(1.1). If the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then we have

Wf (µpt, νpt) ≤ e−ctWf (µ, ν), ∀ t ≥ 0 (2.44)

for any probability distributions µ, ν ∈ P1.

Theorem 2.2 is similar to Corollary 9 of Ref. 13. An important observation from

Theorem 2.2 is that both the contraction rate c and the upper bound of LK do not

depend on the number of particles N . Also, for any initial distribution ν ∈ P1, νpt
converges to the invariant distribution π exponentially.

Corollary 2.1. Under Assumption 2.1 and 2.3, let f(r) be the distance function

defined in Lemma 2.1, and c := c0σ
2/2. Let pt be the transition kernel of the IPS

(1.1), and π ∈ P1 be the invariant distribution. If the constant LK in Assumption

2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then one has

Wf (νpt, π) ≤ e−ctWf (ν, π), ∀ t ≥ 0 (2.45)

for any probability distribution ν ∈ P1.

The existence of the invariant distribution π will be later proved in Theorem 3.1.

2.3. Random batch dynamics: RB–IPS

We prove the geometric ergodicity of the RB–IPS (1.3) using the reflection coupling.

Unfortunately, Theorem 2.2 cannot be directly applied since the perturbation γi(x)

changes its expression in different time steps. In the following, the proof of the

contractivity for the RB–IPS (1.3) will be mainly based on Lemma 2.3. Also, it is

necessary to clarify the coupled dynamics for the RB–IPS (1.3).

Suppose at the instant tn, the division Dn = {C1, . . . , Cq} is randomly generated,

then the perturbation γi(x) within the time interval [tn, tn+1) is given by (2.4). It

is easy to verify

|γi(x)− γi(y)| ≤ 1

p− 1

∑
j 6=i,j∈C

|K(xi − xj)−K(yi − yj)|

≤ LK
p− 1

∑
j 6=i,j∈C

(|xi − yi|+ |xj − yj |),
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where C ∈ Dn is the batch that contains i. Summation over i ∈ C gives∑
i∈C
|γi(x)− γi(y)| ≤ 2LK

∑
i∈C
|xi − yi|. (2.46)

Summation over C ∈ {C1, . . . , Cq} gives

N∑
i=1

|γi(x)− γi(y)| ≤ 2LK

N∑
i=1

|xi − yi|. (2.47)

Hence Assumption 2.3 still holds with L = 2LK . In a similar way, define the coupled

dynamics for the RB–IPS (1.3) as follows.

Fix the parameter δ > 0 and let the smooth functions rc(z), sc(z) be defined as

in (2.10). At each time step tn, suppose the division Dn is randomly generated, and

the coupled dynamics {(X̃t, Ỹt)}t≥0 in RNd×RNd within the time interval [tn, tn+1)

is defined by 

dX̃i
t = b(X̃i

t)dt+
1

p− 1

∑
j 6=i,j∈C

K(X̃i
t − X̃

j
t )dt

+σ
(
rc(Z̃it)dW

i
t + sc(Z̃it)dW̃

i
t

)
,

dỸ it = bi(Ỹt)dt+
1

p− 1

∑
j 6=i,j∈C

K(Ỹ it − Ỹ
j
t )dt

+σ
(
rc(Z̃it)(I − 2eit(e

i
t)

T)dW i
t + sc(Z̃it)dW̃

i
t

)
,

(2.48)

for i ∈ C and C ∈ Dn, where Z̃it = X̃i
t − Ỹ it and ei = Z̃it/|Z̃it |. For convenience,

define the filtration of the coupled dynamics (2.48) by

Gn = σ((X̃0, Ỹ0), {Ws}0≤s≤tn , {W̃s}0≤s≤tn , {Dk}0≤k≤n). (2.49)

That is, Gn is determined by the joint distribution of (X̃0, Ỹ0) in RNd × RNd,
Wiener processes Wt, W̃t before tn, and the batch divisions in the first n + 1 time

steps. Under the condition of Gn, the division Dn within the time step [tn, tn+1) is

determined, and the coupled dynamics of (X̃t, Ỹt) is exactly given by (2.48).

We still choose the distance function f(r) according to Lemma 2.1, and the

distance between X̃t, Ỹt ∈ RNd is defined by

ρ(X̃t, Ỹt) =
1

N

N∑
i=1

f(r̃it), (2.50)

where r̃it = |Z̃it |. Similar to Lemma 2.3, we may derive the contractivity for the

coupled dynamics (2.48), but only in the time interval [tn, tn+1) and under the

condition of fixed Gn.

Corollary 2.2. Under Assumptions 2.1 and 2.3, let f(r) be the distance function

in Lemma 2.1, and c := c0σ
2/2. If the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
,
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then under the condition of fixed Gn, for ρ̃t := ρ(X̃t, Ỹt) defined in (2.50), one has

d

dt
E[ρ̃t|Gn] ≤ m(δ)− c · E[ρ̃t|Gn], t ∈ [tn, tn+1). (2.51)

Here, the expectation E[ρ̃t|Gn] only involves the Wiener processes Wt, W̃t in the

time interval [tn, tn+1). The trajectories of {(X̃t, Ỹt)}0≤t≤tn and the batch divisions

{Dk}0≤k≤n have been included in the filtration Gn in (2.49). Corollary 2.2 can be

directly derived from Lemma 2.3 since Assumption 2.2 holds with L = 2LK . Taking

the expectation over the filtration Gn, one obtains

d

dt
E[ρ̃t] ≤ m(δ)− c · E[ρ̃t], t ∈ [tn, tn+1). (2.52)

Integrating (2.52) in the time interval [tn, tn+1) gives

E[ρ̃(n+1)τ ] ≤ e−cτE[ρ̃nτ ] +
m(δ)(1− e−cτ )

c
, ∀n ≥ 0. (2.53)

Induction on (2.53) for the first n time steps gives

E[ρ̃nτ ] ≤ e−cnτE[ρ̃0] +
m(δ)(1− e−cnτ )

c
, ∀n ≥ 0. (2.54)

Let p̃t be the transition kernel of the RB–IPS (1.3). Given the probability distribu-

tions µ, ν ∈ P1, suppose the initial values X̃0 ∼ µ, Ỹ0 ∼ ν, then X̃nτ ∼ µp̃nτ , Ỹnτ ∼
νp̃nτ . Clearly, (2.54) implies

Wf (µp̃nτ , νp̃nτ ) ≤ e−cnτWf (µ, ν) +
m(δ)(1− e−ncτ )

c
, ∀n ≥ 0. (2.55)

A crucial observation of (2.55) is that the evolution of the distributions {µp̃nτ}n≥0

and {νp̃nτ}n≥0 does not depend on the coupling scheme, in particular, the free

parameter δ > 0. Therefore, one may pass the limit δ → 0 in (2.55) to obtain

Wf (µp̃nτ , νp̃nτ ) ≤ e−cnτWf (µ, ν), ∀n ≥ 0. (2.56)

Concluding the deduction above, we obtain the following.

Theorem 2.3. Under Assumptions 2.1 and 2.3, let f(r) be the distance function

defined in Lemma 2.1, and c := c0σ
2/2. Let p̃t be the transition kernel of the RB–

IPS (1.3). If the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
, (2.57)

then one has

Wf (µp̃nτ , νp̃nτ ) ≤ e−cnτWf (µ, ν), ∀n ≥ 0 (2.58)

for any probability distributions µ, ν ∈ P1.
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Theorem 2.3 is a random batch version of Theorem 2.2. The contraction rate

c is a constant of order 1 and does not depend on the number of particles N , the

batch size p or the time step τ .

Remark 2.6. The continuous-time dynamics RB–IPS {X̃t}t≥0 is not a time-

homogeneous Markov process, since the random divisions are determined at differ-

ent time steps. However, {X̃nτ}n≥0 is a time-homogeneous Markov chain, and the

transition kernels {p̃nτ}n≥0 forms a semi-group, i.e. for any probability distribution

ν ∈ P(RNd) and integers n,m ≥ 0, we have νp̃(n+m)τ = (νpnτ )p̃mτ .

Similar to Corollary 2.1, we can prove that for any initial distribution ν ∈ P1,

νp̃nτ converges to the invariant distribution π̃ exponentially.

Corollary 2.3. Under Assumptions 2.1 and 2.3, let f(r) be the distance function

defined in Lemma 2.1, and c := c0σ
2/2. Let p̃t be the transition kernel of the RB–IPS

(1.3), and π̃ ∈ P1 be the invariant distribution. If the constant LK in Assumption

2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then one has

Wf (νp̃nτ , π̃) ≤ e−cnτWf (ν, π̃), ∀n ≥ 0 (2.59)

for any probability distribution ν ∈ P1.

The existence of the invariant distribution π̃ will be later proved in Theorem 3.1.

3. Error Estimation of Invariant Distributions

In this section, we measure the difference between the invariant distributions π, π̃

of the IPS (1.1) and the RB–IPS (1.3). We shall prove the following results:

(1) Existence of invariant distributions. The IPS (1.1) has an invariant dis-

tribution π ∈ P1, and the RB–IPS (1.3) has an invariant distribution π̃ ∈ P1.

This is a direct corollary of the geometric ergodicity proved in Sec. 2 using the

Banach fixed point theorem.

(2) Strong error estimation in finite time. Using the strong error estimation,26

for given initial distribution ν, the distance between νpt and νp̃t can be bounded

by O(τ
1
2 ), where pt, p̃t are the transition kernels of the IPS (1.1) and the RB–

IPS (1.3), respectively.

(3) Error estimation of invariant distributions. Combining the geometric

ergodicity and the strong error estimation in finite time, we are able to esti-

mate the difference between the invariant distributions π, π̃, using the triangle

inequality described in the Introduction.
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3.1. Characterization of invariant distributions

We prove the existence of the invariant distributions for the IPS (1.1) and the RB–

IPS (1.3) and estimate their first-order moments. The proof is accomplished by the

Banach fixed point theorem on the space P1 of probability distributions, where we

have defined in (2.31). Such strategy has previously appeared in Ref. 13, which

proves the existence of the invariant distribution π of the IPS (1.1). We extend this

strategy to prove the existence of invariant distribution π̃ of the RB–IPS (1.3).

To begin with, we show that the distributions νpt and νp̃t always have finite

first-order moments.

Lemma 3.1. (moment) Under Assumptions 2.1 and 2.3, there exists a constant D

such that if the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then for any probability distribution ν ∈ P1,

(i) νpt ∈ P1 for any real number t ≥ 0, and

lim
t→∞

∫
RNd

(
1

N

N∑
i=1

|xi|

)
(νpt)(dx) ≤ D; (3.1)

(ii) νp̃nτ ∈ P1 for any integer n ≥ 0, and

lim
n→∞

∫
RNd

(
1

N

N∑
i=1

|xi|

)
(νp̃nτ )(dx) ≤ D. (3.2)

The constant D does not depend on the number of particles N, the time step τ, the

batch size p or the initial distribution ν.

The proof of Lemma 3.1 is in Appendix A. The asymptotic positivity of the

function κ(r) in Assumption 2.1 is crucial to bound the moments of νpt and νp̃t
uniformly in time.

Remark 3.1. As we shall see in strong error estimation, we can also obtain the

αth order moment estimation which is uniform in time for a general constant α ≥ 2.

Using the contractivity obtained in Sec. 2, we derive the existence of the invari-

ant distributions.

Theorem 3.1. Under Assumptions 2.1 and 2.3, if the constant LK in Assumption

2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then

(i) The Markov process {Xt}t≥0 evolved by the IPS (1.1) has a unique invariant

distribution π ∈ P1.
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(ii) The Markov chain {X̃nτ}n≥0 evolved by the RB–IPS (1.3) has a unique invari-

ant distribution π̃ ∈ P1.

The proof below is similar to the proof of Corollary 3 of Ref. 13.

Proof. (i) Note that the Wasserstein distance Wf is equivalent to the standard

W1-distance

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
RNd×RNd

(
1

N

N∑
i=1

|xi − yi|

)
γ(dxdy). (3.3)

From Theorem 2.2, there exists a constant C > 0 such that

W1(µpt, νpt) ≤ Ce−ct · W1(µ, ν), ∀ t ≥ 0 (3.4)

for all distributions µ, ν ∈ P1. Then there exists T > 0 such that Ce−cT = 1/2 and

W1(µpT , νpT ) ≤ 1

2
W1(µ, ν). (3.5)

Hence the mapping ν 7→ νpT is contractive in the complete metric space P1. From

the Banach fixed point theorem, this mapping has a fixed point π0 ∈ P1, i.e.

π0 = π0pT . (3.6)

Define the measure in RNd by

π =
1

T

∫ T

0

π0psds, (3.7)

then π is a probability distribution in RNd and π ∈ P1 from Lemma 3.1. From the

Markov property of the transition kernel (pt)t≥0, for any t ≥ 0 we have

πpt =
1

T

∫ T

0

(π0ps)ptds =
1

T

∫ T

0

π0ps+tds. (3.8)

Since the family of distributions {π0pt}t≥0 has the period T , we have

πpt =
1

T

∫ T

0

π0psds = π. (3.9)

Therefore, π is the invariant distribution of the Markov process {Xt}t≥0. The

uniqueness of π follows from the contractivity in Theorem 2.2.

(ii) For given τ > 0, there exists a constant C > 0 such that

W1(µp̃nτ , νp̃nτ ) ≤ Ce−ncτ · W1(µ, ν), (3.10)

then one can choose an integer N ∈ N such that Ce−Ncτ ≤ 1/2, and

W1(µp̃Nτ , νp̃Nτ ) ≤ 1

2
W1(µ, ν), (3.11)

so that the mapping ν 7→ νp̃Nτ is contractive. From the Banach fixed point theorem,

this mapping has a fixed point π̃0 ∈ P1, i.e.

π̃0 = π̃0p̃Nτ . (3.12)
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Define the probability distribution in RNd by

π̃ =
1

N

N−1∑
k=0

π̃0p̃kτ , (3.13)

then from Lemma 3.1 π̃ ∈ P1. From the Markov property of the transition kernel

(p̃nτ )n≥0, for any n ≥ 0 one has

π̃p̃nτ =
1

N

N−1∑
k=0

(π̃0p̃kτ )p̃nτ =
1

N

N−1∑
k=0

π̃0p̃kτ = π̃. (3.14)

Therefore, π̃ is the invariant distribution of the Markov chain {X̃nτ}n≥0. The

uniqueness of π̃ follows from the contractivity in Theorem 2.3.

By choosing π to be the invariant distribution in Theorem 2.2, we have

Wf (π, νpt) ≤ e−ctWf (π, ν), ∀ t ≥ 0, (3.15)

which implies νpt converges to π exponentially in the sense of the Wasserstein

distance Wf . Similarly, νp̃nτ converges to π̃ exponentially. Since f(r) is equivalent

to the Euclidean norm, Lemma 3.1 directly implies π, π̃ have the following first-

moment estimation.

Corollary 3.1. Under Assumptions 2.1 and 2.3, there exists a constant D such

that if the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then ∫
RNd

(
1

N

N∑
i=1

|xi|

)
π(dx),

∫
RNd

(
1

N

N∑
i=1

|xi|

)
π̃(dx) ≤ D. (3.16)

The constant D does not depend on the number of particles N, the time step τ or

the batch size p.

Although the invariant distribution π̃ of the RB–IPS (1.3) depends on the time

step τ , the constant D in Corollary 3.1 is independent of τ . This means the estimate

of the first-order moments of π̃ is uniform in τ .

Remark 3.2. The Banach fixed point theorem in the metric space P1 only implies

π, π̃ have finite first-order moments, and does not guarantee π, π̃ have higher order

moments, despite the fact that νpt and νp̃t have finite αth order moments for any

α ≥ 2 (see Lemma 3.3 of this paper).

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

67
-1

02
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I 
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/3

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 22, 2023 17:0 WSPC/103-M3AS 2350003

88 S. Jin et al.

3.2. Strong error estimation in finite time

In stochastic analysis, the strong error relates to the trajectory difference between

two stochastic processes. Suppose the IPS Xt and the RB–IPS X̃t are driven by the

same Wiener process Wt in RNd, and the initial state X0 = X̃0 is sampled from the

same distribution ν ∈ P1. In other words, Xt and X̃t are coupled in the synchronous

coupling scheme, and the only difference is the random batch approximation of the

interaction forces. Define the strong error between the trajectories Xt and X̃t by

J(t) =
1

2N

N∑
i=1

E|X̃i
t −Xi

t |2, t ≥ 0. (3.17)

We aim to estimate J(t) in a finite interval t ∈ [0, T ], and derive the upper bound

of J(t) in terms of τ . Except for Assumptions 2.1 and 2.3, we additionally require

the following.

Assumption 3.1. There exist constants C > 0 and q ≥ 2 such that

max{|b(x)|, |∇b(x)|} ≤ C(|x|+ 1)q, ∀x ∈ Rd. (3.18)

Remark 3.3. The requirement q ≥ 2 in Assumption 3.1 is merely for technical

convenience.

To analyze J(t) is different time steps, define the filtration

Fn = σ(ν, {Wt}t≤tn , {Dk}0≤k≤n). (3.19)

That is, Fn is determined by the initial distribution ν, the Wiener process Wt before

tn and the divisions Dk in the first n + 1 time steps. Under the condition of Fn,

the RB–IPS (1.3) in the time interval [tn, tn+1) is evolved by (1.3). Now we have

the following estimate of the αth order moments.

Lemma 3.2. Under Assumptions 2.1 and 2.3, for any given constant α ≥ 2, there

exist positive constants C, β depending on α such that for any i ∈ {1, . . . , N},

d

dt
E|Xi

t |α ≤ −β · E|Xi
t |α + C, ∀ t ≥ 0, (3.20)

and

d

dt
E
(
|X̃i

t |α
∣∣Fn) ≤ −β · E(|X̃i

t |α
∣∣Fn)+ C, t ∈ [tn, tn+1). (3.21)

The constants C, β do not depend on the number of particles N, the time step τ or

the batch size p.

The proof of Lemma 3.2 is in Appendix A, and is similar to Lemma 3.3 of Ref. 25.

The asymptotic positivity of the function κ(r) in Assumption 2.1 is essential to
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produce the negative coefficient−β in (3.20), (3.21). By Lemma 3.2, we immediately

deduce that both Xt, X̃t have finite αth order moments which are uniform in time.

Lemma 3.3. Under Assumptions 2.1 and 2.3, for any given constant α ≥ 2, if

there exists a constant M such that the initial distribution ν satisfies

max
1≤i≤N

∫
RNd
|xi|αν(dx) ≤M,

then there exists a constant C depending on M,α such that

sup
t≥0

E|Xi
t |α ≤ C, sup

t≥0
E|X̃i

t |α ≤ C. (3.22)

The constant C does not depend on the number of particles N, the time step τ or

the batch size p.

Remark 3.4. The constant C in Lemma 3.3 depends on the moments of the initial

distribution ν. If one wishes C to be truly independent of N , the moment upper

bound M should be also independent of N . In particular, if one chooses the ν to

be the Dirac distribution at the origin, the constant M is simply zero.

The following strong error estimation of the RB–IPS (1.3) is exactly the same

with the results of Ref. 26, thus we only state their main theorem here. The detailed

proof can be seen in Theorem 3.1 of Ref. 26.

Theorem 3.2. Under Assumptions 2.1, 2.3 and 3.1, if there exists a constant M

such that the initial distribution ν satisfies

max
1≤i≤N

∫
RNd
|xi|2qν(dx) ≤M,

then for any T > 0, there exists a constant C depending on T and M such that

sup
0≤t≤T

J(t) ≤ C
(

τ

p− 1
+ τ2

)
. (3.23)

The constant C does not depend on the number of particles N, the time step τ or

the batch size p.

Remark 3.5. In the statement of Theorem 3.1 of Ref. 26, the assumptions on the

moments of the initial distribution ν ∈ P(RNd) are not explicitly specified. In the

proof of Theorem 3.1 of Ref. 26, when b(x) satisfies the polynomial growth condition

as in Assumption 3.1, the finiteness of the 2qth order moments is enough to yield

the estimation of J(t) in (3.23). We clarify the assumptions on the moments of ν

in the statement of Theorem 3.2 of this paper.

Now we can estimate the Wasserstein distance W1(νpt, νp̃t) using the estimate

of J(t), where ν is the initial distribution, and pt, p̃t are the transition kernels of
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the IPS (1.1) and the RB–IPS (1.3). Recall that normalized W1-distance between

two probability distributions µ, ν ∈ P1 is defined by

W1(µ, ν) = inf
γ∈Π(µ,ν)

∫
RNd×RNd

(
1

N

N∑
i=1

|xi − yi|

)
γ(dxdy),

hence if we choose γ to be the synchronous coupling (driven by the same Wiener

process Wt), the Wasserstein distance W1(νpt, νp̃t) can be bounded by

W1(νpt, νp̃t) ≤ E

(
1

N

N∑
i=1

|Xi − X̃i
t |

)

≤

√√√√E

(
1

N

N∑
i=1

|Xi
t − X̃i

t |

)2

≤

√√√√ 1

N

N∑
i=1

E|Xi
t − X̃i

t |2 =
√

2J(t),

that is,W1(νpt, νp̃t) ≤
√

2J(t). Therefore, the estimate of J(t) immediately implies

the following.

Corollary 3.2. Under Assumptions 2.1, 2.3 and 3.1, if there exists a constant M

such that the initial distribution ν satisfies

max
1≤i≤N

∫
RNd
|xi|2qν(dx) ≤M,

then for any T > 0, there exists a constant C depending on T and M such that

sup
0≤t≤T

W1(νpt, νp̃t) ≤ C
√

τ

p− 1
+ τ2. (3.24)

The constant C does not depend on the number of particles N, the time step τ or

the batch size p.

When the batch size p is small,
√
τ/(p− 1) dominates the Wasserstein error

W1(νpt, νp̃t). In this sense, the Wasserstein error W1(νpt, νp̃t) has at least half-

order convergence with respect to the time step τ .

3.3. Estimate of W1(π, π̃)

Now we estimate W1(π, π̃) using the results derived in the previous sections.

Theorem 3.3. Under Assumptions 2.1, 2.3 and 3.1, there exists a constant C such

that if the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
,

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

67
-1

02
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I 
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/3

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 22, 2023 17:0 WSPC/103-M3AS 2350003

Ergodicity of the RBM 91

then the invariant distributions π, π̃ of the IPS (1.1) and the RB–IPS (1.3) satisfy

W1(π, π̃) ≤ C
√

τ

p− 1
+ τ2. (3.25)

The constant C does not depend on the number of particles N, the time step τ or

the batch size p.

The proof of Theorem 3.3 is basically the triangle inequality described in the

Introduction, but with minor difference.

Proof. For convenience, denote the first-order moment of ν ∈ P1 by

M1(ν) =

∫
RNd

(
1

N

N∑
i=1

|xi|

)
ν(dx), (3.26)

then by Corollary 3.1 M1(π),M1(π̃) ≤ D. Hence it always holds that

W1(π, π̃) ≤M1(π) +M1(π̃) ≤ 2D, (3.27)

and we may assume τ < D in the following proof. Let ν0 be the distribution in RNd
with all the N particles frozen at origin, then the 2qth order moment of ν0 is 0. By

Lemma 3.3, there exists a constant M such that

sup
t≥0

{
max

1≤i≤N

∫
RNd
|xi|2q(ν0pt)(dx)

}
≤M. (3.28)

That is to say, the 2qth order moment of ν0pt is always no greater than M .

Instead of directly measuring the distance W1(π, π̃), we fix a constant T > 0

and consider the distance W1(ν0pT , π̃). By Theorem 2.3, there exists a constant C

such that for any n ≥ 0,

W1(ν0pT , π̃) = W1(ν0pT , π̃p̃nτ )

≤ W1(ν0pT p̃nτ , π̃p̃nτ ) +W1(ν0pT , ν0pT p̃nτ )

≤ Ce−cnτW1(ν0pT , π̃) +W1(ν0pT , ν0pT p̃nτ ).

For given value of τ < D, if one chooses the integer n to be

n =

⌈
log(2C)

cτ

⌉
, (3.29)

then Ce−cnτ ≤ 1
2 and

nτ ≤
(

log(2C)

cτ
+ 1

)
τ ≤ log(2C)

c
+D, (3.30)

hence nτ has an upper bound. For this chosen n one has

W1(ν0pT , π̃) ≤ 2 · W1(ν0pT , ν0pT p̃nτ )

≤ 2 · W1(ν0pT , ν0pT pnτ ) + 2 · W1(ν0pT pnτ , ν0pT p̃nτ )

≤ Ce−cTW1(ν0, ν0pnτ ) + 2 · W1(ν0pT pnτ , ν0pT p̃nτ ).
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Passing to the limit T →∞ gives

W1(π, π̃) ≤ 2 lim
T→∞

W1(ν0pT pnτ , ν0pT p̃nτ ). (3.31)

Note that ν0pT always has finite 2qth order moments, hence by Corollary 3.2,

W1(ν0pT pnτ , ν0pT p̃nτ ) ≤ C
√

τ

p− 1
+ τ2, ∀ T > 0, (3.32)

where the constant C does not depend on N, τ, p or the choice of T . Combining

(3.31) and (3.32) we obtain the estimate of W1(µ, µ̃):

W1(π, π̃) ≤ C
√

τ

p− 1
+ τ2, (3.33)

which is exactly the result we need.

Remark 3.6. We have some remarks on Theorem 3.3.

(1) In general, the W1-distance between the invariant distributions π, π̃ is of order

O(
√
τ), regardless of the batch size p used in the RB–IPS (1.3). Nevertheless,

increasing the batch size p shall reduce the value of W1(π, π̃) as in (3.25).

(2) We estimate the distanceW1(ν0pT , π̃) instead ofW1(π, π̃) because it is nontriv-

ial to prove the invariant distributions π, π̃ ∈ P1 has finite 2qth order moments.

Therefore, we use a series of distributions {ν0pT }T≥0 to approximate π, where

the moments of ν0pT can be easily derived.

(3) In this framework, the order of accuracy in the estimation of W1(π, π̃) cannot

be greater than the order of the strong error. It is still an open question whether

it is possible to apply the weak error estimation instead of the strong one in this

framework. The main difficulty comes from the fact that we can only derive the

geometric ergodicity in the sense of the Wasserstein distance, which is stronger

than the weak error.

Combining Corollary 2.3 and Theorem 3.3, we immediately obtain the following.

Corollary 3.3. Under Assumptions 2.1, 2.3 and 3.1, let and c := c0σ
2/2 and p̃t

be the transition kernel of the RB–IPS (1.3). There exists a constant C such that

if the constant LK in Assumption 2.3 satisfies

LK <
c0ϕ0σ

2

16
,

then one has

W1(νp̃nτ , π) ≤ Ce−cnτW1(ν, π) + C

√
τ

p− 1
+ τ2, ∀n ≥ 0 (3.34)

for any probability distribution ν ∈ P1. The constant C does not depend on the

number of particles N, the time step τ or the batch size p.

Corollary 3.3 reveals the long-time sampling accuracy of the RB–IPS (1.3). The

sampling error of the RB–IPS (1.3) consists of two parts: one part is the exponential
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convergence toward the equilibrium; the other part is the asymptotic error of the

invariant distributions. Both parts do not depend on the number of particles N .

Remark 3.7. We can also estimate the sampling accuracy of the RB–IPS (1.3) in

the sense of weak error. Suppose the test function φ : RNd → R is given by

φ(x1, . . . , xN ) =
1

N

N∑
i=1

φ̄(xi), (3.35)

where φ̄ : Rd → R is an one-particle observable function with Lipschitz constant L̄.

Then for any probability distributions µ, ν ∈ P1, one has

|〈φ〉µ − 〈φ〉ν | ≤ L̄ · W1(µ, ν), (3.36)

where 〈φ〉µ :=
∫
RNd φdµ denotes the statistical average of φ in the distribution µ.

Hence (3.34) implies the weak error estimate

|〈φ〉νp̃nτ − 〈φ〉π| ≤ CL̄
(
e−cnτW1(ν, π) +

√
τ

p− 1
+ τ2

)
, ∀n ≥ 0. (3.37)

In particular, the constants C, L̄ and the convergence rate c are independent of N .

4. Conclusion

In this paper, we have investigated the long-time behavior of the RB–IPS (1.3). We

have proved the ergodicity of the RB–IPS (1.3) and showed that the W1-distance

between the invariant distributions is O(
√
τ), which quantitatively characterizes

the long-time sampling error of the RB–IPS (1.3). Our future work shall focus on

the error analysis of the time average estimator.

Appendix A. Proof of Main Results

Proof of Lemma 2.1. Under Assumption 2.1, define the constants R0, R1 ≥ 0 by

R0 := inf{R ≥ 0 : κ(r) ≥ 0, ∀ r ≥ R}, (A.1)

R1 := inf{R ≥ R0 : κ(r)R(R−R0) ≥ 16,∀ r ≥ R}. (A.2)

The existence of R0, R1 is guaranteed by the asymptotic positivity of κ(r). Also,

one has κ(r) ≥ 0 for r ≥ R0 and κ(r)R1(R1 − R0) ≥ 16 for r ≥ R1. Given the

function κ(r), define the auxiliary functions ϕ(r),Φ(r), g(r) by

ϕ(r) = exp

(
−1

4

∫ r

0

sκ(s)−ds

)
, Φ(r) =

∫ r

0

ϕ(s)ds, (A.3)

g(r) =


1− 1

2

∫ r

0

Φ(s)

ϕ(s)
ds

/∫ R1

0

Φ(s)

ϕ(s)
ds, r ≤ R1,

1

2
− η(r −R1)

1 + 4η(r −R1)
, r > R1,

(A.4)
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where x− = −min{x, 0} is the negative part of x ∈ R and the constant η > 0 is

defined by

η = −g′(R1) =
1

2

Φ(R1)

ϕ(R1)

/∫ R1

0

Φ(s)

ϕ(s)
ds. (A.5)

The choice of η in (A.5) ensures that g(r) is differentiable at r = R1. Finally, the

distance function f(r) is defined as

f(r) =

∫ r

0

ϕ(s)g(s)ds. (A.6)

The only difference between Eqs. (A.3)–(A.6) and the construction of f(r) in Ref. 12

is the definition of g(r) for r > R1. In our choice, g(r) is differentiable at r = R1

so that f(r) is always twice differentiable, while in the original proof f(r) ∈ C1

and f ′(r) is absolutely continuous. From Eqs. (A.3)–(A.6), it is easy to verify the

following properties of the functions f(r), ϕ(r),Φ(r), g(r):

(1) 0 < ϕ(r) ≤ 1, 1
4 ≤ g(r) ≤ 1. ϕ(0) = g(0) = 1. Φ(0) = 0.

(2) The derivatives of ϕ and g are given by

ϕ′(r) = −1

4
rκ(r)−ϕ(r),

g′(r) = −1

2

Φ(r)

ϕ(r)

/∫ R1

0

Φ(s)

ϕ(s)
ds, 0 ≤ r ≤ R1.

(A.7)

Hence ϕ′(0) = g′(0) = 0 and ϕ′(r) ≤ 0, g′(r) ≤ 0 for all r ≥ 0.

(3) The second derivative of f(r) is given by

f ′′(r) = ϕ(r)g′(r) + ϕ′(r)g(r) ≤ 0, (A.8)

which implies f(r) is concave for all r ≥ 0.

(4) When r > R0,

ϕ(r) ≡ ϕ0 := exp

(
−1

4

∫ R0

0

sκ(s)−ds

)
. (A.9)

Since ϕ(r) ≥ ϕ0 and g(r) ≥ 1
4 for all r ≥ 0, one obtains the estimate

f ′(r) = ϕ(r)g(r) ≥ ϕ0

4
, (A.10)

which implies f(r) ≥ ϕ0

4 r for all r ≥ 0.

(5) Since g(r) ≤ 1,

Φ(r) =

∫ r

0

ϕ(s)ds ≥
∫ r

0

ϕ(s)g(s)ds = f(r). (A.11)

From Φ′′(r) = ϕ′(r) ≤ 0, Φ(r) is also concave for r ∈ [0,+∞).

Now we prove the inequality (2.22) with the constant c0 defined by

1

c0
=

∫ R1

0

Φ(s)

ϕ(s)
ds. (A.12)
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(1) When r ≤ R1, using f(r) ≤ Φ(r),

f ′′(r) = ϕ′(r)g(r) + ϕ(r)g′(r)

= −1

4
rκ(r)−ϕ(r)g(r)− 1

2
Φ(r)

/∫ R1

0

Φ(s)

ϕ(s)
ds

≤ 1

4
rκ(r)f ′(r)− 1

2
f(r)

/∫ R1

0

Φ(s)

ϕ(s)
ds,

hence (2.22) holds with c0 defined in (A.12).

(2) When r > R1, f ′(r) ≥ ϕ0/4, f ′′(r) ≤ 0. Hence by the definition of R1 and the

concavity of Φ(r) with Φ(0) = 0, one has

f ′′(r)− 1

4
rκ(r)f ′(r) ≤ − 1

16
rκ(r)ϕ0 ≤ −

ϕ0

R1 −R0

r

R1

≤ − ϕ0

R1 −R0

Φ(r)

Φ(R1)
. (A.13)

Since ϕ(r) ≡ ϕ0 for r ≥ R0, Φ(r) is linear in r, i.e.

Φ(r) = Φ(R0) + (r −R0)ϕ0, r ≥ R0. (A.14)

In particular, Φ(R1) = Φ(R0) + (R1 −R0)ϕ0, hence∫ R1

R0

Φ(s)

ϕ(s)
ds =

Φ(R0)

ϕ0
(R1 −R0) +

1

2
(R1 −R0)2

≥ 1

2
(R1 −R0)

Φ(R1)

ϕ0
. (A.15)

Combining (A.13) and (A.15) one obtains

f ′′(r)− 1

4
rκ(r)f ′(r) ≤ −1

2
Φ(r)

/∫ R1

R0

Φ(s)

ϕ(s)
ds ≤ −1

2
f(r)

/∫ R1

0

Φ(s)

ϕ(s)
ds,

(A.16)

hence (2.22) holds with c0 defined in (A.12).

It is easy to see ϕ0

4 r ≤ f(r) ≤ r for all r ≥ 0.

Proof of Lemma 2.2. Using bi(x) = b(xi) + γi(x), the left-hand side of (2.24) is

written as I = I1 + I2 + I3,

I1 =

N∑
i=1

(ri)−1Zi · (b(Xi)− b(Y i))f ′(ri),

I2 =

N∑
i=1

(ri)−1Zi · (γi(X)− γi(Y ))f ′(ri),

I3 = 2σ2
N∑
i=1

rc2(Zi)f ′′(ri).
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Now we estimate I1, I2, I3, respectively.

• Estimate I1: By the definition of κ(r) in (2.19),

I1 ≤ −
σ2

2

N∑
i=1

riκ(ri)f ′(ri). (A.17)

• Estimate I2: Using the Lipschitz condition in Assumption 2.2 and f(r) ≥ ϕ0r/4,

I2 ≤
N∑
i=1

|γi(X)− γi(Y )| ≤ L
N∑
i=1

ri ≤ 4L

ϕ0

N∑
i=1

f(ri). (A.18)

• Estimate I3: Using the estimation of f ′′(r) in (2.22),

I3 ≤
σ2

2

N∑
i=1

riκ(ri)rc2(Zi)f ′(ri)− c0σ2
N∑
i=1

rc2(Zi)f(ri)

=
σ2

2

N∑
i=1

riκ(ri)f ′(ri)− c0σ2
N∑
i=1

f(ri)

− σ2

2

N∑
i=1

riκ(ri)(1− rc2(Zi))f ′(ri)︸ ︷︷ ︸
I31

+ c0σ
2
N∑
i=1

(1− rc2(Zi))f(ri)︸ ︷︷ ︸
I32

.

(A.19)

We estimate I31 and I32 in (A.19).

— Estimate I31: Note that 1− rc2(Zi) = 0 if ri ≥ δ, thus

I31 = −σ
2

2

N∑
i=1

riκ(ri)(1− rc2(Zi))f ′(ri)

≤ σ2

2

∑
i:ri<δ

riκ(ri)−f ′(ri)

≤ σ2

2

∑
i:ri<δ

riκ(ri)−

≤ Nσ2

2
sup
r<δ

(rκ(r)−).

— Estimate I32: In a similar way, using f(r) ≤ r one obtains

I32 = c0σ
2
N∑
i=1

(1− rc2(Zi))f(ri)

≤ c0σ
2
∑
i:ri<δ

f(ri)

≤ c0Nσ
2δ.
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From the definition of m(δ) in (2.25), one obtains the estimate of I3:

I3 ≤
σ2

2

N∑
i=1

riκ(ri)f ′(ri)− c0σ2
N∑
i=1

f(ri) +Nm(δ). (A.20)

Summation over the estimates (A.17), (A.18), (A.20) of I1, I2, I3 gives

I ≤ −
(
c0σ

2 − 4L

ϕ0

) N∑
i=1

f(ri) +Nm(δ). (A.21)

When the Lipschitz constant L < c0ϕ0σ
2/8, one has

I ≤ −c0σ
2

2

N∑
i=1

f(ri) +Nm(δ) = Nm(δ)− c
N∑
i=1

f(ri), (A.22)

which is exactly the result we need.

Proof of Lemma 3.1. Consider the stochastic processes Xt and X̃t evolved by the

IPS (1.1) and the RB–IPS (1.3), respectively, with the initial distribution ν ∈ P1.

For convenience, we unify (1.1), (1.3) in the form of the product model (2.1).

(i) By choosing a smooth function f(x) =
√
|x|2 + 1, each f(Xi

t) satisfies the

SDE

df(Xi
t) = bi(Xt) · ∇f(Xi

t)dt+
σ2

2
∆f(Xi

t)dt+∇f(Xi
t) · σdW i

t , (A.23)

where ∆ = ∇ · ∇ is the Laplacian operator in Rd. Taking the expectation, one

obtains

d

dt
E[f(Xi

t)] = E
(
bi(Xt) · ∇f(Xi

t) +
σ2

2
∆f(Xi

t)

)
. (A.24)

Note that the first and second derivatives of f(x) and the perturbation γi(x) are

uniformly bounded (we have assumed K(·) to be bounded in Assumption 2.3), for

each i ∈ {1, . . . , N} there is

d

dt
E[f(Xi

t)] ≤ E
(
b(Xi

t) · ∇f(Xi
t)
)

+ C = E

(
b(Xi

t) ·Xi
t√

|Xi
t |2 + 1

)
+ C. (A.25)

Under Assumption 2.1, we claim that there exists constants C, β > 0 such that

x · b(x)√
|x|2 + 1

≤ C − β
√
|x|2 + 1, ∀x ∈ Rd. (A.26)

In fact, from κ(r)− = 0 for r ≥ R0, one has

x · b(x) ≤ x · b(0)− σ2

2
κ(r)|x|2

= x · b(0)− σ2

2
κ(r)+|x|2 +

σ2

2
κ(r)−|x|2

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
23

.3
3:

67
-1

02
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 S

H
A

N
G

H
A

I 
JI

A
O

T
O

N
G

 U
N

IV
E

R
SI

T
Y

 o
n 

08
/3

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 22, 2023 17:0 WSPC/103-M3AS 2350003

98 S. Jin et al.

≤ x · b(0)− σ2

2
κ(r)+|x|2 +

σ2R0

2
κ(r)−|x|

≤ C|x| − σ2

2
κ(r)+|x|2,

where x+ = max{x, 0} denotes the positive part of x ∈ R. Thus (A.26) holds true.

Combining (A.26) and (A.25) yields

d

dt
E[f(Xi

t)] ≤ C − β · E[f(Xi
t)], i = 1, . . . , N. (A.27)

For the IPS {Xt}t≥0, define

m(t) = E

(
1

N

N∑
i=1

f(Xi
t)

)
, ∀ t ≥ 0. (A.28)

Since ν is the initial distribution of X0, clearly m(t) is an upper bound of∫
RNd

(
1

N

N∑
i=1

|xi|

)
(νpt)(dx). (A.29)

Summation over i ∈ {1, . . . , N} in (A.27) gives

m′(t) ≤ C − β ·m(t). (A.30)

Hence m(t) is finite for all t ≥ 0, and by Gronwall’s inequality,

lim
t→∞

∫
RNd

(
1

N

N∑
i=1

|xi|

)
(νpt)(dx) ≤ lim

t→∞
m(t) ≤ C

β
. (A.31)

Now one may just take D = C/β in Lemma 3.1.

(ii) The moment estimate for the RB–IPS (1.3) can be derived in a similar way.

For convenience, define the filtration Fn by

Fn = σ(ν, {Ws}0≤s≤tn , {Dk}0≤k≤n). (A.32)

That is, Fn is determined by the initial distribution ν of X̃0, the Wiener process

Wt before time tn, and the divisions in the first n+ 1 time steps. For the RB–IPS

{X̃t}t≥0, define

m̃(t) = E

(
1

N

N∑
i=1

f(X̃i
t)

)
, ∀ t ≥ 0. (A.33)

Under the condition of the filtration Fn, define

m̃(t|Fn) := E

(
1

N

N∑
i=1

f(X̃i
t)

∣∣∣∣Fn
)
, t ∈ [tn, tn+1). (A.34)

With fixed division Dn of the index set {1, . . . , N}, X̃t in the time interval [tn, tn+1)

is evolved by the RB–IPS (1.3), and Assumption 2.2 still holds true with the con-

stant L = 2LK . Therefore, similarly with (A.30), one obtains

m̃′(t|Fn) ≤ C − β · m̃(t|Fn), ∀ t ∈ [tn, tn+1). (A.35)
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Taking the expectation over Fn in (A.35) gives

m̃′(t) ≤ C − β · m̃(t), t ∈ [tn, tn+1). (A.36)

Integrating (A.36) in the time interval [tn, tn+1) gives

m̃((n+ 1)τ) ≤ e−βτm̃(nτ) +
C

β
(1− e−βτ ), ∀n ≥ 0. (A.37)

Hence m̃(t) is finite for all integers n ≥ 0, and by Gronwall’s inequality,

lim
n→∞

m̃(nτ) ≤ C

β
. (A.38)

Now one may just take D = C/β in Lemma 3.1.

Proof of Lemma 3.2. We first estimate E|Xi
t |α for the IPS (1.1). By Itô calculus,

d

dt
E|Xi

t |α = α · E
{
|Xi

t |α−2
(
Xi
t · b(Xi

t) +Xi
t · γi(Xt)

)}
+

1

2
α(α+ d− 2)σ2E|Xi

t |α−2, (A.39)

where the perturbation γi(x) is given by (2.3). By the definition of κ(r), one has

−x · (b(x)− b(0)) ≥ σ2

2
κ(|x|)|x|2, ∀x ∈ Rd. (A.40)

Hence the drift force part in (A.39) is bounded by

|Xi
t |α−2Xi

t · b(Xi
t) ≤ C|Xi

t |α−1 − σ2

2
κ(|Xi

t |)|Xi
t |α. (A.41)

Since γi(x) is uniformly bounded according to Assumption 2.3, the perturbation

part in (A.39) is bounded by

|Xi
t |α−2Xi

t · γi(Xt) ≤ C|Xi
t |α−1. (A.42)

Combining (A.41) and (A.42), from (A.39) one deduces that

d

dt
E|Xi

t |α ≤ −
ασ2

2
E
(
κ(|Xi

t |)|Xi
t |α
)

+ C
(
E|Xi

t |α−1 + E|Xi
t |α−2

)
. (A.43)

Since κ(r) ≥ δ for r ≥ R0 and κ(r) has a lower bound for r > 0, one has

−κ(r)rα = (δ − κ(r))rα − δrα ≤ C − δrα, ∀ r ≥ 0, (A.44)

which implies

−E
(
κ(|Xi

t |)|Xi
t |α
)
≤ C − δ · E|Xi

t |α. (A.45)

Therefore by choosing c = ασ2δ/2, one has

d

dt
E|Xi

t |α ≤ −c · E|Xi
t |α + C(E|Xi

t |α−1 + E|Xi
t |α−2 + 1). (A.46)
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Using interpolation inequality, E|Xi
t |α−1 and E|Xi

t |α−2 can be bounded by E|Xi|α
plus constant. Therefore, (A.46) implies

d

dt
E|Xi

t |α ≤ −
c

2
· E|Xi

t |α + C (A.47)

for some constant C, which is exactly the result we need. For the RB–IPS (1.3),

the perturbation γi(x) given by (2.4) is bounded by 2LK , thus the proof still works

for the RB–IPS (1.3) in the time interval [tn, tn+1) under the condition of Fn.
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30. P. Lévy, Sur certains processus stochastiques homogènes, Compositio Mathematica
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