Analytical solution for laterally loaded long piles based on Fourier-Laplace integral

Fayun Liang ${ }^{\text {a,* }}$, Yanchu Li ${ }^{\text {a,1 }}$, Lei Li $^{\text {b }}$, Jialai Wang ${ }^{\mathrm{c}, 2}$
${ }^{\text {a }}$ Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
${ }^{\mathrm{b}}$ Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53706, USA
${ }^{\text {c }}$ Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL 35487, USA

ARTICLE INFO

Article history:

Received 6 July 2012
Received in revised form 23 January 2014
Accepted 28 March 2014
Available online 18 April 2014

Keywords:

Laterally loaded long piles
Winkler foundation model
Fourier-Laplace integral
Power series solutions
WKB asymptotic solutions

Abstract

Piles are frequently used to support lateral loads. Elastic solutions based on the Winkler foundation model are widely used to design laterally loaded piles at working load. This paper reports a simplified analytical solution for laterally loaded long piles in a soil with stiffness linearly increasing with depth. Based on a Fourier-Laplace integral, a power series solution for small depth and a Wentzel-Kramers-Brillouin (WKB) asymptotic solution for large depth are derived. By using this analytical solution, the deflection and bending moment profiles of a laterally loaded pile can be obtained through simple calculation. The proposed power series solution is exact for infinitely long piles. Numerical examples show that this solution agrees well with other existing methods on predicting the deflection and bending moment of laterally loaded piles. The WKB asymptotic solution developed in this study has never been introduced before. The simplified analytical solution obtained in this study provides a better approach for engineers to analyze the responses and design of laterally loaded long piles.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Piles are widely used to support laterally loaded structures, such as bridges, buildings, tanks, and wind turbines. Some analytical methods have been developed for analyzing such piles, including the elastic subgrade reaction approach by Matlock and Reese [1], Davisson and Gill [2], Shen and Teh [3] or the elastic continuum approach by Poulos and Davis [4], Zhang and Small [5], Shen and Teh [6]. Of these methods, the subgrade reaction approach based on Winkler foundation model is most widely used for its clear concept and simple mathematical treatment. Terzaghi [7] proposed that the modulus of subgrade reaction should be a constant with the depth of clay, whereas this modulus should increase linearly with depth from a value of zero at the ground surface for sand. By using the beam on elastic foundation model, Chang [8] derived an analytic solution for a laterally loaded pile in clay by assuming the coefficient of the subgrade reaction is a constant and the pile is sufficiently long. Several methods have been developed for the analysis of laterally loaded piles in sand, including the finite difference method by Gleser [9], Matlock and Reese [1], Reese and Matlock [10] and power series solution by Hetenyi [11], Rowe [12,13]. Finite difference solutions can be very close to the actual solution if sufficient segments are used.

[^0]However, the efficiency of the calculation is relatively low especially when the pile is very long and a large number of segments are used. The power series expression is an approximate solution because the boundary conditions at the tip of pile can hardly be exactly satisfied by the finite terms of the power series. Moreover, more terms of the power series are needed with the increasing depth of piles to ensure accuracy, leading to a greater amount of calculation.

To analyze laterally loaded long piles with higher accuracy and simplicity, this paper proposes an analytical solution based on the Fourier-Laplace integral method, which recovers power series solutions for small depth and Wentzel-Kra-mers-Brillouin (WKB) asymptotic solutions for large depth. The power series solution is used to analyze the small depth part of the pile with high accuracy by use of only a few terms; while the WKB approximation is employed to analyze the large depth part of the pile with much less work but acceptable accuracy compared with the power series. For infinitely long piles, the proposed power series solution is an exact solution as the boundary conditions at the tip of the pile are satisfied exactly. Furthermore, the simplified analytical solutions to deflection and bending moment of laterally loaded long piles are obtained, which can be conveniently used by engineers to facilitate analysis and design of piles. In addition, the present method can also be extended to analyze laterally loaded long piles in soil with the modulus of subgrade reaction in some other functions of the depth. The method proposed in this article is also available to analyze a short pile which is addressed in Appendix B.

2. Definition of the problem

According to Winkler foundation model, the flexural equation of a pile on the elastic subgrade can be written as

$$
\begin{equation*}
E_{p} I_{p} \frac{d^{4} y}{d z^{4}}+K \cdot y=0 \tag{1}
\end{equation*}
$$

where E_{p} is the Young's modulus of the pile, I_{p} is the inertia moment of the pile, y is the pile deflection, z is the pile depth, K is the modulus of subgrade reaction.

The modulus of subgrade reaction increases linearly with the depth from a value of zero at the ground surface for sand and can be written as after Poulos and Davis [4].

$$
\begin{equation*}
K=n_{h} z \tag{2}
\end{equation*}
$$

where n_{h} is the constant of horizontal subgrade reaction.
Substituting Eq. (2) into Eq. (1) yields

$$
\begin{equation*}
E_{p} I_{p} \frac{d^{4} y}{d z^{4}}+n_{h} z y=0 \tag{3}
\end{equation*}
$$

3. Solution procedure

The relative stiffness factor, T, proposed by Reese and Matlock [10] is given by

$$
\begin{equation*}
T=\left(\frac{E_{p} I_{p}}{n_{h}}\right)^{\frac{1}{5}} \tag{4}
\end{equation*}
$$

By defining a dimensionless variable $x=z / T$, Eq. (3) can be reduced to

$$
\begin{equation*}
\frac{E_{p} I_{p}}{n_{h} T^{5}} \frac{d^{4} y}{d x^{4}}+x y=0 \tag{5}
\end{equation*}
$$

Plugging Eq. (4) into Eq. (5) gives

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}+x y=0 \tag{6}
\end{equation*}
$$

Eq. (6) is the fundamental equation explored in this paper.

3.1. Fourier-Laplace integral representation for the solutions

In Shen and Teh [6], the solution procedure for the Airy Equation $y^{\prime \prime}(x)=x y$ is discussed using a Fourier-Laplace Integral representation. Here, we apply this representation to solve our equation.

Consider the Fourier-Laplace representation of $y(x)$ (after White [14]):

$$
\begin{equation*}
y(x)=\int_{C} e^{x t} f(t) d t \tag{7}
\end{equation*}
$$

where C is the contour in the complex plane with endpoints a and b.

When we integrate along the imaginary axis, namely $t=i k$, Eq. (7) is the inverse Fourier transform (up to a constant i). When we integrate along $t=\sigma+i \omega$, Eq. (7) is the inverse Laplace transform(up to a constant $2 \pi i$). For a general contour C, Eq. (7) represents a generalization of these two transforms.

Eq. (6) can be reduced to

$$
\begin{equation*}
\int_{C} t^{4} e^{x t} f(t) d t-\int_{C} e^{x t} f^{\prime}(t) d t+\left.e^{x t} f(t)\right|_{a} ^{b}=0 \tag{8}
\end{equation*}
$$

Choose a contour such that the last term in Eq. (8) vanishes, leading to

$$
\begin{equation*}
t^{4} f(t)-f^{\prime}(t)=0 \tag{9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f(t)=e^{t^{5} / 5} \tag{10}
\end{equation*}
$$

To ensure that the last term vanishes in Eq. (8), $t^{5} / 5$ should go to negative infinity when approaching the endpoints. Therefore, a and b can be chosen as $\infty e^{(i \pi+2 k \pi) / 5}$. Denote these points as $A:-\infty, B: \infty e^{i 3 \pi / 5}, C: \infty e^{i \pi / 5}, D: \infty e^{-i \pi / 5}$ and $E: \infty e^{-i 3 \pi / 5}$. We thus have four independent contours and four independent solutions correspondingly:

$$
\begin{equation*}
y_{k}(x)=\int_{C_{k}} e^{t^{5} / 5+x t} d t \quad(k=1,2,3,4) \tag{11}
\end{equation*}
$$

Franklin and Scott [15] also obtained the contour integral solutions in their work. However, in their work, the convenient expressions to compute the four basis functions directly are not given and a numerical method is still adopted to calculate them. They also derive the leading order asymptotic solutions but these solutions fail to be effective near the soil surface and cannot be used to derive any useful formulas. Hence, their solutions cannot cover the whole pile.

Let

$$
\begin{equation*}
\phi(x, t)=\frac{t^{5}}{5}+x t \tag{12}
\end{equation*}
$$

The integration contour of Eq. (11) is chosen as the steepest decent curves (after Bender and Orszag [16]) emerging from the saddle points of $\varphi(x, t)$. These saddle points are given by $t_{0}=\sqrt[4]{x} \omega$ where $\omega=e^{ \pm i \pi / 4}, e^{ \pm i 3 \pi / 4}$ can be obtained by $\frac{\partial \phi}{\partial t}=0$. Then the four contours in Eq. (11) are given by the contour emerging from $e^{3 i \pi / 4}$ with endpoints $A, B\left(C_{1}\right)$, the one emerging from $e^{-3 i \pi / 4}$ with endpoints $A, E\left(C_{2}\right)$, the one emerging from $e^{i \pi / 4}$ with endpoints $B, C\left(C_{3}\right)$, and the one emerging from $e^{-i \pi / 4}$ with endpoints $E, D\left(C_{4}\right)$.

If x is real, it is easy to see that $\bar{y}_{1}=y_{2}$ and $\bar{y}_{3}=y_{4}$. Let

$$
\begin{equation*}
y_{1}=g_{1}+i g_{2}, \quad y_{3}=g_{3}+i g_{4} \tag{13}
\end{equation*}
$$

where g_{i} are real functions and are also four independent solutions. In order to get the solutions to laterally loaded piles including long piles and short piles, we need to calculate y_{1} and y_{3}.

Eq. (11) is the Fourier-Laplace Integral representation of the solutions. Since this form is not convenient for engineers to use, we change it into a WKB asymptotic solution when x is large and the power series when x is small. The results for the solutions are summarized as the following three theorems:

Theorem 1. As x approaches infinity, both the real and imaginary parts of y_{3} are highly oscillatory with rapidly increasing amplitudes and frequency, while both the real and imaginary parts of y_{1} decrease to zero. In particular, if we choose the direction of C_{1} to be from A to B and the direction of C_{3} to be from C to B, and then to leading order, we have:

$$
\begin{equation*}
y_{k}(x) \sim \frac{\sqrt{\pi \omega}}{\sqrt{2}} x^{-3 / 8} e^{4 x^{5 / 4} \omega / 5} . \tag{14}
\end{equation*}
$$

For $y_{1}, \omega=e^{i 3 \pi / 4}$ and for $y_{3}, \omega=e^{i \pi / 4}$.
The proof of this theorem is included in Appendix A.
The WKB asymptotic solution to $y^{(n)}=Q(x) y$ is given by

$$
\begin{equation*}
y(x) \sim|Q(x)|^{-(n-1) / 2 n} \exp \left(\int^{x} Q(s)^{1 / n} d s\right) \tag{15}
\end{equation*}
$$

Plugging in $Q(x)=-x$ and $n=4$, one can derive the same expression except that the coefficients are unknown. The asymptotic solution is thus of WKB type.

In this article, we are interested in infinitely long piles. For infinitely long piles, we have boundary conditions at infinity, which excludes g_{3} and g_{4}. Therefore, there is no need to calculate y_{3}. If one considers short piles, the solutions should be linear combinations of $g_{i}(i=1,2,3,4)$ where g_{3} and g_{4} are real and imaginary parts of y_{3}. The methods to obtain the formulas would be similar. Besides, y_{3} is already calculated in Appendix B. Now, we give the expressions for g_{1} and g_{2} which we use in this paper.

Theorem 2. We have the following asymptotic results for g_{1} and g_{2} as x approaches positive infinity:
The first two terms in the asymptotic expression for g_{1} and g_{2} are:

$$
\begin{align*}
& g_{1}(x) \sim \sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4 / 5}}\left[x^{-3 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+\frac{9}{32} x^{-13 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)\right], \tag{16}\\
& g_{2}(x) \sim \sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4 / 5}}\left[x^{-3 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)-\frac{9}{32} x^{-13 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)\right] .
\end{align*}
$$

The first two terms in the asymptotic expression for g_{1}^{\prime} and g_{2}^{\prime} are:

$$
\begin{align*}
& g_{1}^{\prime}(x) \sim-\sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left[x^{-1 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)-\frac{3}{32} x^{-11 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right], \tag{17}\\
& g_{2}^{\prime}(x) \sim-\sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left[x^{-1 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)-\frac{3}{32} x^{-11 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right]
\end{align*}
$$

The first three terms in the asymptotic expression for $g_{1}^{\prime \prime}$ and $g_{2}^{\prime \prime}$ are:

$$
\begin{align*}
& g_{1}^{\prime \prime}(x) \sim \sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left[x^{1 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+\frac{7}{32} x^{-9 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)-\frac{231}{2048} x^{-19 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right], \\
& g_{2}^{\prime \prime}(x) \sim-\sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left[x^{1 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+\frac{7}{32} x^{-9 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)-\frac{231}{2048} x^{-19 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right], \tag{18}\\
& g_{1}^{\prime \prime \prime}(x) \sim \sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4 / 5}}\left[-x^{3 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}-\frac{3 \pi}{8}\right)-\frac{3}{32} x^{-7 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}-\frac{\pi}{8}\right)+\frac{273}{2048} \sqrt{\frac{\pi}{2}} x^{-17 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}-\frac{3 \pi}{8}\right)\right] \\
& g_{2}^{\prime \prime \prime}(x) \sim-\sqrt{\frac{\pi}{2}} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left[-x^{3 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}-\frac{3 \pi}{8}\right)-\frac{3}{32} x^{-7 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}-\frac{\pi}{8}\right)+\frac{273}{2048} x^{-17 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}-\frac{3 \pi}{8}\right)\right] \tag{19}
\end{align*}
$$

One can refer to the Appendix A for the derivation.
The above expression works well for large x but fails around $x=0$. For y_{1}, we deform the contour to the left half x-axis and the ray with polar angle $\frac{3 \pi}{5}$. This new contour is convenient for us to get the expressions that works well for small x. Integration over this new contour gives us the following results.

Theorem 3. $g_{1}, g_{2}, g_{1}^{\prime}, g_{2}^{\prime}, g_{1}^{\prime \prime}$ and $g_{2}^{\prime \prime}$ have the following power series expressions which work quite well for small x :

$$
\begin{align*}
g_{1}(x)= & (1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5} \Gamma(n+1 / 5)}{(5 n)!} x^{5 n}-(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5} \Gamma(n+2 / 5)}{(5 n+1)!} x^{5 n+1} \\
& +(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{(5 n+2)!} x^{5 n+2}-(1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+3)!} x^{5 n+3}, \tag{20}\\
g_{2}(x)= & \sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5} \Gamma(n+1 / 5)}{(5 n)!} x^{5 n}-\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5} \Gamma(n+2 / 5)}{(5 n+1)!} x^{5 n+1} \\
& -\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{(5 n+2)!} x^{5 n+2}+\sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+3)!} x^{5 n+3}, \tag{21}\\
g_{1}^{\prime}(x)= & -(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5} \Gamma(n+2 / 5)}{(5 n)!} x^{5 n}-(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{(5 n+1)!} x^{5 n+1} \\
& +(1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+2)!} x^{5 n+2}-(1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5}(5 n+1) \Gamma(n+1 / 5)}{(5 n+4)!} x^{5 n+4}, \tag{22}
\end{align*}
$$

$$
\begin{align*}
g_{2}^{\prime}(x)= & -\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5} \Gamma(n+2 / 5)}{(5 n)!} x^{5 n}-\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{(5 n+1)!} x^{5 n+1} \\
& +\sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+2)!} x^{5 n+2}-\sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5}(5 n+1) \Gamma(n+1 / 5)}{(5 n+4)!} x^{5 n+4}, \tag{23}\\
g_{1}^{\prime \prime}(x)= & (1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{5 n!} x^{5 n}-(1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+1)!} x^{5 n+1} \\
& -(1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5}(5 n+1) \Gamma(n+1 / 5)}{(5 n+3)!} x^{5 n+3} \\
& +(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5}(5 n+2) \Gamma(n+2 / 5)}{(5 n+4)!} x^{5 n+4}, \tag{24}\\
g_{2}^{\prime \prime}(x)= & -\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{5 n!} x^{5 n}+\sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+1)!} x^{5 n+1} \\
& -\sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5}(5 n+1) \Gamma(n+1 / 5)}{(5 n+3)!} x^{5 n+3}+\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5}(5 n+2) \Gamma(n+2 / 5)}{(5 n+4)!} x^{5 n+4}, \tag{25}\\
g_{1}^{\prime \prime \prime}(x)= & -(1-\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{5 n!} x^{5 n}-(1-\cos (2 \pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5}(5 n+1) \Gamma(n+1 / 5)}{(5 n+2)!} x^{5 n+2} \\
& +(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5}(5 n+2) \Gamma(n+2 / 5)}{(5 n+3)!} x^{5 n+3} \\
& -(1+\cos (\pi / 5)) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5}(5 n+3) \Gamma(n+3 / 5)}{(5 n+4)!} x^{5 n+4}, \tag{26}\\
g_{2}^{\prime \prime \prime}(x)= & \sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{5 n!} x^{5 n}-\sin (2 \pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5}(5 n+1) \Gamma(n+1 / 5)}{(5 n+2)!} x^{5 n+2} \\
& +\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5}(5 n+2) \Gamma(n+2 / 5)}{(5 n+3)!} x^{5 n+3}+\sin (\pi / 5) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5}(5 n+3) \Gamma(n+3 / 5)}{(5 n+4)!} x^{5 n+4} . \tag{27}
\end{align*}
$$

The derivation is put in the Appendix A.

3.2. Laterally loaded infinitely long piles

3.2.1. Expression for deflection

The general solution to Eq. (6) is $y(x)=C_{1} g_{1}(x)+C_{2} g_{2}(x)+C_{3} g_{3}(x)+C_{4} g_{4}$. However, as x approaches infinity, g_{1}, g_{2} and their derivatives decay to 0 very fast (when $x>4$, they are almost 0) while g_{3} and g_{4} keep oscillating with increasing amplitudes. We usually impose the following conditions:

$$
y(+\infty)=0, \quad y^{\prime}(+\infty)=0, \quad y^{\prime \prime}(+\infty)=0, \quad y^{\prime \prime \prime}(+\infty)=0
$$

which require $C_{3}=0$ and $C_{4}=0$. Thus, for infinitely long piles, we have:

$$
\begin{equation*}
y(x)=C_{1} g_{1}(x)+C_{2} g_{2}(x) \tag{28}
\end{equation*}
$$

Let us consider two boundary conditions of the pile head.

■ Free-head pile:

The boundary conditions are given by

$$
\begin{equation*}
y^{\prime \prime \prime}(0)=\frac{H T^{3}}{E_{p} I_{p}}, \quad y^{\prime \prime}(0)=\frac{M T^{2}}{E_{p} I_{p}} \tag{29}
\end{equation*}
$$

where H is the horizontal load on the pile head and M is the bending moment on the pile head.
Therefore, two integration coefficients C_{1} and C_{2} can be easily obtained as

Fig. 1. The calculation schematic diagram.

$$
\left[\begin{array}{l}
C_{1} \tag{30}\\
C_{2}
\end{array}\right]=\frac{T^{2} 5^{1 / 5}\left[\begin{array}{c}
\sin (2 \pi / 5) 5^{1 / 5} \Gamma(4 / 5) M+\sin (\pi / 5) \Gamma(3 / 5) H T \\
(1-\cos (2 \pi / 5)) 5^{1 / 5} \Gamma(4 / 5) M+(1+\cos (\pi / 5)) \Gamma(3 / 5) H T
\end{array}\right]}{(2 \sin (2 \pi / 5)-\sin (\pi / 5)) \Gamma(3 / 5) \Gamma(4 / 5) E_{p} I_{p}}
$$

Fixed-head pile:

The boundary conditions are given by

$$
\begin{equation*}
y^{\prime \prime \prime}(0)=\frac{H T^{3}}{E_{p} I_{p}}, \quad y^{\prime}(0)=0 \tag{31}
\end{equation*}
$$

Similarly, we can get:

$$
\left[\begin{array}{l}
C_{1} \tag{32}\\
C_{2}
\end{array}\right]=\frac{H T^{3} 5^{1 / 5}}{2 \Gamma(4 / 5) E_{p} I_{p}}\left[\begin{array}{c}
\frac{1}{1+\cos (\pi / 5)} \\
\frac{1}{\sin (\pi / 5)}
\end{array}\right] .
$$

Combining Eqs. (16), (20), (21), (28), (30) (or Eq. (32)) and $x=z / T$, we can get $y(z)$ which is the pile deflection distribution with depth. The calculation schematic diagram is shown in Fig. 1 and the dimensionless constant α will be discussed later. When $x<\alpha(z<\alpha T), g_{1}$ and g_{2} are determined by Eqs. (20) and (21); While $x>\alpha(z>\alpha T), g_{1}$ and g_{2} are given by Eq. (16).

Furthermore, we can get an accurate expression for the deflection of the pile head for infinitely long piles:

$$
\begin{equation*}
y(0)=C_{1}(1-\cos (2 \pi / 5)) 5^{-4 / 5} \Gamma(1 / 5)+C_{2} \sin (2 \pi / 5) 5^{-4 / 5} \Gamma(1 / 5) . \tag{33}
\end{equation*}
$$

3.2.2. Expressions for rotation, bending moment and shear force

It is quite clear that

$$
\left\{\begin{array}{l}
y^{\prime}=C_{1} g_{1}^{\prime}+C_{2} g_{2}^{\prime} \tag{34}\\
y^{\prime \prime}=C_{1} g_{1}^{\prime \prime}+C_{2} g_{2}^{\prime \prime} \\
y^{\prime \prime \prime}=C_{1} g_{1}^{\prime \prime \prime}+C_{2} g_{2}^{\prime \prime \prime}
\end{array}\right.
$$

Thus we can get

$$
\left\{\begin{array}{l}
\theta(z)=\frac{d y}{d z}=\frac{1}{T}\left(C_{1} g_{1}^{\prime}(z / T)+C_{2} g_{2}^{\prime}(z / T)\right) \tag{35}\\
M(z)=E_{p} I_{p} \frac{d^{2} y}{d z^{2}}=\frac{E_{p} I_{p}}{T^{2}}\left(C_{1} g_{1}^{\prime \prime}(z / T)+C_{2} g_{2}^{\prime \prime}(z / T)\right) \\
Q(z)=E_{p} I_{p} \frac{d^{3} y}{d z^{3}}=\frac{E_{p} I_{p}}{T^{3}}\left(C_{1} g_{1}^{\prime \prime \prime}(z / T)+C_{2} g_{2}^{\prime \prime \prime}(z / T)\right)
\end{array}\right.
$$

where θ is pile rotation, M is pile bending moment and Q is pile shear.
In the analysis of laterally loaded piles, pile deflection and bending moment are of greatest interest. Thus, only pile deflection and bending moment are considered in the sections below.

4. Discussion of α

The value of α can be determined by evaluating the errors of y and M using a truncated power series and WKB asymptotic solutions at the depth of $z=\alpha T$. Since y and M are linear combinations of g_{1}, g_{2} and $g_{1}^{\prime \prime}, g_{2}^{\prime \prime}$ respectively, we can just assess the errors of the basis functions, $g_{1}, g_{2}, g_{1}^{\prime \prime}$ and $g_{2}^{\prime \prime}$. The following procedure is followed to obtain the value of α :

Fig. 2. Variation of $\Delta g 1, \Delta g 2, \Delta g^{\prime \prime} 1$ and $\Delta g^{\prime \prime} 2$ with α.
(1) Obtain the accurate results of $g_{1}, g_{2}, g_{1}^{\prime \prime}$ and $g_{2}^{\prime \prime}$ by calculating sufficient terms $(n=50)$ with the proposed power series solution;
(2) Choose $n=1$ in Eqs. (20), (21), (24), and (25), namely, keep 8 terms in the power series, and the calculate the errors $e 1\left(g_{1}\right), e 1\left(g_{2}\right), e 1\left(g_{1}^{\prime \prime}\right), e 1\left(g_{2}^{\prime \prime}\right)$ with α ranging from 1 to 3 by Eq. (36);
(3) Obtain the errors $e 2\left(g_{1}\right), e 2\left(g_{2}\right), e 2\left(g_{1}^{\prime \prime}\right), e 2\left(g_{2}^{\prime \prime}\right)$ for the WKB asymptotic solution with α varying in the same range by Eq. (37);
(4) Obtain the difference between four pairs of errors with Eq. (38), and the results are shown in Fig. 2.

$$
\left\{\begin{array}{l}
e 1\left(g_{1}\right)=\left|g_{1 m}-g_{1}\right| \tag{36}\\
e 1\left(g_{2}\right)=\left|g_{2 m}-g_{2}\right| \\
e 1\left(g_{1}^{\prime \prime}\right)=\left|g_{1 m}^{\prime \prime}-g_{1}^{\prime \prime}\right| \\
e 1\left(g_{2}^{\prime \prime}\right)=\left|g_{2 m}^{\prime \prime}-g_{2}^{\prime \prime}\right|,
\end{array}\right.
$$

Fig. 3. Error condition when α exceeds 2.0-2.2.

$$
\begin{align*}
& \left\{\begin{array}{l}
e 2\left(g_{1}\right)=\left|g_{1 w}-g_{1}\right| \\
e 2\left(g_{2}\right)=\left|g_{2 w}-g_{2}\right| \\
e 2\left(g_{1}^{\prime \prime}\right)=\left|g_{1 w}^{\prime \prime}-g_{1}^{\prime \prime}\right| \\
e 2\left(g_{2}^{\prime \prime}\right)=\left|g_{2 w}^{\prime \prime}-g_{2}^{\prime \prime}\right|,
\end{array}\right. \tag{37}\\
& \left\{\begin{array}{l}
\Delta g 1=\left|e 2\left(g_{1}\right)-e 1\left(g_{1}\right)\right| \\
\Delta g 2=\left|e 2\left(g_{2}\right)-e 1\left(g_{2}\right)\right| \\
\Delta g^{\prime \prime} 1=\left|e 2\left(g_{1}^{\prime \prime}\right)-e 1\left(g_{1}^{\prime \prime}\right)\right| \\
\Delta g^{\prime \prime} 2=\left|e 2\left(g_{2}^{\prime \prime}\right)-e 1\left(g_{2}^{\prime \prime}\right)\right| .
\end{array}\right. \tag{38}
\end{align*}
$$

According to the property of the solutions, the errors by power series solutions should increase with x; while the errors by WKB asymptotic solutions should decrease with x. Therefore the selecting of α is to find the point at which the errors of two solutions are very close, taking into account the calculation accuracy of the both parts. In Fig. 2, $\Delta g 1$ and $\Delta g 2$ are close to zero with α ranging from 2.0 to 2.3 ; while $\Delta g^{\prime \prime} 1$ and $\Delta g^{\prime \prime} 2$ are close to zero with α ranging from 1.3 to 2.2 . Clearly, the errors of these four basis functions by WKB asymptotic solutions are very close to the ones by power series solutions when α ranges from 2.0 to 2.2. If α is less than than 2.0, the error of WKB asymptotic solution is larger for x between α and 2.0 (namely z is between αT and 2.0T); while if α is greater than 2.2, the error of the power series solution is larger for x between 2.2 and α. The schematic diagram of error condition when α exceeds $2.0 \sim 2.2$ is shown in Fig. 3. Hence we take the value of α from 2.0 to 2.2. Similarly, the suggested value of α can be taken from 2.5 to 3.0 if we choose $n=2$ in step (2) mentioned above while the calculation terms increase to 12 .

5. Simplified analytical solutions

Based on the discussion of α, the simplified solutions to laterally loaded long piles are derived by setting $n=1$ and $\alpha=2$. With the simplified solutions, engineers can calculate deflection and bending moment of laterally loaded long piles at any depth easily. The simplified solutions are given as: (Note: $x=z / T=z /\left(\frac{E_{p} l_{p}}{n_{h}}\right)^{1 / 5}$)

For free-head piles:

Deflection:

$$
\begin{align*}
y_{x \leqslant 2}(x)= & \left(2.4292-1.6194 x+0.1667 x^{3}-0.0202 x^{5}+0.0045 x^{6}-0.0001 x^{8}\right) \frac{H}{\left(E_{p} I_{p}\right)^{2 / 5} n_{h}^{3 / 5}}+(1.6194-1.7468 x \\
& \left.+0.5 x^{2}-0.0135 x^{5}+0.0049 x^{6}-0.0006 x^{7}\right) \frac{M}{\left(E_{p} I_{p}\right)^{3 / 5} n_{h}^{2 / 5}}, \tag{39}\\
y_{x>2}(x)= & e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(\frac{0.6642 H}{\left(E_{p} I_{p}\right)^{2 / 5} n_{h}^{3 / 5}}+\frac{1.1593 M}{\left(E_{p} I_{p}\right)^{3 / 5} n_{h}^{2 / 5}}\right)\left\{x^{-3 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+\frac{9}{32} x^{-13 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)\right\} \\
& +e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(\frac{2.0443 H}{\left(E_{p} I_{p}\right)^{2 / 5} n_{h}^{3 / 5}}+\frac{0.8423 M}{\left(E_{p} I_{p}\right)^{3 / 5} n_{h}^{2 / 5}}\right)\left\{x^{-3 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)-\frac{9}{32} x^{-13 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)\right\} . \tag{40}
\end{align*}
$$

Bending moment:

$$
\begin{align*}
M_{x \leqslant 2}(x)= & \left(x-0.4049 x^{3}+0.1349 x^{4}-0.0056 x^{6}+0.0004 x^{8}-0.0001 x^{9}\right) H\left(E_{p} I_{p} / n_{h}\right)^{1 / 5}+\left(1-0.2699 x^{3}\right. \\
& \left.+0.1456 x^{4}-0.025 x^{5}+0.0002 x^{8}-0.0001 x^{9}\right) M \tag{41}\\
M_{x>2}(x)= & e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(0.6642 H\left(E_{p} I_{p} / n_{h}\right)^{1 / 5}+1.1593 M\right)\left[x^{1 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+\frac{7}{32} x^{-9 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)\right. \\
& \left.-\frac{231}{2048} x^{-19 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right]+e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(2.0443 H\left(E_{p} I_{p} / n_{h}\right)^{1 / 5}+0.8423 M\right)\left[-x^{1 / 8} \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right. \\
& \left.+\frac{7}{32} x^{-9 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)-\frac{231}{2048} x^{-19 / 8} \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right] . \tag{42}
\end{align*}
$$

For fixed-head piles:

Deflection:

$$
\begin{align*}
y_{x \leqslant 2}(x)= & \left(0.9279-0.4635 x^{2}+0.1667 x^{3}-0.0077 x^{5}+0.0006 x^{7}-0.0001 x^{8}\right) \frac{H}{\left(E_{p} I_{p}\right)^{2 / 5} n_{h}^{3 / 5}}, \tag{43}\\
y_{x>2}(x)= & {\left[0.8628 \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)+1.0102 \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)+\left(0.0293 \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)\right.\right.} \\
& \left.\left.-0.3725 \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)\right) x^{-5 / 4}\right] \frac{x^{-3 / 8} e^{-2 \sqrt{2} x^{5 / 4} / 5} H}{\left(E_{p} I_{p}\right)^{2 / 5} n_{h}^{3 / 5}} . \tag{44}
\end{align*}
$$

Bending moment:

$$
\begin{equation*}
M_{x \leqslant 2}(x)=\left(-0.9271+x-0.1546 x^{3}+0.0232 x^{5}-0.0056 x^{6}+0.0001 x^{8}\right) H\left(E_{p} I_{p} / n_{h}\right)^{1 / 5} \tag{45}
\end{equation*}
$$

(a) deflection

(b) bending moment

Fig. 4. Comparison of deflection and bending moment profiles.

$$
\begin{align*}
M_{x>2}(x) & =\left\{\left[1.0102 \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)-0.8628 \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)\right]+\left[0.2897 \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)+0.0228 \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)\right] x^{-5 / 4}\right. \\
& \left.-\left[0.1139 \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)-0.0973 \cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}\right)\right] x^{-5 / 2}\right\} x^{1 / 8} e^{-2 \sqrt{2} x^{5 / 4} / 5} H\left(E_{p} I_{p} / n_{h}\right)^{1 / 5} \tag{46}
\end{align*}
$$

6. Validations with existing solutions

There is a critical length of a pile beyond which the pile is considered to be a long pile or flexible pile, and its behavior is similar to that of an infinitely long pile (after Matlock and Reese [1], Randolph [17]). Accordingly, the solutions of an infinitely long pile can be applied to the laterally loaded long pile. The critical length of a pile for the subgrade reaction reported by Randolph [17], Tomlinson [18] and Fleming et al. [19] is given as

$$
\begin{equation*}
l_{c}=4 T=4\left(\frac{E_{p} I_{p}}{n_{h}}\right)^{\frac{1}{5}} \tag{47}
\end{equation*}
$$

This critical length has also been confirmed by comparing the results of finite difference method and our analytical solution. Thus our analytical solution applies for the piles with $L>l_{c}$ instead of just infinitely long piles.

In the following case studies, the simplified solutions are adopted.

6.1. Case 1

Shen and Teh [3] adopted a variational solution to calculate the displacement and bending moment profiles of one instrumented pile reported by Mohan and Shrivastava [20] out of a series of field tests on laterally loaded piles. The instrumented pile (Pile IN1) at a working load level of 4.90 kN is selected for analysis. The length of the pile is $l=5.25 \mathrm{~m}$ with a diameter $d=0.1 \mathrm{~m}$ and a bending rigidity $E_{p} I_{p}=320 \mathrm{kN} \mathrm{m}{ }^{2}$. The constant of horizontal subgrade reaction is $n_{h}=3.57 \mathrm{MN} / \mathrm{m}^{3}$.

Firstly, we calculate the critical length of pile as:

$$
\begin{equation*}
l_{c}=4 T=4\left(\frac{E_{p} I_{p}}{n_{h}}\right)^{\frac{1}{5}}=2.47(\mathrm{~m}) \tag{48}
\end{equation*}
$$

Since $l=5.25>l_{c}=2.47$, this pile is regarded as a long pile, to which the approach proposed in this paper is applicable. The computed displacement and bending moment distributions are plotted and compared with the results of measurement and Shen and Teh's [3] solution in Fig. 4. It can be seen that excellent agreement with Shen and Teh's [3] solution has been achieved by the present method. However, comparing to Shen and Teh's [3] solution which needs complex matrix operation, the present simplified analytical solutions are more convenient to be used in analysis and design of laterally loaded long piles.

Fig. 5. Comparison of bending moment profiles.

Fig. 6. Comparison of bending moment profiles.

Table 1
Values of $n_{h}\left(\mathrm{MN} / \mathrm{m}^{3}\right)$ for sand [after Liang [21]].

N value (SPT)	n_{h} (Above water)	n_{h} (Below water)
$2-4$	$5.4-6.8$	$4.1-5.4$
$4-10$	$6.8-16.3$	$5.4-10.9$
$10-20$	$16.3-24.4$	$10.9-16.3$
$20-30$	$24.4-43.4$	$16.3-24.4$
$30-50$	$43.4-65.1$	$24.4-35.3$
$50-60$	$65.1-70.6$	$35.3-40.7$

Fig. 7. Comparison between the measured and predicted pile head deflections.

6.2. Case 2

Reese and Matlock [10] used a non-dimensional curve to obtain a moment profile for a free-head pile loaded with a horizontal force of 155.68 kN and a bending moment of $395.43 \mathrm{kN} \cdot \mathrm{m}$ and the same pile with head fixed under a horizontal force of 155.68 kN . The length of the pile is $l=24.38 \mathrm{~m}$ and a bending rigidity $E_{p} I_{p}=1434836 \mathrm{kN} \mathrm{m}^{2}$. The constant of horizontal subgrade reaction is $n_{h}=1357.17 \mathrm{kN} / \mathrm{m}^{3}$. The critical length of pile is 16.10 which is less than the length of the pile.

Figs. 5 and 6 compare the computed bending moment distributions obtained by the present method and Reese and Matlock's method. Once again, excellent agreement has been achieved between these two methods. The present simplified solutions can directly calculate the deflection and bending moment of laterally loaded long piles at any depth, and therefore eliminates the errors of dimensionless coefficients determined by forms or curves.

6.3. Case 3

This case study is based on a lateral load test reported by Cox et al. [26]. The test was performed on a free-head steel tube pile with a diameter of 0.61 m and an embedment length of 21 m . The pile was embedded in sand at Mustang Island, Texas.

According to Cox et al. [26], the average standard penetration test (SPT) N value of the sand within $10 D$ (where D is the pile diameter) below the ground surface is 18 blows per 30 cm . The stiffness of the sand is assumed to increase linearly with depth, and the constant of subgrade reaction for the sand layer is estimated to be $15 \mathrm{MN} / \mathrm{m}^{3}$ using Table 1 . Other required input parameters are given by Cox et al. [26] as follows: $E_{p} I_{p}=163000 \mathrm{kN} \mathrm{m}{ }^{2} ; \gamma=10.4 \mathrm{kN} / \mathrm{m}^{3} ; \phi=39^{\circ}$. The distance between the loading point and the top of the soil surface was 0.305 m . The critical length of pile is 6.45 which is less than the length of the pile.

A comparison between the measured and predicted pile head deflections is shown in Fig. 7. It can be seen that the present solution reaches a good agreement with the measured data.

In this study, the simplified solutions to pile head deflection are given by Eqs. (49) and (50). Barber [22] proposed similar solutions based on numerical method. Different from Barber's [22] method, the coefficients in the present solution are calculated using exact formulas (Eq. (30) (or Eq. (32)) and Eq. (33)).

■ Free-head pile:

$$
\begin{equation*}
y_{0}=\frac{2.4292 H}{\left(n_{h}\right)^{3 / 5}\left(E_{p} I_{p}\right)^{2 / 5}}+\frac{1.6194 M}{\left(n_{h}\right)^{2 / 5}\left(E_{p} I_{p}\right)^{3 / 5}} . \tag{49}
\end{equation*}
$$

■ Fixed-head pile:

$$
\begin{equation*}
y_{0}=\frac{0.9279 H}{\left(n_{h}\right)^{3 / 5}\left(E_{p} I_{p}\right)^{2 / 5}} . \tag{50}
\end{equation*}
$$

7. Conclusions

A Fourier-Laplace integral has been introduced to obtain the analytical solution for laterally loaded piles in soils with stiffness linearly increasing with depth. The deflection and bending moment profiles of laterally loaded piles can be evaluated using a simple analytical expression. High accuracy can be achieved with a small amount of calculation. The proposed power series solution is an accurate solution, based on which and the accurate deflection of the pile head is derived for infinitely long piles. The WKB asymptotic solution is novel for analyzing long piles. The simplified analytical solutions to laterally loaded long piles obtained in this study can be applied to engineering design conveniently. This method can also be easily extended to analyze laterally loaded long piles in soil with the coefficient of subgrade reaction varying with the depth in other forms such as one shown in Appendix B.

Acknowledgements

The work reported herein was supported by the National Natural Science Foundation of China (Grant No. 41172246), and National Key Basic Research Program of China (Grant No. 2013CB036304). The above financial support is gratefully acknowledged. The anonymous reviewers' comments have improved the quality of this paper and are also greatly acknowledged.

Appendix A

Proof. of Theorem 1

Provided $\sqrt{-2 \phi_{t t}} d t$ is positive on the steepest decent curve C_{k}, as x approaches infinity, one can have the following by Laplace's method (after Bender and Orszag [16]):

$$
\begin{align*}
y_{k}(x) & \sim e^{\phi\left(x, t_{0}\right)} \int_{C_{k}} e^{\frac{1}{2} \phi_{\phi t(}\left(x, t_{0}\right)\left(t-t_{0}\right)^{2}} d t \\
= & \frac{2}{\sqrt{-2 \times 4 t_{0}^{3}}} e^{t_{0}^{t / 5+x t_{0}}} \int_{0}^{+\infty} \frac{e^{-u}}{\sqrt{u}} d u \tag{A-1}\\
= & \frac{2 \sqrt{\pi}}{\sqrt{-2 \times 4 t_{0}^{3}}} e^{t_{0}^{5} / 5+x t_{0}} \\
\int_{0}^{+\infty} \frac{e^{-u}}{\sqrt{u}} d u & =\Gamma(1 / 2)=\sqrt{\pi}, \text { plugging } t_{0}=\sqrt[4]{x} \omega \text { into the Eq. (A-1) gives: } \\
y_{k}(x) & \sim \frac{\sqrt{\pi \omega}}{\sqrt{2}} x^{-3 / 8} e^{4 x^{5 / 4} \omega / 5} . \tag{A-2}
\end{align*}
$$

Equation (A-2) shows that y_{1} and y_{2} are decaying as x approaches infinity while y_{3} and y_{4} are highly oscillatory with increasing amplitudes. Note that $\sqrt{-2 \phi_{t t}} d t$, equivalently $\sqrt{-\omega^{3}} d t$, should be positive. For C_{1}, if we choose $1 / \sqrt{-e^{i 9 \pi / 4}}=\sqrt{e^{i 3 \pi / 4}}=e^{i 3 \pi / 8}$, then $e^{-i 3 \pi / 8} d t>0$. Therefore, $d t$ has phase $e^{i 3 \pi / 8}$, which implies that the direction of C_{1} is from A to B. Similar analysis gives the direction C_{3}.

Proof of Theorem 1 is thus completed.
When x approaches infinity, we have

$$
\begin{equation*}
y_{1}(x) \sim \sqrt{\frac{\pi}{2}} x^{-3 / 8} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(\cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+i \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right) \tag{A-3}
\end{equation*}
$$

It is convenient to define $u(x)=\sqrt{\frac{\pi}{2}} x^{-3 / 8} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(\cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+i \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right)$.
Lemma 1. One has the following asymptotic expression:

$$
\begin{equation*}
\int_{C_{1}}\left(t-t_{0}\right)^{2 m} \exp \left(\phi_{0}+\frac{1}{2!} \phi_{t t}\left(t-t_{0}\right)^{2}\right) d t \sim\left(\frac{-2}{\phi_{t t}}\right)^{m} \frac{\Gamma\left(m+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} u(x), \tag{A-4}
\end{equation*}
$$

While $\int_{C_{1}}\left(t-t_{0}\right)^{2 m+1} \exp \left(\phi_{0}+\frac{1}{2!} \phi_{t t}\left(t-t_{0}\right)^{2}\right) d t \sim 0$.
This is again the corollary of Lapalace's method. To make this intuitive, one can do the substitution: $\frac{1}{2!} \phi_{t t}\left(t-t_{0}\right)^{2}=-u$. Using this lemma, we can show the proof of Theorem 2.

Proof. of Theorem 2

We Taylor expand ϕ around t_{0} and apply the lemma above:

$$
\begin{align*}
y_{1}(x) & =\int_{C_{1}} \exp \left(\frac{1}{3!} \phi_{t t t}\left(t-t_{0}\right)^{3}+\frac{1}{4!} \phi_{t}^{(4)}\left(t-t_{0}\right)^{4}+\frac{1}{5!} \phi_{t}^{(5)}\left(t-t_{0}\right)^{5}\right) \exp \left(\phi_{0}+\frac{1}{2!} \phi_{t t}\left(t-t_{0}\right)^{2}\right) d t \\
& \sim \int_{C_{1}}\left(1+\frac{1}{4!} \phi_{t}^{(4)}\left(t-t_{0}\right)^{4}+\frac{1}{2!}\left(\frac{\phi_{t t t}}{3!}\right)^{2}\left(t-t_{0}\right)^{6}+\frac{1}{2!}\left(2 \frac{\phi_{t t t} \phi_{t}^{(5)}}{3!5!}\left(t-t_{0}\right)^{8}\right)+\cdots\right) \exp \left(\phi_{0}+\frac{1}{2!} \phi_{t t}\left(t-t_{0}\right)^{2}\right) d t \tag{A-5}\\
& \sim\left(1+\frac{\phi_{t}^{(4)}}{4!} \frac{3}{\phi_{t t}^{2}}-\frac{\phi_{t t t}^{2}}{2 \times 6^{2} \phi_{t t}^{3}} \times 15\right) u(x) \\
& =\left(1-\frac{9}{32} x^{-5 / 4} e^{i \pi / 4}\right) u(x),
\end{align*}
$$

where ϕ_{0} represents $\phi\left(x, t_{0}\right), \phi_{t}$ represents $\frac{\partial \phi}{\partial t}, \phi_{t t t}$ represents $\frac{\partial^{3} \phi}{\partial t^{3}}, \phi^{(4)}$ represents $\frac{\partial^{4} \phi}{\partial t^{4}}, \phi^{(5)}$ represents $\frac{\partial^{5} \phi}{\partial t^{5}}$.
Fixing C_{1} and taking first order derivative of y_{1} and also Taylor expanding the integrand, we have:

$$
\begin{align*}
& y_{1}^{\prime}(x)=\int_{C_{1}} t \exp \left(t^{5} / 5+x t\right) d t \tag{A-6}\\
& \left(t_{0}+\left(t-t_{0}\right)\right) \exp \left(\frac{1}{3!} \phi_{t t t}\left(t-t_{0}\right)^{3}+\frac{1}{4!} \phi_{t}^{(4)}\left(t-t_{0}\right)^{4}+\frac{1}{5!} \phi_{t}^{(5)}\left(t-t_{0}\right)^{5}\right) \\
& \quad \approx t_{0}+\left(\frac{1}{3!} \phi_{t t t}+\frac{1}{4!} \phi_{t}^{(4)}\right)\left(t-t_{0}\right)^{4}+\left(\frac{1}{5!} \phi_{t}^{(5)}+\frac{t_{0}}{72}\left(\phi_{t}^{(3)}\right)^{2}\right)\left(t-t_{0}\right)^{6}+\cdots+\text { odd powers. } \tag{A-7}
\end{align*}
$$

Applying the lemma once again, we have:

$$
\begin{equation*}
\left[t_{0}+\left(2 t_{0}^{2}+t_{0}^{2}\right)\left(\frac{2}{4 t_{0}^{3}}\right)^{2} \frac{\Gamma(5 / 2)}{\Gamma(1 / 2)}-\left(\frac{1}{5!} \times 24+\frac{t_{0}^{5}}{72} \times 144\right) \frac{8}{4^{3} t_{0}^{9}} \frac{\Gamma(7 / 2)}{\Gamma(1 / 2)}\right] u(x) \tag{A-8}
\end{equation*}
$$

We just keep the first two orders and have:

$$
\begin{align*}
{\left[t_{0}+(9 / 16) t_{0}^{-4}-(15 / 32) t_{0}^{-4}\right] u(x)=} & {\left[t_{0}+(3 / 32) t_{0}^{-4}\right] u(x)=\left(x^{1 / 4} e^{i 3 \pi / 4}-(3 / 32) x^{-1}\right) u(x) } \\
= & -\sqrt{\frac{\pi}{2}} x^{-1 / 8} \exp \left(-2 \sqrt{2} x^{5 / 4} / 5+i\left(2 \sqrt{2} x^{5 / 4} / 5+\pi / 8\right)\right)-\frac{3}{32} \sqrt{\frac{\pi}{2}} x^{-11 / 8} \exp (-2 \\
& \left.\times \sqrt{2} x^{5 / 4} / 5+i\left(2 \sqrt{2} x^{5 / 4} / 5+3 \pi / 8\right)\right) \tag{A-9}
\end{align*}
$$

For the second order derivatives, the procedure is similar, we can get:

$$
\begin{align*}
g_{1}^{\prime \prime}(x)+i g_{2}^{\prime \prime}(x)= & \int_{C_{1}} t^{2} e^{t^{5} / 5+x t} d t=\int_{C_{1}}\left(t_{0}^{2}+2 t_{0}\left(t-t_{0}\right)+\left(t-t_{0}\right)^{2}\right) \\
& \times \exp \left(\frac{1}{3!} \phi_{t t t}\left(t-t_{0}\right)^{3}+\frac{1}{4!} \phi_{t}^{(4)}\left(t-t_{0}\right)^{4}+\frac{1}{5!} \phi_{t}^{(5)}\left(t-t_{0}\right)^{5}\right) \exp \left(\phi\left(t_{0}\right)+\frac{1}{2!} \phi_{t t}\left(t-t_{0}\right)^{2}\right) d t \tag{A-10}
\end{align*}
$$

Firstly, expand $\exp \left(\frac{1}{3!} \phi_{t t t}\left(t-t_{0}\right)^{3}+\frac{1}{4!} \phi_{t}^{(4)}\left(t-t_{0}\right)^{4}+\frac{1}{5!} \phi_{t}^{(5)}\left(t-t_{0}\right)^{5}\right)$ in Talyor series and keeps even powers of $\left(t-t_{0}\right)$:

$$
\begin{equation*}
t_{0}^{2}+\left(t-t_{0}\right)^{2}+\left(\frac{2 t_{0}}{3!} \phi_{t t t}+\frac{t_{0}^{2}}{4!} \phi_{t t t t}\right)\left(t-t_{0}\right)^{4}+\frac{t_{0}^{2}\left(\phi_{t t t}\right)^{2}}{2!(3!)^{2}}\left(t-t_{0}\right)^{6}+\frac{2 t_{0} \phi_{t}^{(5)}}{5!}\left(t-t_{0}\right)^{6}+\frac{1}{4!} \phi_{t t t t}\left(t-t_{0}\right)^{6} \tag{A-11}
\end{equation*}
$$

Substituting Eq. (A-11) into Eq. (A-10) and after integration using the lemma, we have the first two terms:

$$
\begin{align*}
y_{1}^{\prime \prime}(x) & \sim\left(t_{0}^{2}-\frac{1}{\phi_{t t}}+\left(\frac{2 t_{0}}{3!} \phi_{t t t}+\frac{t_{0}^{2}}{4!} \phi_{t t t t}\right) \frac{3}{\phi_{t t}^{2}}-\left(\frac{t_{0}^{2}\left(\phi_{t t t}\right)^{2}}{2!(3!)^{2}}+\frac{2 t_{0} \phi_{t}^{(5)}}{5!}+\frac{\phi_{t t t t}}{4!}\right) \frac{15}{\phi_{t t}^{3}}\right) u(x) \\
& \sim\left(-i x^{1 / 2}+\frac{7}{32} x^{-3 / 4} e^{-i \pi / 4}\right) u(x) . \tag{A-12}
\end{align*}
$$

To get the third order, one should calculate up to $\left(t-t_{0}\right)^{12}$. We omit the detail here since there is no new idea but the derivation is tedious.

Taking the real and imaginary parts, we obtain the results in Theorem 2.

Proof. of Theorem 3

For the first part of the new contour $(A \rightarrow 0)$, substitute $t=-v$; while for the second part of the new contour $(0 \rightarrow B)$, substitute $t=v e^{i 3 \pi / 5}$:

$$
\begin{equation*}
y_{1}(x)=-\int_{0}^{+\infty} e^{-v^{5} / 5-x v}(-d v)+\int_{0}^{+\infty} e^{-v^{5} / 5-x v e^{i 3 \pi / 5}} e^{i 3 \pi / 5} d v \tag{A-13}
\end{equation*}
$$

Then, v is a real variable.
Using the substitution $u=v^{5} / 5$ in Eq. (A-13), we have

$$
\begin{equation*}
y_{1}(x)=\int_{0}^{+\infty} e^{-u}\left(\sum_{k=0}^{+\infty} \frac{x^{k} e^{i 3 \pi(k+1) / 5}(5 u)^{(k-4) / 5}}{k!}\right) d u+\int_{0}^{+\infty} e^{-u}\left(\sum_{k=0}^{+\infty} \frac{(-1)^{k} x^{k}(5 u)^{(k-4) / 5}}{k!}\right) d u . \tag{A-14}
\end{equation*}
$$

Set $k=5 n+(0,1,2,3,4)$:

$$
\begin{align*}
y_{1}(x)= & \left(e^{3 i \pi / 5}+1\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{5 n}}{5 n!} \int_{0}^{+\infty} e^{-u}(5 u)^{n-4 / 5} d u-\left(e^{i \pi / 5}+1\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{5 n+1}}{(5 n+1)!} \int_{0}^{+\infty} e^{-u}(5 u)^{n-3 / 5} d u+(1 \\
& \left.-e^{4 i \pi / 5}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{5 n+2}}{(5 n+2)!} \int_{0}^{+\infty} e^{-u}(5 u)^{n-2 / 5} d u+\left(e^{2 i \pi / 5}-1\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{5 n+3}}{(5 n+3)!} \int_{0}^{+\infty} e^{-u}(5 u)^{n-1 / 5} d u . \tag{A-15}
\end{align*}
$$

Taking the real and imaginary parts of Eq. (A-15) and after simplifying, we obtain the results in Theorem 3. To get the expressions for the derivatives, we just need to differentiate these expressions term by term.

Proof of Theorem 3 is thus completed.

Appendix B

B.1. Extension and application

B.1.1. Subgrade reaction model 1

The solutions proposed in this paper are based on the elastic subgrade model, which are applicable for the pile under working load. This solution can be to the pile under higher load level using the ideal elastic-plastic subgrade model.

Fig. B-1. The ideal elastic-plastic subgrade model.

Fig. B-2. Schematic diagram of the soil-pile system.

Madhav et al. [23] proposed an ideal elastic-plastic subgrade model to simulate the relationship between soil horizontal resistance and pile deflection. This model is shown in Fig. B-1 in which K is the modulus of subgrade reaction, p_{c} is the yielding soil horizontal resistance, and y_{c} is the yielding soil displacement.

The soil near the surface can yield firstly while laterally loaded piles are under lower load level (after Yokoyama [24], Poulos and Davis [4]). The yield zone propagates downward as the applied loads increase (after Hsiung [27]). The soil-pile system can be divided to two parts: the plastic zone above and the elastic zone below (after Guo [28]). The schematic of the soil-pile system is shown in Fig. B-2 in which H is the horizontal load applied to the pile head, p_{z} is the soil horizontal resistance at depth z, L and D are the length and diameter of the pile, respectively, L_{s} is the thickness of the yield zone of soil, K is the modulus of subgrade reaction assumed to increase linearly with depth from a value of zero at the ground surface as Eq. (2) shown.

In summary, the ideal elastic-plastic model mentioned above can be described as Eq. (B-1).

$$
p(z, y)= \begin{cases}K(z) y=n_{h} z y & y \leqslant y_{c} \tag{B-1}\\ K(z) y_{c}=n_{h} z y_{c} & y>y_{c}\end{cases}
$$

According to the Winkler foundation model, another form of the flexural equation of a pile on the elastic subgrade can be written as

$$
\begin{equation*}
E_{p} I_{p} \frac{d^{4} y}{d z^{4}}+p(z, y)=0 \tag{B-2}
\end{equation*}
$$

where $p(z, y)$ is soil horizontal resistance around the pile.
Plugging Eq. (B-1) into Eq. (B-2):

$$
\begin{gather*}
E_{p} I_{p} \frac{d^{4} y}{d z^{4}}+n_{h} z I(y)=0, \\
I(y)= \begin{cases}y & y \leqslant y_{c}, \\
y_{c} & y>y_{c} .\end{cases} \tag{B-3}
\end{gather*}
$$

Finite difference method is ordinarily adopted to solve Eq. (B-3). Based on the analytical solutions which we have already obtained, an analytical method is proposed to solve Eq. (B-3).

Similarly we can get:

$$
\begin{gather*}
\frac{d^{4} y}{d x^{4}}+x I(y)=0, \\
I(y)= \begin{cases}y & y \leqslant y_{c} \\
y_{c} & y>y_{c} .\end{cases} \tag{B-4}
\end{gather*}
$$

In Eq. (B-4), $x=z / T$ where T can be calculated by Eq. (4).
It is obvious that there exists a critical point x_{c} such that $y \leqslant y_{c}$ if $x \geqslant x_{c}$ and $y>y_{c}$ if $x<x_{c}$ for those boundary conditions we are interested in.

Eq. (B-4) can be reduced to

$$
\begin{cases}y^{(4)}+x y_{c}=0 & x<x_{c} \tag{B-5}\\ y^{(4)}+x y=0 & x \geqslant x_{c}\end{cases}
$$

We can solve Eq. (B-5) on both intervals:

Fig. B-3. Comparison between the measured and predicted pile head deflections.

$$
y(x)= \begin{cases}-\frac{1}{5!} y_{c} x^{5}+\frac{f_{1}}{3!} x^{3}+\frac{f_{2}}{2!} x^{2}+c_{1} x+c_{0} & x<x_{c} \tag{B-6}\\ c_{2} g_{1}(x)+c_{3} g_{2}(x) & x \geqslant x_{c}\end{cases}
$$

where $f_{1}=y^{\prime \prime \prime}(0)=\frac{H T^{3}}{E_{p} l_{p}}$ and $f_{2}=y^{\prime \prime}(0)=\frac{M T^{2}}{E_{p} l_{p}}$.
Therefore we need to figure out $c_{i}, 0 \leqslant i \leqslant 3$ and x_{c}. Of course, here, on $x \geqslant x_{c}$, we should use the WKB form for g_{i} calculated by Eq. (16).

Besides, $y^{\prime \prime \prime}, y^{\prime \prime}, y^{\prime}$ and y should be continuous at x_{c}. Thus we have the following equations:

$$
\left\{\begin{array}{l}
-\frac{1}{5!} y_{c} x_{c}^{5}+\frac{f_{1}}{3!} x_{c}^{3}+\frac{f_{2}}{2!} x_{c}^{2}+c_{1} x_{c}+c_{0}=y_{c} \tag{B-7}\\
c_{2} g_{1}\left(x_{c}\right)+c_{3} g_{2}\left(x_{c}\right)=y_{c} \\
-\frac{1}{4!} y_{c} x_{c}^{4}+\frac{f_{1}}{2!} x_{c}^{2}+f_{2} x_{c}+c_{1}=c_{2} g_{1}^{\prime}\left(x_{c}\right)+c_{3} g_{2}^{\prime}\left(x_{c}\right) \\
-\frac{1}{3!} y_{c} x_{c}^{3}+f_{1} x_{c}+f_{2}=c_{2} g_{1}^{\prime \prime}\left(x_{c}\right)+c_{3} g_{2}^{\prime \prime}\left(x_{c}\right) \\
-\frac{1}{2!} y_{c} x_{c}^{2}+f_{1}=c_{2} g_{1}^{\prime \prime \prime}\left(x_{c}\right)+c_{3} g_{2}^{\prime \prime \prime}\left(x_{c}\right) .
\end{array}\right.
$$

The function values of $g_{i}^{(k)}\left(x_{c}\right)$ can be evaluated approximately using the WKB forms. This system can be written as:

$$
\begin{equation*}
M\left(x_{c}\right) \cdot \vec{a}=\vec{b} \tag{B-8}
\end{equation*}
$$

Fig. B-4. Comparison between the measured and predicted maximum bending moment.

Fig. B-5. Variation of the modulus of subgrade reaction with soil depth.
$M\left(x_{c}\right)$ is a 5×4 matrix and $\vec{a}=\left[c_{0}, c_{1}, c_{2}, c_{3}\right]^{T}$. Since this system is consistent, we have:

$$
\begin{equation*}
f\left(x_{c}\right)=\operatorname{det}\left(\left[M\left(x_{c}\right), \vec{b}\right]\right)=0 \tag{B-9}
\end{equation*}
$$

Eq. (B-9) is an algebraic equation for x_{c} which is much simpler than the differential equation. For example, using dichotomy or Newton iteration, we can obtain x_{c}. Plugging this back, we could solve the coefficients and thus get the solution.

To demonstrate the application of this extended solution, one free-head pile example by Rollins et al. [25] is examined. The following input parameters were used: $D=0.324 \mathrm{~m}, L=11.5 \mathrm{~m}, E_{p} I_{p}=28600 \mathrm{kN} \mathrm{m}{ }^{2} ; \gamma=10.3 \mathrm{kN} / \mathrm{m}^{3}, \phi=35.3^{\circ}$, the average standard penetration test (SPT) N value of the sand within $10 D$ (where D is the pile diameter) below the ground surface is 10 blows per 30 cm . The distance between the loading point and the top of the soil surface was 0.69 m and the constant of subgrade reaction for the sand layer is estimated to be $10 \mathrm{MN} / \mathrm{m}^{3}$ using Table 1.

A comparison between the measured and predicted pile head deflections and the maximum bending moment of pile is shown in Figs. B-3 and B-4 respectively. It can be seen that the present solution reaches a good agreement with the measured data.

B.1.2. Subgrade reaction model 2

In this subgrade reaction model shown in Fig. B-5, the modulus of subgrade reaction increases linearly with the depth from a value of zero at the ground surface when soil depth is less than a critical depth $z_{c r}$ and stays constant when soil depth beyond the critical depth.

Firstly, we can concern about the basic equation:

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}+h(x) y=0 \tag{B-10}
\end{equation*}
$$

where $h(x)$ is a smooth function around 0 and satisfies $h(0)=0, h^{\prime}(0)>0$ and $h(x)>0$ when $x>0$.
The idea is to use the WKB approximation solution when $x \gg 0$:

$$
\begin{equation*}
y(x) \sim C(h(x))^{-3 / 8} \exp \left(\omega \int^{x} h(s)^{1 / 4} d s\right) \tag{B-11}
\end{equation*}
$$

where $\omega^{4}=-1$.
Around 0, Eq. (B-10) can be approximated by

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}+h^{\prime}(0) x y=0 \tag{B-12}
\end{equation*}
$$

This equation has been solved already as Eq. (6).
Let us consider this calculation model:

$$
\begin{cases}h(x)=x, & x<D \tag{B-13}\\ h(x)=D, & x \geqslant D\end{cases}
$$

When $x<D$, we have to calculate power series solutions of y_{1} and y_{3}. Power series solutions of y_{1} are obtained as Eqs. (20) and (21). Similarly to "Proof of Theorem 3", we can get power series solutions of y_{3}.

$$
\begin{align*}
y_{3}= & \left(-e^{i 3 \pi / 5}+e^{i \pi / 5}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-4 / 5} \Gamma(n+1 / 5)}{(5 n)!} x^{5 n}+\left(e^{i \pi / 5}+e^{i 2 \pi / 5}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-3 / 5} \Gamma(n+2 / 5)}{(5 n+1)!} x^{5 n+1}+\left(e^{i 4 \pi / 5}\right. \\
& \left.+e^{i 3 \pi / 5}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-2 / 5} \Gamma(n+3 / 5)}{(5 n+2)!} x^{5 n+2}+\left(-e^{i 2 \pi / 5}+e^{i 4 \pi / 5}\right) \sum_{n=0}^{\infty} \frac{(-1)^{n} 5^{n-1 / 5} \Gamma(n+4 / 5)}{(5 n+3)!} x^{5 n+3} . \tag{B-14}
\end{align*}
$$

As Eq. (13) shown, g_{3} and g_{4} is real part and imaginary part of y_{3}, respectively.
When $x \geqslant D$, we have to calculate WKB approximation solutions of y_{1} and y_{3}.
We know that

$$
\begin{equation*}
\int^{x} h(s)^{1 / 4} d s=D^{1 / 4} x-\frac{1}{5} D^{5 / 4}, \quad x \geqslant D . \tag{B-15}
\end{equation*}
$$

According to this, we have the catenating formulas:

$$
\begin{align*}
y_{1}(x) \sim & \sqrt{\frac{\pi}{2}} x^{-3 / 8} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(\cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)+i \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{3 \pi}{8}\right)\right) \rightarrow \sqrt{\frac{\pi}{2}} D^{-3 / 8} \exp \left(-\frac{\sqrt{2}}{2} D^{1 / 4} x+\frac{\sqrt{2}}{10} D^{5 / 4}\right) \\
& \times\left(\cos \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{3 \pi}{8}\right)+i \sin \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{3 \pi}{8}\right)\right), \tag{B-16}\\
y_{3}(x) \sim & \sqrt{\frac{\pi}{2}} x^{-3 / 8} e^{-2 \sqrt{2} x^{5 / 4} / 5}\left(\cos \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)+i \sin \left(\frac{2 \sqrt{2}}{5} x^{5 / 4}+\frac{\pi}{8}\right)\right) \rightarrow \sqrt{\frac{\pi}{2}} D^{-3 / 8} \exp \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}\right) \\
& \times\left(\cos \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{\pi}{8}\right)+i \sin \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{\pi}{8}\right)\right) . \tag{B-17}
\end{align*}
$$

Then we can catenate as following:

$$
\left\{\begin{array}{l}
g_{1}(x) \rightarrow p_{1}(x)=\sqrt{\frac{\pi}{2}} D^{-3 / 8} \exp \left(-\frac{\sqrt{2}}{2} D^{1 / 4} x+\frac{\sqrt{2}}{10} D^{5 / 4}\right) \cos \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{3 \pi}{8}\right) \tag{B-18}\\
g_{2}(x) \rightarrow p_{2}(x)=\sqrt{\frac{\pi}{2}} D^{-3 / 8} \exp \left(-\frac{\sqrt{2}}{2} D^{1 / 4} x+\frac{\sqrt{2}}{10} D^{5 / 4}\right) \sin \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{3 \pi}{8}\right) \\
g_{3}(x) \rightarrow p_{3}(x)=\sqrt{\frac{\pi}{2}} D^{-3 / 8} \exp \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}\right) \cos \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{3 \pi}{8}\right) \\
g_{4}(x) \rightarrow p_{4}(x)=\sqrt{\frac{\pi}{2}} D^{-3 / 8} \exp \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}\right) \sin \left(\frac{\sqrt{2}}{2} D^{1 / 4} x-\frac{\sqrt{2}}{10} D^{5 / 4}+\frac{3 \pi}{8}\right) .
\end{array}\right.
$$

Thus, for the problem:

$$
\begin{align*}
& E_{p} I_{p} \frac{d^{4} y}{d z^{4}}+K(z) y=0, \\
& K(z)= \begin{cases}n_{h} z & z \leqslant A / n_{h} \\
A & z \geqslant A / n_{h},\end{cases} \tag{B-19}
\end{align*}
$$

where $K(z)$ is the modulus of subgrade reaction changing with soil depth and A is a constant depending on the properties of soil.

Scaling $x=z / T$, we have:

$$
\begin{equation*}
\frac{d^{4} y}{d x^{4}}+\frac{T^{4}}{E_{p} I_{p}} K(T x) y=0 \tag{B-20}
\end{equation*}
$$

Knowing $n_{h} T^{5} / E_{p} I_{p}=1$ and letting $D=A T^{4} / E_{p} I_{p}$, this model can be replaced as above. For $x<D$, we use the power series expression of g_{i} and for $x \geqslant D$, we use p_{i}.

$$
\begin{cases}y(z)=\sum_{i=1}^{4} c_{i} g_{i}(T z) & z<A / n_{h} \tag{B-21}\\ y(z)=\sum_{i=1}^{4} c_{i} p_{i}(T z) & z \geqslant A / n_{h}\end{cases}
$$

References

[1] H. Matlock, L.C. Reese, Generalized solutions for laterally loaded piles, J. Soil Mech. Mech. Div., ASCE 86 (SM5) (1960) 91-97.
[2] M.T. Davisson, H.L. Gill, Laterally loaded piles in a layered soil system, J. Soil Mech. Mech. Div., ASCE 89 (SM3) (1963) 63-94.
[3] W.Y. Shen, C.I. Teh, Analysis of laterally loaded piles in soil with stiffness increasing with depth, J. Geotech. Geoenviron. Eng. 13 (8) (2004) 878-882.
[4] H.G. Poulos, E.H. Davis, Pile Foundation Analysis and Design, Wiley, New York, 1980.
[5] H.H. Zhang, J.C. Small, Analysis of capped pile groups subjected to horizontal and vertical loads, Comput. Geotech. 26 (2000) 1-21.
[6] W.Y. Shen, C.I. Teh, Analysis of laterally loaded pile groups using a variational approach, Geotechnique 52 (3) (2002) 201-208.
[7] K. Terzaghi, Evaluation of coefficients of subgrade reaction, Geotechnique 5 (4) (1955) 297-326.
[8] Y.L. Chang, Discussion on "Lateral Pile Loading Tests" by L.B. Feagin. Trans. ASCE, 102 (1937) 272-278.
[9] S.M. Gleser, Lateral load tests on vertical fixed-head and free-head piles, Symposium on Lateral Load Tests on Piles, ASTM STP 154 (1953) $75-101$.
[10] L.C. Reese, H. Matlock, Non-dimensional solutions for laterally loaded piles with soil modulus assumed proportional to depth, in: Proceedings of the 8th Texas Conference on Soil Mechanics and Foundation Engineering, Austin, TX, 1956, pp. 1-23.
[11] M. Hetenyi, Beams on Elastic Foundations, University of Michigan Press, 1946.
[12] P.W. Rowe, A theoretical and experimental analysis of sheet-pile walls, Proc. Inst. Civil Eng. 4 (1) (1955) 32-69.
[13] P.W. Rowe, The single pile subject to horizontal force, Geotechnique 6 (2) (1956) 70-85.
[14] R.B. White, Asymptotic Analysis of Differential Equations, Imperial College Press, 2005.
[15] J.N. Franklin, R.F. Scott, Beam equation with variable foundation coefficient, J. Eng. Mech. Div. 105 (5) (1979) 811-827.
[16] C.M. Bender, S.A .Orszag, Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory, Springer Publisher, 1999.
[17] M.F. Randolph, The response of flexible piles to lateral loading, Geotechnique 31 (2) (1981) 247-259.
[18] M.J. Tomlinson, Foundation Design and Construction, 5th ed., Pitman Books Ltd., London, 1986
[19] W.G.K. Fleming, A.J. Weltman, M.F. Randolph, W.K. Elson, Piling Engineering, John Wiley \& Sons Inc., New York, 1992.
[20] D. Mohan, S.P. Shrivastava, Nonlinear behavior of single vertical piles under lateral loads, in: Proceedings of the 3rd Annual Offshore Technical Conference, vol. 2, Houston, 1971, pp. 677-684.
[21] R.Y. Liang, Drilled shaft foundations for noise barrier walls and slope stabilization, Final Report, FHWA/OH-2002/038, Ohio Department of Transportation, OH, 2002.
[22] E.S. Barber, Discussion to paper by S.M. Gleser, ASTM STP 154 (1953) 96-99.
[23] M.R. Madhav, N.S.V.K. Rao, K. Madhavan, Laterally loaded pile in elasto-plastic soil, Soils Found. 11 (2) (1971) 1-15.
[24] Y. Yokoyama, Calculating Method and Example of Pile Structure, Sankaido Publishing Co., Ltd, Tokyo, 1977.
[25] K.M. Rollins, J.D. Lane, T.M. Gerber, Measured and computed lateral response of a pile group in sand, J. Geotech. Eng. D IV, ASCE 131 (1) (2005) 103-114.
[26] W.R. Cox, L.C. Reese, B.R. Grubbs, Field testing of laterally loaded piles in sand, in: Proceeding of the 6th Annual Offshore Technology Conference, vol. 2, Houston, TX, Paper No. OTC 2079, 1974, pp. 459-472.
[27] Y.M. Hsiung, Theoretical elastic-plastic solution for laterally loaded piles [J], J. Geotech. Geoenviron. Eng. 129 (6) (2003) 475-480.
[28] W.D. Guo, On limiting force profile, slip depth and response of lateral piles [J], Comput. Geotech. 33 (2006) 47-67.

[^0]: * Corresponding author. Tel.: +86 216598 2773; fax: +86 2165985210.

 E-mail addresses: fyliang@tongji.edu.cn (F. Liang), liyc06@gmail.com (Y. Li), leili@math.wisc.edu (L. Li), jwang@eng.ua.edu (J. Wang).
 ${ }^{1}$ Tel.: +86 216598 2773; fax: +86 2165985210.
 ${ }^{2}$ Tel.: +1 205348 6786; fax: +1 2053480783.

