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Piles are frequently used to support lateral loads. Elastic solutions based on the Winkler
foundation model are widely used to design laterally loaded piles at working load. This
paper reports a simplified analytical solution for laterally loaded long piles in a soil with
stiffness linearly increasing with depth. Based on a Fourier–Laplace integral, a power series
solution for small depth and a Wentzel–Kramers–Brillouin (WKB) asymptotic solution for
large depth are derived. By using this analytical solution, the deflection and bending
moment profiles of a laterally loaded pile can be obtained through simple calculation.
The proposed power series solution is exact for infinitely long piles. Numerical examples
show that this solution agrees well with other existing methods on predicting the
deflection and bending moment of laterally loaded piles. The WKB asymptotic solution
developed in this study has never been introduced before. The simplified analytical
solution obtained in this study provides a better approach for engineers to analyze the
responses and design of laterally loaded long piles.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Piles are widely used to support laterally loaded structures, such as bridges, buildings, tanks, and wind turbines. Some
analytical methods have been developed for analyzing such piles, including the elastic subgrade reaction approach by
Matlock and Reese [1], Davisson and Gill [2], Shen and Teh [3] or the elastic continuum approach by Poulos and Davis
[4], Zhang and Small [5], Shen and Teh [6]. Of these methods, the subgrade reaction approach based on Winkler foundation
model is most widely used for its clear concept and simple mathematical treatment. Terzaghi [7] proposed that the modulus
of subgrade reaction should be a constant with the depth of clay, whereas this modulus should increase linearly with depth
from a value of zero at the ground surface for sand. By using the beam on elastic foundation model, Chang [8] derived an
analytic solution for a laterally loaded pile in clay by assuming the coefficient of the subgrade reaction is a constant and
the pile is sufficiently long. Several methods have been developed for the analysis of laterally loaded piles in sand, including
the finite difference method by Gleser [9], Matlock and Reese [1], Reese and Matlock [10] and power series solution by
Hetenyi [11], Rowe [12,13]. Finite difference solutions can be very close to the actual solution if sufficient segments are used.
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However, the efficiency of the calculation is relatively low especially when the pile is very long and a large number of seg-
ments are used. The power series expression is an approximate solution because the boundary conditions at the tip of pile
can hardly be exactly satisfied by the finite terms of the power series. Moreover, more terms of the power series are needed
with the increasing depth of piles to ensure accuracy, leading to a greater amount of calculation.

To analyze laterally loaded long piles with higher accuracy and simplicity, this paper proposes an analytical solution
based on the Fourier–Laplace integral method, which recovers power series solutions for small depth and Wentzel–Kra-
mers–Brillouin (WKB) asymptotic solutions for large depth. The power series solution is used to analyze the small depth part
of the pile with high accuracy by use of only a few terms; while the WKB approximation is employed to analyze the large
depth part of the pile with much less work but acceptable accuracy compared with the power series. For infinitely long piles,
the proposed power series solution is an exact solution as the boundary conditions at the tip of the pile are satisfied exactly.
Furthermore, the simplified analytical solutions to deflection and bending moment of laterally loaded long piles are
obtained, which can be conveniently used by engineers to facilitate analysis and design of piles. In addition, the present
method can also be extended to analyze laterally loaded long piles in soil with the modulus of subgrade reaction in some
other functions of the depth. The method proposed in this article is also available to analyze a short pile which is addressed
in Appendix B.

2. Definition of the problem

According to Winkler foundation model, the flexural equation of a pile on the elastic subgrade can be written as
EpIp
d4y

dz4 þ K � y ¼ 0; ð1Þ
where Ep is the Young’s modulus of the pile, Ip is the inertia moment of the pile, y is the pile deflection, z is the pile depth, K is
the modulus of subgrade reaction.

The modulus of subgrade reaction increases linearly with the depth from a value of zero at the ground surface for sand
and can be written as after Poulos and Davis [4].
K ¼ nhz; ð2Þ
where nh is the constant of horizontal subgrade reaction.
Substituting Eq. (2) into Eq. (1) yields
EpIp
d4y

dz4 þ nhzy ¼ 0: ð3Þ
3. Solution procedure

The relative stiffness factor, T, proposed by Reese and Matlock [10] is given by
T ¼ EpIp

nh

� �1
5

: ð4Þ
By defining a dimensionless variable x = z/T, Eq. (3) can be reduced to
EpIp

nhT5

d4y

dx4 þ xy ¼ 0: ð5Þ
Plugging Eq. (4) into Eq. (5) gives
d4y

dx4 þ xy ¼ 0: ð6Þ
Eq. (6) is the fundamental equation explored in this paper.

3.1. Fourier–Laplace integral representation for the solutions

In Shen and Teh [6], the solution procedure for the Airy Equation y00ðxÞ ¼ xy is discussed using a Fourier–Laplace Integral
representation. Here, we apply this representation to solve our equation.

Consider the Fourier–Laplace representation of y(x) (after White [14]):
yðxÞ ¼
Z

C
extf ðtÞdt; ð7Þ
where C is the contour in the complex plane with endpoints a and b.
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When we integrate along the imaginary axis, namely t = ik, Eq. (7) is the inverse Fourier transform (up to a constant i).
When we integrate along t = r + ix, Eq. (7) is the inverse Laplace transform(up to a constant 2pi). For a general contour C,
Eq. (7) represents a generalization of these two transforms.

Eq. (6) can be reduced to
Z
C

t4extf ðtÞdt �
Z

C
extf 0ðtÞdt þ extf ðtÞ

��b
a ¼ 0: ð8Þ
Choose a contour such that the last term in Eq. (8) vanishes, leading to
t4f ðtÞ � f 0ðtÞ ¼ 0 ð9Þ
which gives
f ðtÞ ¼ et5=5: ð10Þ
To ensure that the last term vanishes in Eq. (8), t5/5 should go to negative infinity when approaching the endpoints.
Therefore, a and b can be chosen as 1e(ip+2kp)/5. Denote these points as A: �1, B: 1ei3p/5, C: 1eip/5, D: 1e�ip/5 and
E: 1e�i3p/5. We thus have four independent contours and four independent solutions correspondingly:
ykðxÞ ¼
Z

Ck

et5=5þxtdt ðk ¼ 1;2;3;4Þ: ð11Þ
Franklin and Scott [15] also obtained the contour integral solutions in their work. However, in their work, the convenient
expressions to compute the four basis functions directly are not given and a numerical method is still adopted to calculate
them. They also derive the leading order asymptotic solutions but these solutions fail to be effective near the soil surface and
cannot be used to derive any useful formulas. Hence, their solutions cannot cover the whole pile.

Let
/ðx; tÞ ¼ t5

5
þ xt: ð12Þ
The integration contour of Eq. (11) is chosen as the steepest decent curves (after Bender and Orszag [16]) emerging from
the saddle points of u(x, t). These saddle points are given by t0 ¼

ffiffiffi
x4
p

x where x = e±ip/4, e±i3p/4 can be obtained by @/
@t ¼ 0. Then

the four contours in Eq. (11) are given by the contour emerging from e3ip/4 with endpoints A, B (C1), the one emerging from
e�3ip/4 with endpoints A, E (C2), the one emerging from eip/4 with endpoints B, C (C3), and the one emerging from e�ip/4 with
endpoints E, D (C4).

If x is real, it is easy to see that �y1 ¼ y2 and �y3 ¼ y4. Let
y1 ¼ g1 þ ig2; y3 ¼ g3 þ ig4; ð13Þ
where gi are real functions and are also four independent solutions. In order to get the solutions to laterally loaded piles
including long piles and short piles, we need to calculate y1 and y3.

Eq. (11) is the Fourier–Laplace Integral representation of the solutions. Since this form is not convenient for engineers to
use, we change it into a WKB asymptotic solution when x is large and the power series when x is small. The results for the
solutions are summarized as the following three theorems:

Theorem 1. As x approaches infinity, both the real and imaginary parts of y3 are highly oscillatory with rapidly increasing
amplitudes and frequency, while both the real and imaginary parts of y1 decrease to zero. In particular, if we choose the direction of
C1 to be from A to B and the direction of C3 to be from C to B, and then to leading order, we have:
ykðxÞ �
ffiffiffiffiffiffiffiffi
px
p ffiffiffi

2
p x�3=8e4x5=4x=5: ð14Þ
For y1, x = ei3p/4 and for y3, x = eip/4.
The proof of this theorem is included in Appendix A.
The WKB asymptotic solution to y(n) = Q(x)y is given by
yðxÞ � jQðxÞj�ðn�1Þ=2n exp
Z x

QðsÞ1=nds
� �

: ð15Þ
Plugging in Q(x) = �x and n = 4, one can derive the same expression except that the coefficients are unknown. The asymp-
totic solution is thus of WKB type.

In this article, we are interested in infinitely long piles. For infinitely long piles, we have boundary conditions at infinity,
which excludes g3 and g4. Therefore, there is no need to calculate y3. If one considers short piles, the solutions should be
linear combinations of gi ði ¼ 1;2;3;4Þ where g3 and g4 are real and imaginary parts of y3. The methods to obtain the
formulas would be similar. Besides, y3 is already calculated in Appendix B. Now, we give the expressions for g1 and g2 which
we use in this paper.
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Theorem 2. We have the following asymptotic results for g1 and g2 as x approaches positive infinity:
The first two terms in the asymptotic expression for g1 and g2 are:
g1ðxÞ �
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 x�3=8 cos
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !
þ 9

32
x�13=8 sin

2
ffiffiffi
2
p

5
x5=4 þ p

8

 !" #
;

g2ðxÞ �
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 x�3=8 sin
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !
� 9

32
x�13=8 cos

2
ffiffiffi
2
p

5
x5=4 þ p

8

 !" #
:

ð16Þ
The first two terms in the asymptotic expression for g01 and g02 are:
g01ðxÞ � �
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 x�1=8 cos
2
ffiffiffi
2
p

5
x5=4 þ p

8

 !
� 3

32
x�11=8 cos

2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !" #
;

g02ðxÞ � �
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 x�1=8 sin
2
ffiffiffi
2
p

5
x5=4 þ p

8

 !
� 3

32
x�11=8 sin

2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !" #
:

ð17Þ
The first three terms in the asymptotic expression for g001 and g002 are:
g001ðxÞ �
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 x1=8 sin
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !
þ 7

32
x�9=8 cos

2
ffiffiffi
2
p

5
x5=4 þ p

8

 !
� 231

2048
x�19=8 cos

2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !" #
;

g002ðxÞ � �
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 x1=8 cos
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !
þ 7

32
x�9=8 sin

2
ffiffiffi
2
p

5
x5=4 þ p

8

 !
� 231

2048
x�19=8 sin

2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !" #
;

ð18Þ

g0001 ðxÞ�
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 �x3=8 cos
2
ffiffiffi
2
p

5
x5=4�3p

8

 !
� 3

32
x�7=8 cos

2
ffiffiffi
2
p

5
x5=4�p

8

 !
þ 273

2048

ffiffiffiffi
p
2

r
x�17=8 cos

2
ffiffiffi
2
p

5
x5=4�3p

8

 !" #

g0002 ðxÞ��
ffiffiffiffi
p
2

r
e�2

ffiffi
2
p

x5=4=5 �x3=8 sin
2
ffiffiffi
2
p

5
x5=4�3p

8

 !
� 3

32
x�7=8 sin

2
ffiffiffi
2
p

5
x5=4�p

8

 !
þ 273

2048
x�17=8 sin

2
ffiffiffi
2
p

5
x5=4�3p

8

 !" #
:

ð19Þ
One can refer to the Appendix A for the derivation.
The above expression works well for large x but fails around x = 0. For y1, we deform the contour to the left half x-axis and

the ray with polar angle 3p
5 . This new contour is convenient for us to get the expressions that works well for small x.

Integration over this new contour gives us the following results.
Theorem 3. g1, g2, g01, g02, g001 and g002 have the following power series expressions which work quite well for small x:
g1ðxÞ ¼ ð1� cosð2p=5ÞÞ
X1
n¼0

ð�1Þn5n�4=5Cðnþ 1=5Þ
ð5nÞ! x5n � ð1þ cosðp=5ÞÞ

X1
n¼0

ð�1Þn5n�3=5Cðnþ 2=5Þ
ð5nþ 1Þ! x5nþ1

þ ð1þ cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
ð5nþ 2Þ! x5nþ2 � ð1� cosð2p=5ÞÞ

X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 3Þ! x5nþ3; ð20Þ

g2ðxÞ ¼ sinð2p=5Þ
X1
n¼0

ð�1Þn5n�4=5Cðnþ 1=5Þ
ð5nÞ! x5n � sinðp=5Þ

X1
n¼0

ð�1Þn5n�3=5Cðnþ 2=5Þ
ð5nþ 1Þ! x5nþ1

� sinðp=5Þ
X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
ð5nþ 2Þ! x5nþ2 þ sinð2p=5Þ

X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 3Þ! x5nþ3; ð21Þ

g01ðxÞ ¼ �ð1þ cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�3=5Cðnþ 2=5Þ
ð5nÞ! x5n � ð1þ cosðp=5ÞÞ

X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
ð5nþ 1Þ! x5nþ1

þ ð1� cosð2p=5ÞÞ
X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 2Þ! x5nþ2 � ð1� cosð2p=5ÞÞ

X1
n¼0

ð�1Þn5n�4=5ð5nþ 1ÞCðnþ 1=5Þ
ð5nþ 4Þ! x5nþ4;

ð22Þ
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g02ðxÞ ¼ � sinðp=5Þ
X1
n¼0

ð�1Þn5n�3=5Cðnþ 2=5Þ
ð5nÞ! x5n � sinðp=5Þ

X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
ð5nþ 1Þ! x5nþ1

þ sinð2p=5Þ
X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 2Þ! x5nþ2 � sinð2p=5Þ

X1
n¼0

ð�1Þn5n�4=5ð5nþ 1ÞCðnþ 1=5Þ
ð5nþ 4Þ! x5nþ4; ð23Þ

g001ðxÞ ¼ ð1þ cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
5n!

x5n � ð1� cosð2p=5ÞÞ
X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 1Þ! x5nþ1

� ð1� cosð2p=5ÞÞ
X1
n¼0

ð�1Þn5n�4=5ð5nþ 1ÞCðnþ 1=5Þ
ð5nþ 3Þ! x5nþ3

þ ð1þ cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�3=5ð5nþ 2ÞCðnþ 2=5Þ
ð5nþ 4Þ! x5nþ4; ð24Þ

g002ðxÞ ¼ � sinðp=5Þ
X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
5n!

x5n þ sinð2p=5Þ
X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 1Þ! x5nþ1

� sinð2p=5Þ
X1
n¼0

ð�1Þn5n�4=5ð5nþ 1ÞCðnþ 1=5Þ
ð5nþ 3Þ! x5nþ3 þ sinðp=5Þ

X1
n¼0

ð�1Þn5n�3=5ð5nþ 2ÞCðnþ 2=5Þ
ð5nþ 4Þ! x5nþ4; ð25Þ

g0001 ðxÞ ¼ �ð1� cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
5n!

x5n � ð1� cosð2p=5ÞÞ
X1
n¼0

ð�1Þn5n�4=5ð5nþ 1ÞCðnþ 1=5Þ
ð5nþ 2Þ! x5nþ2

þ ð1þ cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�3=5ð5nþ 2ÞCðnþ 2=5Þ
ð5nþ 3Þ! x5nþ3

� ð1þ cosðp=5ÞÞ
X1
n¼0

ð�1Þn5n�2=5ð5nþ 3ÞCðnþ 3=5Þ
ð5nþ 4Þ! x5nþ4; ð26Þ

g0002 ðxÞ ¼ sinð2p=5Þ
X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
5n!

x5n � sinð2p=5Þ
X1
n¼0

ð�1Þn5n�4=5ð5nþ 1ÞCðnþ 1=5Þ
ð5nþ 2Þ! x5nþ2

þ sinðp=5Þ
X1
n¼0

ð�1Þn5n�3=5ð5nþ 2ÞCðnþ 2=5Þ
ð5nþ 3Þ! x5nþ3 þ sinðp=5Þ

X1
n¼0

ð�1Þn5n�2=5ð5nþ 3ÞCðnþ 3=5Þ
ð5nþ 4Þ! x5nþ4: ð27Þ
The derivation is put in the Appendix A.
3.2. Laterally loaded infinitely long piles

3.2.1. Expression for deflection
The general solution to Eq. (6) is y(x) = C1g1(x) + C2g2(x) + C3g3(x) + C4g4. However, as x approaches infinity, g1 , g2 and their

derivatives decay to 0 very fast (when x > 4 , they are almost 0) while g3 and g4 keep oscillating with increasing amplitudes.
We usually impose the following conditions:
yðþ1Þ ¼ 0; y0ðþ1Þ ¼ 0; y00ðþ1Þ ¼ 0; y000ðþ1Þ ¼ 0
which requireC3 = 0 andC4 = 0. Thus, for infinitely long piles, we have:
yðxÞ ¼ C1g1ðxÞ þ C2g2ðxÞ: ð28Þ
Let us consider two boundary conditions of the pile head.

j Free-head pile:

The boundary conditions are given by
y000ð0Þ ¼ HT3

EpIp
; y00ð0Þ ¼ MT2

EpIp
; ð29Þ
where H is the horizontal load on the pile head and M is the bending moment on the pile head.
Therefore, two integration coefficients C1 and C2 can be easily obtained as



Fig. 1. The calculation schematic diagram.
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C1

C2

� �
¼

T251=5 sinð2p=5Þ51=5Cð4=5ÞM þ sinðp=5ÞCð3=5ÞHT

ð1� cosð2p=5ÞÞ51=5Cð4=5ÞM þ ð1þ cosðp=5ÞÞCð3=5ÞHT

" #

ð2 sinð2p=5Þ � sinðp=5ÞÞCð3=5ÞCð4=5ÞEpIp
:

ð30Þ
j Fixed-head pile:
The boundary conditions are given by
y000ð0Þ ¼ HT3

EpIp
; y0ð0Þ ¼ 0: ð31Þ
Similarly, we can get:
C1

C2

� �
¼ HT351=5

2Cð4=5ÞEpIp

1
1þcosðp=5Þ

1
sinðp=5Þ

" #
: ð32Þ
Combining Eqs. (16), (20), (21), (28), (30) (or Eq. (32)) and x = z/T, we can get y(z) which is the pile deflection distribution
with depth. The calculation schematic diagram is shown in Fig. 1 and the dimensionless constant a will be discussed later.
When x < a (z < aT), g1 and g2 are determined by Eqs. (20) and (21); While x > a (z > aT), g1 and g2 are given by Eq. (16).

Furthermore, we can get an accurate expression for the deflection of the pile head for infinitely long piles:
yð0Þ ¼ C1ð1� cosð2p=5ÞÞ5�4=5Cð1=5Þ þ C2 sinð2p=5Þ5�4=5Cð1=5Þ: ð33Þ
3.2.2. Expressions for rotation, bending moment and shear force
It is quite clear that
y0 ¼ C1g01 þ C2g02
y00 ¼ C1g001 þ C2g002
y000 ¼ C1g0001 þ C2g0002 :

8><
>: ð34Þ
Thus we can get
hðzÞ ¼ dy
dz ¼ 1

T ðC1g01ðz=TÞ þ C2g02ðz=TÞÞ

MðzÞ ¼ EpIp
d2y
dz2 ¼ EpIp

T2 ðC1g001ðz=TÞ þ C2g002ðz=TÞÞ

QðzÞ ¼ EpIp
d3y
dz3 ¼ EpIp

T3 ðC1g0001 ðz=TÞ þ C2g0002 ðz=TÞÞ;

8>>><
>>>:

ð35Þ
where h is pile rotation, M is pile bending moment and Q is pile shear.
In the analysis of laterally loaded piles, pile deflection and bending moment are of greatest interest. Thus, only pile deflec-

tion and bending moment are considered in the sections below.
4. Discussion of a

The value of a can be determined by evaluating the errors of y and M using a truncated power series and WKB asymptotic
solutions at the depth of z = aT. Since y and M are linear combinations of g1 , g2 and g001, g002 respectively, we can just assess the
errors of the basis functions, g1, g2, g001 and g002. The following procedure is followed to obtain the value of a:



(a) 1gΔ  and 2gΔ

(b) 1g′′Δ  and 2g′′Δ

Fig. 2. Variation of Dg1, Dg2, Dg001 and Dg002 with a.
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(1) Obtain the accurate results of g1, g2, g001 and g002 by calculating sufficient terms (n = 50) with the proposed power series
solution;

(2) Choose n = 1 in Eqs. (20), (21), (24), and (25), namely, keep 8 terms in the power series, and the calculate the errors
e1(g1), e1(g2), e1ðg001Þ, e1ðg002Þ with a ranging from 1 to 3 by Eq. (36);

(3) Obtain the errors e2(g1), e2(g2), e2ðg001Þ, e2ðg002Þ for the WKB asymptotic solution with a varying in the same range by
Eq. (37);

(4) Obtain the difference between four pairs of errors with Eq. (38), and the results are shown in Fig. 2.
e1ðg1Þ ¼ jg1m � g1j
e1ðg2Þ ¼ jg2m � g2j
e1ðg001Þ ¼ jg001m � g001j
e1ðg002Þ ¼ jg002m � g002j;

8>>><
>>>:

ð36Þ
Fig. 3. Error condition when a exceeds 2.0–2.2.
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e2ðg1Þ ¼ jg1w � g1j
e2ðg2Þ ¼ jg2w � g2j
e2ðg001Þ ¼ jg001w � g001j
e2ðg002Þ ¼ jg002w � g002j;

8>>><
>>>:

ð37Þ

Dg1 ¼ je2ðg1Þ � e1ðg1Þj
Dg2 ¼ je2ðg2Þ � e1ðg2Þj
Dg001 ¼ je2ðg001Þ � e1ðg001Þj
Dg002 ¼ je2ðg002Þ � e1ðg002Þj:

8>>><
>>>:

ð38Þ
According to the property of the solutions, the errors by power series solutions should increase with x; while the errors by
WKB asymptotic solutions should decrease with x. Therefore the selecting of a is to find the point at which the errors of two
solutions are very close, taking into account the calculation accuracy of the both parts. In Fig. 2, Dg1 and Dg2 are close to zero
with a ranging from 2.0 to 2.3; while Dg001 and Dg002 are close to zero with a ranging from 1.3 to 2.2. Clearly, the errors of
these four basis functions by WKB asymptotic solutions are very close to the ones by power series solutions when a ranges
from 2.0 to 2.2. If a is less than than 2.0, the error of WKB asymptotic solution is larger for x between a and 2.0 (namely z is
between aT and 2.0T); while if a is greater than 2.2, the error of the power series solution is larger for x between 2.2 and a.
The schematic diagram of error condition when a exceeds 2.0�2.2 is shown in Fig. 3. Hence we take the value of a from 2.0 to
2.2. Similarly, the suggested value of a can be taken from 2.5 to 3.0 if we choose n = 2 in step (2) mentioned above while the
calculation terms increase to 12.
5. Simplified analytical solutions

Based on the discussion of a, the simplified solutions to laterally loaded long piles are derived by setting n = 1 and a = 2.
With the simplified solutions, engineers can calculate deflection and bending moment of laterally loaded long piles at any

depth easily. The simplified solutions are given as: (Note: x ¼ z=T ¼ z=ðEpIp

nh
Þ

1=5
)

For free-head piles:

Deflection:
yx62ðxÞ ¼ ð2:4292� 1:6194xþ 0:1667x3 � 0:0202x5 þ 0:0045x6 � 0:0001x8Þ H

ðEpIpÞ2=5n3=5
h

þ ð1:6194� 1:7468x

þ 0:5x2 � 0:0135x5 þ 0:0049x6 � 0:0006x7Þ M

ðEpIpÞ3=5n2=5
h

; ð39Þ

yx>2ðxÞ ¼ e�2
ffiffi
2
p

x5=4=5 0:6642H

ðEpIpÞ2=5n3=5
h

þ 1:1593M

ðEpIpÞ3=5n2=5
h

 !
x�3=8 cosð2

ffiffiffi
2
p

5
x5=4 þ 3p

8
Þ þ 9

32
x�13=8 sin

2
ffiffiffi
2
p

5
x5=4 þ p

8

 !( )

þ e�2
ffiffi
2
p

x5=4=5 2:0443H

ðEpIpÞ2=5n3=5
h

þ 0:8423M

ðEpIpÞ3=5n2=5
h

 !
x�3=8 sinð2

ffiffiffi
2
p

5
x5=4 þ 3p

8
Þ � 9

32
x�13=8 cosð2

ffiffiffi
2
p

5
x5=4 þ p

8
Þ

( )
: ð40Þ
Bending moment:
Mx62ðxÞ ¼ ðx� 0:4049x3 þ 0:1349x4 � 0:0056x6 þ 0:0004x8 � 0:0001x9ÞHðEpIp=nhÞ1=5 þ ð1� 0:2699x3

þ 0:1456x4 � 0:025x5 þ 0:0002x8 � 0:0001x9ÞM; ð41Þ

Mx>2ðxÞ ¼ e�2
ffiffi
2
p

x5=4=5ð0:6642HðEpIp=nhÞ1=5 þ1:1593MÞ x1=8 sin
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !
þ 7

32
x�9=8 cos

2
ffiffiffi
2
p

5
x5=4 þp

8

 !"

� 231
2048

x�19=8 cos
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 !#
þ e�2

ffiffi
2
p

x5=4=5ð2:0443HðEpIp=nhÞ1=5 þ 0:8423MÞ �x1=8 cos
2
ffiffiffi
2
p

5
x5=4 þ3p

8

 !"

þ 7
32

x�9=8 sin
2
ffiffiffi
2
p

5
x5=4 þp

8

 !
� 231

2048
x�19=8 sin

2
ffiffiffi
2
p

5
x5=4 þ3p

8

 !#
: ð42Þ



5206 F. Liang et al. / Applied Mathematical Modelling 38 (2014) 5198–5216
For fixed-head piles:
Deflection:
yx62ðxÞ ¼ ð0:9279� 0:4635x2 þ 0:1667x3 � 0:0077x5 þ 0:0006x7 � 0:0001x8Þ H

ðEpIpÞ2=5n3=5
h

; ð43Þ

yx>2ðxÞ ¼ 0:8628 sin
2
ffiffiffi
2
p

5
x5=4

 !
þ 1:0102 cos

2
ffiffiffi
2
p

5
x5=4

 !
þ 0:0293 sin

2
ffiffiffi
2
p

5
x5=4

 ! "

�0:3725 cos
2
ffiffiffi
2
p

5
x5=4

 !!
x�5=4

#
x�3=8e�2

ffiffi
2
p

x5=4=5H

ðEpIpÞ2=5n3=5
h

: ð44Þ
Bending moment:
Mx62ðxÞ ¼ ð�0:9271þ x� 0:1546x3 þ 0:0232x5 � 0:0056x6 þ 0:0001x8ÞHðEpIp=nhÞ1=5
; ð45Þ
(a) deflection

(b) bending moment 

Fig. 4. Comparison of deflection and bending moment profiles.
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Mx>2ðxÞ¼ 1:0102sin
2
ffiffiffi
2
p

5
x5=4

 !
�0:8628cos

2
ffiffiffi
2
p

5
x5=4

 !" #
þ 0:2897sin

2
ffiffiffi
2
p

5
x5=4

 !
þ0:0228cos

2
ffiffiffi
2
p

5
x5=4

 !" #
x�5=4

(

� 0:1139sin
2
ffiffiffi
2
p

5
x5=4

 !
�0:0973cos

2
ffiffiffi
2
p

5
x5=4

 !" #
x�5=2

)
x1=8e�2

ffiffi
2
p

x5=4=5HðEpIp=nhÞ1=5
: ð46Þ
6. Validations with existing solutions

There is a critical length of a pile beyond which the pile is considered to be a long pile or flexible pile, and its behavior is
similar to that of an infinitely long pile (after Matlock and Reese [1], Randolph [17]). Accordingly, the solutions of an infi-
nitely long pile can be applied to the laterally loaded long pile. The critical length of a pile for the subgrade reaction reported
by Randolph [17], Tomlinson [18] and Fleming et al. [19] is given as
lc ¼ 4T ¼ 4
EpIp

nh

� �1
5

: ð47Þ
This critical length has also been confirmed by comparing the results of finite difference method and our analytical solu-
tion. Thus our analytical solution applies for the piles with L > lc instead of just infinitely long piles.

In the following case studies, the simplified solutions are adopted.
6.1. Case 1

Shen and Teh [3] adopted a variational solution to calculate the displacement and bending moment profiles of one instru-
mented pile reported by Mohan and Shrivastava [20] out of a series of field tests on laterally loaded piles. The instrumented
pile (Pile IN1) at a working load level of 4.90 kN is selected for analysis. The length of the pile is l = 5.25 m with a diameter
d = 0.1 m and a bending rigidity EpIp = 320 kN m2. The constant of horizontal subgrade reaction is nh = 3.57 MN/m3.

Firstly, we calculate the critical length of pile as:
lc ¼ 4T ¼ 4
EpIp

nh

� �1
5

¼ 2:47ðmÞ: ð48Þ
Since l ¼ 5:25 > lc ¼ 2:47, this pile is regarded as a long pile, to which the approach proposed in this paper is applicable.
The computed displacement and bending moment distributions are plotted and compared with the results of measurement
and Shen and Teh’s [3] solution in Fig. 4. It can be seen that excellent agreement with Shen and Teh’s [3] solution has been
achieved by the present method. However, comparing to Shen and Teh’s [3] solution which needs complex matrix operation,
the present simplified analytical solutions are more convenient to be used in analysis and design of laterally loaded long
piles.
Free-head pile

Fig. 5. Comparison of bending moment profiles.



Fixed-head pile

Fig. 6. Comparison of bending moment profiles.

Table 1
Values of nh (MN/m3) for sand [after Liang [21]].

N value (SPT) nh (Above water) nh (Below water)

2–4 5.4–6.8 4.1–5.4
4–10 6.8–16.3 5.4–10.9
10–20 16.3–24.4 10.9–16.3
20–30 24.4–43.4 16.3–24.4
30–50 43.4–65.1 24.4–35.3
50–60 65.1–70.6 35.3–40.7

Fig. 7. Comparison between the measured and predicted pile head deflections.
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6.2. Case 2

Reese and Matlock [10] used a non-dimensional curve to obtain a moment profile for a free-head pile loaded with a hor-
izontal force of 155.68kN and a bending moment of 395.43kN�m and the same pile with head fixed under a horizontal force
of 155.68kN. The length of the pile is l = 24.38 m and a bending rigidity EpIp = 1434836 kN m2. The constant of horizontal
subgrade reaction is nh = 1357.17 kN/m3. The critical length of pile is 16.10 which is less than the length of the pile.

Figs. 5 and 6 compare the computed bending moment distributions obtained by the present method and Reese and
Matlock’s method. Once again, excellent agreement has been achieved between these two methods. The present simplified
solutions can directly calculate the deflection and bending moment of laterally loaded long piles at any depth, and therefore
eliminates the errors of dimensionless coefficients determined by forms or curves.
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6.3. Case 3

This case study is based on a lateral load test reported by Cox et al. [26]. The test was performed on a free-head steel tube
pile with a diameter of 0.61 m and an embedment length of 21 m. The pile was embedded in sand at Mustang Island, Texas.

According to Cox et al. [26], the average standard penetration test (SPT) N value of the sand within 10D (where D is the
pile diameter) below the ground surface is 18 blows per 30 cm. The stiffness of the sand is assumed to increase linearly with
depth, and the constant of subgrade reaction for the sand layer is estimated to be 15MN/m3 using Table 1. Other required
input parameters are given by Cox et al. [26] as follows: EpIp = 163000 kN m2; c = 10.4 kN/m3; / ¼ 39�. The distance between
the loading point and the top of the soil surface was 0.305 m. The critical length of pile is 6.45 which is less than the length of
the pile.

A comparison between the measured and predicted pile head deflections is shown in Fig. 7. It can be seen that the present
solution reaches a good agreement with the measured data.

In this study, the simplified solutions to pile head deflection are given by Eqs. (49) and (50). Barber [22] proposed similar
solutions based on numerical method. Different from Barber’s [22] method, the coefficients in the present solution are
calculated using exact formulas (Eq. (30) (or Eq. (32)) and Eq. (33)).

j Free-head pile:
y0 ¼
2:4292H

ðnhÞ3=5ðEpIpÞ2=5 þ
1:6194M

ðnhÞ2=5ðEpIpÞ3=5 : ð49Þ
j Fixed-head pile:
y0 ¼
0:9279H

ðnhÞ3=5ðEpIpÞ2=5 : ð50Þ
7. Conclusions

A Fourier–Laplace integral has been introduced to obtain the analytical solution for laterally loaded piles in soils with
stiffness linearly increasing with depth. The deflection and bending moment profiles of laterally loaded piles can be evalu-
ated using a simple analytical expression. High accuracy can be achieved with a small amount of calculation. The proposed
power series solution is an accurate solution, based on which and the accurate deflection of the pile head is derived for infi-
nitely long piles. The WKB asymptotic solution is novel for analyzing long piles. The simplified analytical solutions to later-
ally loaded long piles obtained in this study can be applied to engineering design conveniently. This method can also be
easily extended to analyze laterally loaded long piles in soil with the coefficient of subgrade reaction varying with the depth
in other forms such as one shown in Appendix B.
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Appendix A

Proof. of Theorem 1

Provided
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2/tt

p
dt is positive on the steepest decent curve Ck, as x approaches infinity, one can have the following by

Laplace’s method (after Bender and Orszag [16]):
ykðxÞ � e/ðx;t0Þ
Z

Ck

e
1
2/ttðx;t0Þðt�t0Þ2 dt

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� 4t3

0

q et5
0=5þxt0

Z þ1

0

e�uffiffiffi
u
p du

¼ 2
ffiffiffiffi
p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2� 4t3
0

q et5
0=5þxt0 ;

ðA-1Þ
Rþ1
0

e�uffiffi
u
p du ¼ Cð1=2Þ ¼

ffiffiffiffi
p
p

, plugging t0 ¼
ffiffiffi
x4
p

x into the Eq. (A-1) gives:
ykðxÞ �
ffiffiffiffiffiffiffiffi
px
p ffiffiffi

2
p x�3=8e4x5=4x=5: ðA-2Þ



5210 F. Liang et al. / Applied Mathematical Modelling 38 (2014) 5198–5216
Equation (A-2) shows that y1 and y2 are decaying as x approaches infinity while y3 and y4 are highly oscillatory with

increasing amplitudes. Note that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2/tt

p
dt, equivalently

ffiffiffiffiffiffiffiffiffiffi
�x3
p

dt, should be positive. For C1, if we choose

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ei9p=4
p

¼
ffiffiffiffiffiffiffiffiffiffiffi
ei3p=4
p

¼ ei3p=8, then e-i3p/8dt > 0. Therefore, dt has phase ei3p/8, which implies that the direction of C1 is from
A to B. Similar analysis gives the direction C3.

Proof of Theorem 1 is thus completed.
When x approaches infinity, we haveffiffiffiffir ffiffiffip ! ffiffiffip ! !
y1ðxÞ �
p
2

x�3=8e�2
ffiffi
2
p

x5=4=5 cos
2 2

5
x5=4 þ 3p

8
þ i sin

2 2
5

x5=4 þ 3p
8

: ðA-3Þ
It is convenient to define uðxÞ ¼
ffiffiffip
2

p
x�3=8e�2

ffiffi
2
p

x5=4=5ðcosð2
ffiffi
2
p

5 x5=4 þ 3p
8 Þ þ i sinð2

ffiffi
2
p

5 x5=4 þ 3p
8 ÞÞ.

Lemma 1. One has the following asymptotic expression:
Z
C1

ðt � t0Þ2m exp /0 þ
1
2!

/ttðt � t0Þ2
� �

dt � �2
/tt

� �m Cðmþ 1
2Þ

Cð12Þ
uðxÞ; ðA-4Þ
While
R

C1
ðt � t0Þ2mþ1 expð/0 þ 1

2!
/ttðt � t0Þ2Þdt � 0.

This is again the corollary of Lapalace’s method. To make this intuitive, one can do the substitution: 1
2!

/ttðt � t0Þ2 ¼ �u.
Using this lemma, we can show the proof of Theorem 2.

Proof. of Theorem 2

We Taylor expand / around t0 and apply the lemma above:
y1ðxÞ ¼
Z

C1

exp
1
3!

/tttðt � t0Þ3 þ
1
4!

/ð4Þt ðt � t0Þ4 þ
1
5!

/ð5Þt ðt � t0Þ5
� �

expð/0 þ
1
2!

/ttðt � t0Þ2Þdt

�
Z

C1

1þ 1
4!

/ð4Þt ðt � t0Þ4 þ
1
2!
ð/ttt

3!
Þ

2

ðt � t0Þ6 þ
1
2!

2
/ttt/

ð5Þ
t

3!5!
ðt � t0Þ8

 !
þ � � �

 !
expð/0 þ

1
2!

/ttðt � t0Þ2Þdt

� 1þ /ð4Þt

4!

3
/2

tt

� /2
ttt

2� 62/3
tt

� 15

 !
uðxÞ

¼ 1� 9
32

x�5=4eip=4
� �

uðxÞ;

ðA-5Þ
where /0 represents /(x, t0), /t represents @/
@t , /ttt represents @3/

@t3 , /(4) represents @4/
@t4 , /(5) represents @5/

@t5 .
Fixing C1 and taking first order derivative of y1 and also Taylor expanding the integrand, we have:
y01ðxÞ ¼
Z

C1

t expðt5=5þ xtÞdt; ðA-6Þ

ðt0 þ ðt � t0ÞÞ exp
1
3!

/tttðt � t0Þ3 þ
1
4!

/ð4Þt ðt � t0Þ4 þ
1
5!

/ð5Þt ðt � t0Þ5
� �

� t0 þ
1
3!

/ttt þ
1
4!

/ð4Þt

� �
ðt � t0Þ4 þ

1
5!

/ð5Þt þ
t0

72
ð/ð3Þt Þ

2
� �

ðt � t0Þ6 þ � � � þ odd powers: ðA-7Þ
Applying the lemma once again, we have:
t0 þ ð2t2
0 þ t2

0Þ
2

4t3
0

 !2
Cð5=2Þ
Cð1=2Þ �

1
5!
� 24þ t5

0

72
� 144

� �
8

43t9
0

Cð7=2Þ
Cð1=2Þ

2
4

3
5uðxÞ: ðA-8Þ
We just keep the first two orders and have:
½t0 þ ð9=16Þt�4
0 � ð15=32Þt�4

0 �uðxÞ ¼ ½t0 þ ð3=32Þt�4
0 �uðxÞ ¼ ðx1=4ei3p=4 � ð3=32Þx�1ÞuðxÞ

¼ �
ffiffiffiffi
p
2

r
x�1=8 expð�2

ffiffiffi
2
p

x5=4=5þ ið2
ffiffiffi
2
p

x5=4=5þ p=8ÞÞ � 3
32

ffiffiffiffi
p
2

r
x�11=8 expð�2

�
ffiffiffi
2
p

x5=4=5þ ið2
ffiffiffi
2
p

x5=4=5þ 3p=8ÞÞ: ðA-9Þ
For the second order derivatives, the procedure is similar, we can get:
g001ðxÞ þ ig002ðxÞ ¼
Z

C1

t2et5=5þxtdt ¼
Z

C1

ðt2
0 þ 2t0ðt � t0Þ þ ðt � t0Þ2Þ

� exp
1
3!

/tttðt � t0Þ3 þ
1
4!

/ð4Þt ðt � t0Þ4 þ
1
5!

/ð5Þt ðt � t0Þ5
� �

expð/ðt0Þ þ
1
2!

/ttðt � t0Þ2Þdt: ðA-10Þ
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Firstly, expand expð1
3!

/tttðt � t0Þ3 þ 1
4!

/ð4Þt ðt � t0Þ4 þ 1
5!

/ð5Þt ðt � t0Þ5Þ in Talyor series and keeps even powers of (t - t0):
t2
0 þ ðt � t0Þ2 þ

2t0

3!
/ttt þ

t2
0

4!
/tttt

� �
ðt � t0Þ4 þ

t2
0ð/tttÞ

2

2!ð3!Þ2
ðt � t0Þ6 þ

2t0/
ð5Þ
t

5!
ðt � t0Þ6 þ

1
4!

/ttttðt � t0Þ6: ðA-11Þ
Substituting Eq. (A-11) into Eq. (A-10) and after integration using the lemma, we have the first two terms:
y001ðxÞ � t2
0 �

1
/tt
þ 2t0

3!
/ttt þ

t2
0

4!
/tttt

� �
3
/2

tt
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þ 2t0/

ð5Þ
t
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þ /tttt

4!

 !
15
/3

tt

 !
uðxÞ

� �ix1=2 þ 7
32

x�3=4e�ip=4
� �

uðxÞ: ðA-12Þ
To get the third order, one should calculate up to (t - t0)12. We omit the detail here since there is no new idea but the der-
ivation is tedious.

Taking the real and imaginary parts, we obtain the results in Theorem 2.
Proof. of Theorem 3

For the first part of the new contour (A ? 0), substitute t = �v; while for the second part of the new contour (0 ? B), sub-
stitute t = vei3p/5:
y1ðxÞ ¼ �
Z þ1

0
e�v5=5�xvð�dvÞ þ

Z þ1

0
e�v5=5�xvei3p=5

ei3p=5dv : ðA-13Þ
Then, v is a real variable.
Using the substitution u = v5/5 in Eq. (A-13), we have
y1ðxÞ ¼
Z þ1

0
e�u

Xþ1
k¼0

xkei3pðkþ1Þ=5ð5uÞðk�4Þ=5

k!

 !
duþ

Z þ1

0
e�u

Xþ1
k¼0

ð�1Þkxkð5uÞðk�4Þ=5

k!

 !
du: ðA-14Þ
Set k = 5n + (0, 1, 2, 3, 4):
y1ðxÞ ¼ ðe3ip=5 þ 1Þ
X1
n¼0

ð�1Þnx5n

5n!

Z þ1

0
e�uð5uÞn�4=5du� ðeip=5 þ 1Þ

X1
n¼0

ð�1Þnx5nþ1

ð5nþ 1Þ!

Z þ1

0
e�uð5uÞn�3=5duþ ð1

� e4ip=5Þ
X1
n¼0

ð�1Þnx5nþ2

ð5nþ 2Þ!

Z þ1

0
e�uð5uÞn�2=5duþ ðe2ip=5 � 1Þ

X1
n¼0

ð�1Þnx5nþ3

ð5nþ 3Þ!

Z þ1

0
e�uð5uÞn�1=5du: ðA-15Þ
Taking the real and imaginary parts of Eq. (A-15) and after simplifying, we obtain the results in Theorem 3. To get the
expressions for the derivatives, we just need to differentiate these expressions term by term.

Proof of Theorem 3 is thus completed.
Appendix B

B.1. Extension and application

B.1.1. Subgrade reaction model 1
The solutions proposed in this paper are based on the elastic subgrade model, which are applicable for the pile under

working load. This solution can be to the pile under higher load level using the ideal elastic–plastic subgrade model.
Fig. B-1. The ideal elastic–plastic subgrade model.
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Fig. B-2. Schematic diagram of the soil–pile system.

5212 F. Liang et al. / Applied Mathematical Modelling 38 (2014) 5198–5216
Madhav et al. [23] proposed an ideal elastic–plastic subgrade model to simulate the relationship between soil horizontal
resistance and pile deflection. This model is shown in Fig. B-1 in which K is the modulus of subgrade reaction, pc is the
yielding soil horizontal resistance, and yc is the yielding soil displacement.

The soil near the surface can yield firstly while laterally loaded piles are under lower load level (after Yokoyama [24],
Poulos and Davis [4]). The yield zone propagates downward as the applied loads increase (after Hsiung [27]). The soil-pile
system can be divided to two parts: the plastic zone above and the elastic zone below (after Guo [28]). The schematic of the
soil-pile system is shown in Fig. B-2 in which H is the horizontal load applied to the pile head, pz is the soil horizontal
resistance at depth z, L and D are the length and diameter of the pile, respectively, Ls is the thickness of the yield zone of
soil, K is the modulus of subgrade reaction assumed to increase linearly with depth from a value of zero at the ground surface
as Eq. (2) shown.

In summary, the ideal elastic–plastic model mentioned above can be described as Eq. (B-1).
pðz; yÞ ¼
KðzÞy ¼ nhzy y 6 yc;

KðzÞyc ¼ nhzyc y > yc:

�
ðB-1Þ
According to the Winkler foundation model, another form of the flexural equation of a pile on the elastic subgrade can be
written as
EpIp
d4y

dz4 þ pðz; yÞ ¼ 0; ðB-2Þ
where p(z, y) is soil horizontal resistance around the pile.
Plugging Eq. (B-1) into Eq. (B-2):
EpIp
d4y
dz4 þ nhzIðyÞ ¼ 0;

IðyÞ ¼
y y 6 yc;

yc y > yc:

� ðB-3Þ
Finite difference method is ordinarily adopted to solve Eq. (B-3). Based on the analytical solutions which we have already
obtained, an analytical method is proposed to solve Eq. (B-3).

Similarly we can get:
d4y
dx4 þ xIðyÞ ¼ 0;

IðyÞ ¼
y y 6 yc;

yc y > yc:

� ðB-4Þ
In Eq. (B-4), x = z/T where T can be calculated by Eq. (4).
It is obvious that there exists a critical point xc such that y 6 yc if x P xc and y > yc if x < xc for those boundary conditions

we are interested in.
Eq. (B-4) can be reduced to
yð4Þ þ xyc ¼ 0 x < xc

yð4Þ þ xy ¼ 0 x P xc:

(
ðB-5Þ
We can solve Eq. (B-5) on both intervals:



Fig. B-3. Comparison between the measured and predicted pile head deflections.
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yðxÞ ¼ � 1
5!

ycx5 þ f1
3!

x3 þ f2
2!

x2 þ c1xþ c0 x < xc

c2g1ðxÞ þ c3g2ðxÞ x P xc;

(
ðB-6Þ
where f1 ¼ y000ð0Þ ¼ HT3

EpIp
and f2 ¼ y00ð0Þ ¼ MT2

EpIp
.

Therefore we need to figure out ci; 0 6 i 6 3 and xc. Of course, here, on x P xc , we should use the WKB form for gi cal-
culated by Eq. (16).

Besides, y000, y00, y0 and y should be continuous at xc. Thus we have the following equations:
� 1
5!

ycx5
c þ

f1
3!

x3
c þ

f2
2!

x2
c þ c1xc þ c0 ¼ yc

c2g1ðxcÞ þ c3g2ðxcÞ ¼ yc

� 1
4!

ycx4
c þ

f1
2!

x2
c þ f2xc þ c1 ¼ c2g01ðxcÞ þ c3g02ðxcÞ

� 1
3!

ycx3
c þ f1xc þ f2 ¼ c2g001ðxcÞ þ c3g002ðxcÞ

� 1
2!

ycx2
c þ f1 ¼ c2g0001 ðxcÞ þ c3g0002 ðxcÞ:

8>>>>>>>><
>>>>>>>>:

ðB-7Þ
The function values of gðkÞi ðxcÞ can be evaluated approximately using the WKB forms.
This system can be written as:
MðxcÞ �~a ¼~b: ðB-8Þ
Fig. B-4. Comparison between the measured and predicted maximum bending moment.



Fig. B-5. Variation of the modulus of subgrade reaction with soil depth.
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M(xc) is a 5 � 4 matrix and ~a ¼ ½c0; c1; c2; c3�T . Since this system is consistent, we have:
f ðxcÞ ¼ detð½MðxcÞ;~b�Þ ¼ 0: ðB-9Þ
Eq. (B-9) is an algebraic equation for xc which is much simpler than the differential equation. For example, using dichot-
omy or Newton iteration, we can obtain xc. Plugging this back, we could solve the coefficients and thus get the solution.

To demonstrate the application of this extended solution, one free-head pile example by Rollins et al. [25] is examined.
The following input parameters were used: D = 0.324 m, L = 11.5 m, EpIp = 28600 kN m2; c = 10.3 kN/m3, / = 35.3�, the aver-
age standard penetration test (SPT) N value of the sand within 10D (where D is the pile diameter) below the ground surface is
10 blows per 30 cm. The distance between the loading point and the top of the soil surface was 0.69 m and the constant of
subgrade reaction for the sand layer is estimated to be 10 MN/m3 using Table 1.

A comparison between the measured and predicted pile head deflections and the maximum bending moment of pile is
shown in Figs. B-3 and B-4 respectively. It can be seen that the present solution reaches a good agreement with the measured
data.

B.1.2. Subgrade reaction model 2
In this subgrade reaction model shown in Fig. B-5, the modulus of subgrade reaction increases linearly with the depth

from a value of zero at the ground surface when soil depth is less than a critical depth zcr and stays constant when soil depth
beyond the critical depth.

Firstly, we can concern about the basic equation:
d4y

dx4 þ hðxÞy ¼ 0; ðB-10Þ
where h(x) is a smooth function around 0 and satisfies h(0) = 0, h0(0) > 0 and h(x) > 0 when x > 0.
The idea is to use the WKB approximation solution when x	 0:
yðxÞ � CðhðxÞÞ�3=8 exp x
Z x

hðsÞ1=4ds
� �

; ðB-11Þ
where x4 = �1.
Around 0, Eq. (B-10) can be approximated by
d4y

dx4 þ h0ð0Þxy ¼ 0: ðB-12Þ
This equation has been solved already as Eq. (6).
Let us consider this calculation model:
hðxÞ ¼ x; x < D

hðxÞ ¼ D; x P D:

�
ðB-13Þ
When x < D, we have to calculate power series solutions of y1 and y3. Power series solutions of y1 are obtained as Eqs. (20)
and (21). Similarly to ‘‘Proof of Theorem 3’’, we can get power series solutions of y3.
y3 ¼ ð�ei3p=5 þ eip=5Þ
X1
n¼0

ð�1Þn5n�4=5Cðnþ 1=5Þ
ð5nÞ! x5n þ ðeip=5 þ ei2p=5Þ

X1
n¼0

ð�1Þn5n�3=5Cðnþ 2=5Þ
ð5nþ 1Þ! x5nþ1 þ ðei4p=5

þ ei3p=5Þ
X1
n¼0

ð�1Þn5n�2=5Cðnþ 3=5Þ
ð5nþ 2Þ! x5nþ2 þ ð�ei2p=5 þ ei4p=5Þ

X1
n¼0

ð�1Þn5n�1=5Cðnþ 4=5Þ
ð5nþ 3Þ! x5nþ3: ðB-14Þ
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As Eq. (13) shown, g3 and g4 is real part and imaginary part of y3, respectively.
When x P D, we have to calculate WKB approximation solutions of y1 and y3.
We know that
Z x

hðsÞ1=4ds ¼ D1=4x� 1
5

D5=4; x P D: ðB-15Þ
According to this, we have the catenating formulas:
y1ðxÞ �
ffiffiffiffi
p
2

r
x�3=8e�2

ffiffi
2
p

x5=4=5 cos

 
2
ffiffiffi
2
p

5
x5=4 þ 3p

8

!
þ i sin

2
ffiffiffi
2
p

5
x5=4 þ 3p

8

 ! !
!

ffiffiffiffi
p
2

r
D�3=8 exp �

ffiffiffi
2
p

2
D1=4xþ

ffiffiffi
2
p

10
D5=4

 !

� cos

ffiffiffi
2
p

2
D1=4x�

ffiffiffi
2
p

10
D5=4 þ 3p

8

 !
þ i sin

ffiffiffi
2
p

2
D1=4x�

ffiffiffi
2
p

10
D5=4 þ 3p

8

 ! !
; ðB-16Þ

y3ðxÞ �
ffiffiffiffi
p
2

r
x�3=8e�2

ffiffi
2
p

x5=4=5 cos
2
ffiffiffi
2
p

5
x5=4 þ p

8

 !
þ i sin

2
ffiffiffi
2
p

5
x5=4 þ p

8

 ! !
!

ffiffiffiffi
p
2

r
D�3=8 exp

ffiffiffi
2
p

2
D1=4x�

ffiffiffi
2
p

10
D5=4

 !

� cos

ffiffiffi
2
p

2
D1=4x�

ffiffiffi
2
p

10
D5=4 þ p

8

 !
þ i sin

ffiffiffi
2
p

2
D1=4x�

ffiffiffi
2
p

10
D5=4 þ p

8

 ! !
: ðB-17Þ
Then we can catenate as following:
g1ðxÞ ! p1ðxÞ ¼
ffiffiffip
2

p
D�3=8 exp �

ffiffi
2
p

2 D1=4xþ
ffiffi
2
p

10 D5=4
	 


cos
ffiffi
2
p

2 D1=4x�
ffiffi
2
p

10 D5=4 þ 3p
8

	 

g2ðxÞ ! p2ðxÞ ¼

ffiffiffip
2

p
D�3=8 exp �

ffiffi
2
p

2 D1=4xþ
ffiffi
2
p

10 D5=4
	 


sin
ffiffi
2
p

2 D1=4x�
ffiffi
2
p

10 D5=4 þ 3p
8

	 

g3ðxÞ ! p3ðxÞ ¼

ffiffiffip
2

p
D�3=8 exp

ffiffi
2
p

2 D1=4x�
ffiffi
2
p

10 D5=4
	 


cos
ffiffi
2
p

2 D1=4x�
ffiffi
2
p

10 D5=4 þ 3p
8

	 

g4ðxÞ ! p4ðxÞ ¼

ffiffiffip
2

p
D�3=8 exp

ffiffi
2
p

2 D1=4x�
ffiffi
2
p

10 D5=4
	 


sin
ffiffi
2
p

2 D1=4x�
ffiffi
2
p

10 D5=4 þ 3p
8

	 

:

8>>>>>>>><
>>>>>>>>:

ðB-18Þ
Thus, for the problem:
EpIp
d4y
dz4 þ KðzÞy ¼ 0;

KðzÞ ¼
nhz z 6 A=nh

A z P A=nh;

� ðB-19Þ
where K(z) is the modulus of subgrade reaction changing with soil depth and A is a constant depending on the properties of
soil.

Scaling x = z/T, we have:
d4y

dx4 þ
T4

EpIp
KðTxÞy ¼ 0: ðB-20Þ
Knowing nhT5/EpIp = 1 and letting D = AT4/EpIp, this model can be replaced as above. For x < D, we use the power series
expression of gi and for x P D, we use pi.
yðzÞ ¼
X4

i¼1

cigiðTzÞ z < A=nh;

yðzÞ ¼
X4

i¼1

cipiðTzÞ z P A=nh:

8>>>><
>>>>:

ðB-21Þ
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