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Abstract8

We revisit some standard schemes, including upwind schemes and some B-schemes,9

for linear conservation laws from the viewpoint of jump processes, allowing the study10

of them using probabilistic tools. For Fokker-Planck equations on R, in the case of11

weak confinement, we show that the numerical solutions converge to some stationary12

distributions. In the case of strong confinement, using a discrete Poincaré inequality, we13

prove that the O(h) numeric error under `1 norm is uniform in time, and establish the14

uniform exponential convergence to the steady states. Compared with the traditional15

results of exponential convergence of these schemes, our result is in the whole space16

without boundary. We also establish similar results on torus for which the stationary17

solution of the scheme does not have detailed balance. This work could motivate18

better understanding of numerical analysis for conservation laws, especially parabolic19

conservation laws, in unbounded domains.20
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1 Introduction23

It is well-known that for numerically solving the partial differential equations (PDEs), suit-24

able discretization must be used to preserve correct physics. For example, in discretizing25

hyperbolic equations or the convection terms in mixed type equations such as the Navier-26

Stokes equations, the upwind scheme is usually used to numerically simulate the direction27

of propagation of information to ensure desired stability [1]. For nonlinear hyperbolic con-28

servation laws, the upwind scheme (and generally the so-called monotone schemes [2]) can29

guarantee that the numerical solutions converge to the entropy weak solution [2, 3], impor-30

tant for physical phenomena like shocks. Even for parabolic conservation laws where the31

solutions are smooth, like Fokker-Planck equations, correct discretization must be adopted32

so that the correct equilibrium can be recovered [4]. Such type of discretizations are often33

nonlinear, which is necessary even for linear parabolic equations.34

We are interested in spatial discretization of linear conservation laws while keeping the
time variable continuous (for simulation, one can use the methods in [5] to get fully dis-
cretized schemes or just leave the time variable continuous as in section 7). In particular,
we apply the upwind schemes, and the B-schemes [6] for linear parabolic equations to the
Fokker-Planck equations on R, given by

∂tρ = −∂x(b(x)ρ) +
1

2
∂xx(σ2ρ), (1.1)
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where ρ ≥ 0 often describes the density while b(·) and σ(·) are given functions. The Fokker-35

Planck equations are closely related to the stochastic differential equations (SDEs) (see [7]36

and section 2 below for more details). We are interested to see whether these schemes can37

capture the correct equilibrium for large time in unbounded domains.38

Let us first focus on the upwind schemes for conservation laws and we take the one
dimensional case as the example. In general, the scalar conservation law for ρ : (x, t) 7→
ρ(x, t) in 1D space is given by

∂tρ+ ∂x(f(x, ρ)) = ∂x(D(x)∂xρ). (1.2)

Here ∂x(f(x, ρ)) = ∂xf(x, ρ)+∂ρf(x, ρ)∂xρ. We will assume all functions are smooth enough,
f(x, 0) = 0 andD(x) ≥ 0. IfD(x) = 0, we have the hyperbolic conservation laws. ForD = 0,
Kružkov proved in [8] that if ∂xf(x, ρ) is locally Lipschitz in ρ, the bounded weak solution
satisfying an entropy condition ([8, Definition 1]) is unique. The existence result of such
solutions in [8] requires that the derivatives of f(x, ρ) satisfy some boundedness conditions
uniform in x so that the vanishing viscosity method works. In particular, if f(x, ρ) = f1(ρ)
with f1 being locally Lipschitz, the existence result holds. With suitable assumptions on the
flux f(x, ρ), like f(x, ρ) = f1(ρ), or some confinement conditions,

∫
R ρ dx is a constant (see,

for example, [9, Proposition 2.3.6]). For general fluxes that can depend on x, even if the
equation is well-posed, the total mass can decay because some mass can escape to infinity,
like ρt + ∂x((1 + x2)ρ) = 0. For upwind discretization, we decompose the flux as

f = f+ − f−, ∂ρf±(x, ρ) ≥ 0, f±(x, 0) = 0, i = 1, 2. (1.3)

Clearly, we can set

f±(x, ρ) =

∫ ρ

0

(∂ρf(x, v))± dv, (1.4)

where we have used z+ = z ∨ 0 and z− = −z ∧ 0 for z ∈ R. If f ∈ C1, f± is also C1.39

We discretize the space with step size h > 0 and set xj = jh. Let ρj(t) be the numerical
solution at site xj , with ρj(0) being some approximation for 1

h

∫ xj+1/2

xj−1/2
ρ(x, 0) dx. Then, the

upwind scheme for (1.2) can be constructed based on the flux splitting [3, 10]

d

dt
ρj = −

(
f+(xj , ρj)− f+(xj−1, ρj−1)

h
− f−(xj+1, ρj+1)− f−(xj , ρj)

h

)
+

1

h2

(
Dj+1/2ρj+1 − (Dj+1/2 +Dj−1/2)ρj +Dj−1/2ρj−1

)
, (1.5)

where Dj+1/2 = D(xj + h
2 ). We denote f±,j := f±(xj , ρj). The upwind scheme (1.5) can be

rearranged to the conservative scheme

d

dt
ρj +

1

h
[Jj+1/2 − Jj−1/2] = 0 (1.6)

where

Jj+1/2 = hαjρj − hβj+1ρj+1, (1.7)

with

αj =
f+,j/ρj

h
+

1

h2
Dj+1/2, βj =

f−,j/ρj
h

+
1

h2
Dj−1/2. (1.8)

Hence, it can be further written as the discrete form

d

dt
ρj = αj−1ρj−1 + βj+1ρj+1 − (αj + βj)ρj . (1.9)

According to (1.4), we have for any j ∈ Z, f±,j/ρj ≥ 0 and is bounded for bounded ρj . If40

ρj = 0, the quotient is understood as the partial derivative of f± on ρ at (xj , 0). Hence,41
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the upwind scheme ensures that αj , βj are nonnegative. We can then interpret the upwind42

scheme as the master equation of some transition phenomena. In particular, αj can be43

understood as the rate of moving the mass from site j to site j + 1 while βj the the rate of44

moving mass from j to j−1. Then (1.9) describes the evolution of mass. Due to this physical45

understanding, if the upwind scheme (1.6)-(1.7) is well-posed, we expect that (1.9) is non-46

negativity preserving, and is `1 non-expansive (i.e. ‖ρ1(t)− ρ2(t)‖`1 ≤ ‖ρ1(0)− ρ2(0)‖`1).47

We remark that the time continuous upwind scheme (1.5) is total variation diminishing
(TVD) for bounded `1 solutions that decay fast enough (of course, whether the true solutions
of (1.5) decay fast enough depends on concrete conditions on f(x, ρ) and D(x)). In other
words, if ρ ∈ L∞(0, T ; `1 ∩ `∞) is a solution that decays fast enough,

∑
j |ρj+1 − ρj | is non-

increasing. Here, L∞(0, T ;X) means the ‖ · ‖X norm is essentially bounded on [0, T ] while
`p refers to the usual Banach spaces in numerical analysis (note that there is h involved)

`p :=

{ρ : Z→ R
∣∣∣‖ρ‖`p := (

∑
j∈Z h|ρj |p)1/p <∞}, p ∈ [1,∞),

{ρ : Z→ R
∣∣∣‖ρ‖`∞ := supj∈Z |ρj | <∞}, p =∞.

(1.10)

The reason that the scheme is TVD is that the numbers48

a+
j :=

f+(xj , ρj)− f+(xj−1, ρj−1)

ρj − ρj−1
, a−j :=

f−(xj+1, ρj+1)− f−(xj , ρj)

ρj+1 − ρj

are bounded for given j (since we have assumed ρ is bounded) and non-negative (see [11, 12]).49

One can also use similar technique as in the proof of Proposition 4.1 to conclude the TVD50

property. The significance of TVD property is that it ensures the boundedness of variation51

and L1 norms, which imply compactness in L1([0, T ]×K) for any compact domain K. Then52

one can obtain the convergence of the numerical scheme by compactness in L1
loc(R). This53

is particularly important for nonlinear hyperbolic conservation laws because TVD schemes54

satifying entropy inequality can recover the unique entropy weak solution [3, 11, 12]. The55

monotone schemes, including upwind schemes, are TVD schemes with no surprise.56

In the case of linear parabolic conservation laws with non-degenerate diffusivity (advec-
tion diffusion equations), the so-called B-schemes (including the famous Scharfetter-Gummel
scheme (SG) scheme [13], widely used for silicon diode models) are often adopted. In par-
ticular, let B : R → R+ satisfy: (i) B is Lipschitz continuous; (ii) B(0) = 1, B(w) > 0 for
all s ∈ R; (iii) B(w)−B(−w) = −w, ∀w ∈ R. The flux for

∂tρ+ ∂x(s(x)ρ) = ∂x(D(x)∂xρ). (1.11)

is then given by

Jj+1/2 =
Dj+1/2

h

[
B

(
−sj+1/2h

Dj+1/2

)
ρj −B

(
sj+1/2h

Dj+1/2

)
ρj+1

]
. (1.12)

With this flux expression, one can also write out the master equation as in (1.9) (see Section57

3 for more details). Again, if the discrete equation is well-posed, one can similarly expect58

that the B schemes are nonnegativity-preserving and `1 nonexpansive.59

For summary, these discretizations in space give non-negativity preserving and `1 non-60

expansive schemes (at least in the formal way since the well-posedness needs further in-61

vestigation). These properties make them useful in numerical analysis. For example, the62

`1 non-expansion will imply the uniqueness of solutions. If the scheme is also TVD as the63

upwind schemes for hyperbolic conservation laws, the existence of weak solutions to the64

PDEs can be established on R× [0, T ] by taking a convergent subsequence of the numerical65

solutions. (As we will see in sections 3 and 4, these properties hold and the mass is conserved66

for the problems we consider.)67

The convergence on R × [0, T ], however, is not enough if we care about the long time68

asymptotic behaviors. Our observation is that when the equation is linear, the master69

equation (1.9) can be regarded as the forward equation of a jump process (time continuous70

Markov chain) [14]. In this case, we can normalize ρ to the probability measure of the chain71
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on Z. Since jump processes are well-studied [14, 15] in the community of probability, we72

can then use tools from probability to study the large time behaviors so that it is possible73

to show that these schemes can capture the correct physics.74

In fact, analyzing the discrete schemes in the viewpoint of time continuous Markov chains75

and probability has been widely adopted in literature [16, 17, 18, 19, 20, 21]. In [16, 17, 20],76

the upwind discretization was considered for linear transport equations in Rd. Using the77

fluctuations of the Markov chains, the 1/2 order accuracy of upwind scheme for nonsmooth78

initial data was recovered in a nice probabilistic way. The authors of [18, 19] focused on the79

finite-dimensional Markov chains and discretization of Fokker-Planck equations in bounded80

domains. Using the viewpoints of gradient flows, they were able to establish certain discrete81

log-Sobolev inequalities (the relation between relative entropy and Onsager matrix) and show82

the convergence of these schemes. In [21], the discretization of the special Fokker-Planck83

equation ∂tF + v∂xF − ∂v(∂v + v)F = 0 was considered and the exponential convergence84

was established. This diffusion is degenerate in x direction so some discrete hypercoercivity85

was used. For other related references, one can also refer, for example, to [22, 23, 24, 25].86

Donsker invariance principle [22, 23] claims that a certain rescaled random walk converges87

to the standard Brownian motion on time interval [0, 1] in distribution. In [24, 25], Markov88

chains have been used to approximate diffusion processes and the weak convergence of the89

scheme on fixed time interval has been proved.90

In this work, we investigate the large time behaviors of the typical numerical schemes91

of conservation laws mentioned above using jump processes. We are able to establish the92

discrete Poincaré inequality under some assumptions inspired by theories in [14, 15], using93

the discrete Hardy’s inequality. Then, we prove the exponential convergence to equilibrium94

states and the uniform O(h) error. In particular, with Assumption 2.1, i.e. b(x) ·x ≤ −r|x|295

for |x| large enough and σ2 to be uniformly bounded below and above, we show the following.96

Theorem (Informal version of Theorem 5.2 and Theorem 3.2). For the upwind schemes97

and a class of B schemes, the numerical solutions ρh(t) converge exponentially fast to some98

stationary solution with rate κ1 independent of h (for sufficiently small h)99 ∥∥∥∥ρh(t)− 1

h
‖ρh(0)‖`1πh

∥∥∥∥
`1
≤ C exp(−κ1t),

and ρh(t) approximates the solution of the Fokker-Planck equation (1.1) with uniform O(h)100

error, hence also approximating the equilibrium solution.101

For dynamics on torus, we are also able to establish the results as follows:102

Theorem (Informal version of Theorem 6.1 and Theorem 6.2). For the upwind schemes103

and the B-schemes, one has similar results for the numerical solutions on the torus even104

though the detailed balance does not hold.105

These then verify that the mentioned schemes can capture the correct physics even on106

unbounded domains. We remark that the existing results regarding exponential convergence107

for discrete schemes of conservation laws are often on finite domains (see [18, 19, 26, 27]).108

In fact, the large time behavior of B schemes for advection-diffusion equations on bounded109

domains has been studied recently in [27] already. Compared with [16, 17, 20], we focus110

on the large time behaviors of schemes, and compared with [18, 19, 20, 27], we focus on111

equations in unbounded domains. We hope our work will bring more understanding to the112

numerical schemes of parabolic conservation laws and inspire understanding for schemes of113

hyperbolic conservation laws.114

The rest of the paper is organized as follows. In section 2, we give a brief introduction to115

SDEs and the associated Fokker-Planck equation. We also have a review of results regarding116

the stationary distribution and ergodicity. In section 3, we move on to the discrete schemes117

for the Fokker-Planck equations on R and show the uniform error estimates. In section118

4, we prove some elementary properties of the jump process for the upwind schemes and119

B-schemes. In particular, we show some basic properties of the discrete backward equation120

of the Markov jump process and show that the numerical solution converges to a stationary121
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solution in the case of weak confinement. In section 5, we focus on the strong confinement and122

study the asymptotic behaviors of the numerical schemes. We show the uniform geometric123

convergence to the steady states using a discrete Poincaré inequality on the whole space.124

We then prove the O(h) accuracy for the stationary solution, proving the unproved claim125

(Theorem 3.1) in section 3. Further in section 6, we establish the results on torus for which126

detailed balance may not hold. Last in section 7, we propose a Monte Carlo method to127

numerically solve the numerical schemes in a probabilistic way.128

2 Preliminaries: basic facts of SDEs129

We have mentioned that the linear conservation law with positive diffusion is the Fokker-130

Planck equation for an SDE. This is the focus of this paper, so we will have a brief review131

of SDEs for general dimension d in this section.132

2.1 Basic setup of SDEs133

The time homogeneous SDEs driven by Wiener process in Itô sense are given by [7]:

dX = b(X) dt+ σ(X) dW. (2.1)

Here, X = X(t) is the unknown process, the functions b and σ are called the drift and diffu-134

sion coefficients respectively. W is the standard Wiener process defined on some probability135

space (Ω,F ,P). When b and σ are Lipschitz continuous and have linear growth at infinity,136

(2.1) has global strong solutions [7, sect. 5.2] for L2(P) initial data. The conditions imposed137

b(·) in [7, sect. 5.2] is too strong for many applications. In fact, it is also known that locally138

Lipschitz and confinement conditions can also imply the existence and uniqueness of solu-139

tions (For example, in [28, Theorem 2.3.5], it is shown that max(x · b(x), |σ|2) ≤ C1 +C2|x|2140

is enough for the well-posedness, which allows b like −(1 + |x|2)px).141

The most frequently used confinement condition in this work is the following.142

Assumption 2.1. Suppose b and σ are smooth. The function b satisfies

b(x) · x ≤ −r|x|2 (2.2)

when |x| > R for some R. Also, σ satisfies ‖σ‖∞ <∞ and Λ = σσT ≥ S1I > 0.143

Besides this, we sometimes weaken the conditions as follows.144

Assumption 2.2. Suppose b and σ are smooth. The function b satisfies

lim
|x|→∞

−b(x) · x
|x| =∞. (2.3)

Also, σ satisfies ‖σ‖∞ <∞ and Λ = σσT ≥ S1I > 0.145

We will use E to represent the expectation under P. The notation Ex indicates that the
expectation is conditioned on X(0) = x. Let µt be the law of X(t), which is a measure in
Rd. Then we have

Ef(X(t)) = 〈µt, f〉 =

∫
Rd

f dµt. (2.4)

For smooth bounded function f(x), define

u(x, t) = Exf(X(t)). (2.5)

By Itô’s calculus [7], u satisfies

∂tu(x, t) = ExLf(X(t)), (2.6)
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where L is the generator of the process

L := b · ∇+
1

2
Λij∂ij , (2.7)

where we used Einstein summation convention (i.e. Λij∂ij ≡
∑d
i,j=1 Λij∂xixj

) and

Λ = σσT . (2.8)

This is a special case of Dynkin’s formula. The density of the law of X(t) starting x, denoted
by p(t, x, y), is called the Green’s function. When Λ is positive definite, p(t, x, y) is a smooth
function for t > 0. Equation (2.6) implies that p(t, x, y) satisfies the forward Kolmogorov
equation, or Fokker-Planck equation for t > 0:

∂tp = −∇y · (b(y)p) +
1

2
∂yiyj (Λij(y)p) := L∗yp, (2.9)

where the subindex y means that the derivatives are taken on y variable. By the well-
posedness of (2.1), we have under the confinement conditions that∫

Rd

p(t, x, y) dy = 1, ∀x ∈ Rd, t > 0. (2.10)

Clearly, for general starting probability measure µ0, the law of X(t) also satisfies (2.9) in146

the distributional sense:147

d

dt
〈µt, f〉 = 〈µt,Lf〉,

for any smooth bounded f , which is clearly a generalization of (2.6). Moreover, let v :
(x, t) 7→ v(x, t) solve the backward Kolmogorov equation

∂tv = Lv = b · ∇v +
1

2
Λij∂ijv (2.11)

with initial condition v(x, 0) = f(x). Let X(t) be the process satisfying (2.1) with initial
condition X(0) = x. We check that M(s) = v(X(s), t− s) is a martingale and therefore

v(x, t) = EM(0) = EM(t) = Ev(X(t), 0) = Ef(X(t)) = u(x, t). (2.12)

This means that (2.5) solves the backward Kolmogorov equation. Combining with (2.6), we
can infer that the Green’s function satisfies L∗yp(t, x, y) = Lxp(t, x, y), or

−∇y · (b(y)p(t, x, y)) +
1

2
∂yiyj (Λij(y)p(t, x, y)) =

b(x) · ∇xp(t, x, y) +
1

2
Λij(x)∂xixjp(t, x, y). (2.13)

2.2 Stationary solutions and ergodicity148

Under Assumption 2.1, using Itô’s formula and test function f(x) = exp(c|x|2), one can
show that

Ex exp(c|Xt|2) ≤ exp(c|x|2)e−rt + C, (2.14)

for some positive constants c, r, C. This implies that the process has certain recurrent149

properties so that the SDE (2.1) has a unique stationary distribution π [29, sect. 4.4-4.7].150

Moreover, π has a density with respect to Lebesgue measure [29, Lemma 4.16]. Below, we151

may abuse the notation a little bit and use π(·) to mean this density for convenience. The152

Green’s function p(t, x, y) converges to π(y) pointwise as t→∞ for all x ∈ Rd [29, Lemma153

4.17]. Clearly, π(y) has finite moment of any order by (2.14). Since π(y) is a solution to154

the parabolic equation (2.9) with the diffusion coefficient matrix positive definite, π(y) is155

smooth and π(y) > 0.156
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Often people study the ergodicity of SDEs in the Lp spaces. We will use Lp(Rd) to157

represent the Lp spaces associated with the Lebesgue measure while Lp(ν) to mean the Lp158

spaces associated with the measure ν. If ν has a density w, we also write Lp(ν) as Lp(w).159

The most frequently used weight is w = π. Let p(·, t) be the density of µt. We often define160

q(x, t) :=
p(x, t)

π(x)
≥ 0,

and study the convergence of q(·, t) to 1 in Lp(π) spaces.161

Note that Λij is symmetric and

−∇ · (bπ) +
1

2
∂ij(Λijπ) = 0, (2.15)

we have

∂tq =
( 1

π
∇ · (Λπ)− b

)
· ∇q +

1

2
Λij∂ijq. (2.16)

If the detailed balance condition

b =
1

2π
∇ · (Λπ) (2.17)

holds (for example, Λ = 2DI and b = −∇V ), which clearly indicates (2.15), then we have
the useful identity

L∗(fπ) = πLf + fL∗π = πLf. (2.18)

Then (2.16) can be rewritten as

∂tq = b · ∇q +
1

2
Λij∂ijq, (2.19)

which is the backward equation (2.11). In this case, the semigroup etL is symmetric in
L2(π) and etL

∗
is symmetric in L2(1/π) by (2.18). Hence, it is convenient to investigate

u(·, t)→ 〈π, f〉 and q(·, t)→ 1 in L2(π) using (2.11). If the detailed balance is not satisfied,
the modified generator

L̃ =
( 1

π
∇ · (Λπ)− b

)
· ∇+

1

2
Λij∂ij =: b̃ · ∇+

1

2
Λij∂ij (2.20)

corresponds to another SDE

dY = b̃ dt+ σdY, (2.21)

which has the same stationary distribution π, or L̃∗π = 0. Suppose the law of X(0) has a
density p0(y). It follows from (2.21) that

q(x, t) = E
(p0(Y (t))

π(Y (t))
|Y (0) = x

)
. (2.22)

Hence, though the semigroups generated by L and L̃ are not symmetric in L2(π), one can162

still consider the convergence of u(·, t) → 〈π, f〉 and q(·, t) → 1 in L2(π) using Kolmogorov163

backward equations.164

It is well-known that Condition 2.1 implies geometric ergodicity (i.e. convergence to165

a unique invariant measure with exponential rate) regarding the convergence of u(·, t) to166

〈π, f〉 or µt to π using coupling argument for SDEs. In particular, we have the V -uniform167

geometric ergodicity for u(·, t) → 〈π, f〉 ([30, 31]) or exponential convergence of µt → π in168

Wasserstein space ([32, 33]). Besides the coupling argument, one may prove the exponential169

convergence of u(·, t) to 〈π, f〉 in Lp(π) spaces using spectral gap and Perron-Frobenius type170

theorems (see [30, Chap. 20]; [34, 35, 36, 37, 38] for example). The V -uniform ergodicity171
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and ergodicity in Lp(π) do not necessarily imply each other, unless extra conditions are172

imposed [30, Chap. 20].173

The geometric convergence of q(·, t) to 1 (equivalent to the convergence of u(·, t) →174

〈π, f〉 for the modified SDE (2.21)) in Lp(π) spaces can also be obtained directly using the175

Fokker-Planck equation and some functional inequalities (Poincaré inequality, or log Sobolev176

inequality etc) [39]. These functional inequalities will imply spectral gaps of the semigroups.177

Let us explain this briefly. Take a smooth function ϕ and recall (2.16). We find178

d

dt
ϕ(q) = L̃(ϕ(q))− 1

2
ϕ′′(q)Λij∂iq∂jq.

Multiplying π and taking integral (recall L̃∗(π) = 0), we have the energy-dissipation relation

d

dt
F :=

d

dt

∫
R
ϕ(q)π dx = −1

2

∫
R
ϕ′′(q)Λij∂iq∂jq πdx =: −D. (2.23)

If ϕ is the quadratic function and the Poincaré inequality associated with π can be es-179

tablished, the geometric convergence of q(·, t) to 1 in L2(π) follows. This clearly implies180

that the geometric convergence of q(·, t) to 1 in L1(π) and hence the geometric conver-181

gence of p(·, t) to π in L1(Rd) norm (total variation norm). Alternatively, one may take182

ϕ(q) = q log q − q + 1 and then F becomes the relative entropy or Kullback–Leibler (KL)183

divergence. If the log-Sobolev inequality holds, one can then establish the geometric con-184

vergence of the relative entropy and thus in total variation norm by Pinsker’s inequality.185

The advantage of log-Sobolev inequality is that the constant is dimension free. For the case186

b = −∇V and σ =
√

2DI, these results are well-known and one can refer to the review by187

Markowich and Villani [40].188

For d = 1, we have the following straightforward observation, which is needed for the189

error analysis of the discrete schemes:190

Lemma 2.1. Let d = 1. If b and σ satisfy Assumption 2.1, then for any index n > 0, there
exist positive constants Cn > 0, νn > 0 such that∣∣∣ dn

dxn
π(x)

∣∣∣ ≤ Cn exp(−νn|x|2). (2.24)

To see this, we note that the detailed balance condition −bπ + 1
2∂x(σ2π) = 0 holds. We191

can then solve σ2π and therefore π. Using the formula, Lemma 2.1 follows directly. The192

details are omitted. For d > 1, in the case b = −∇V and σ =
√

2DI, the claim is also193

trivial since π ∝ exp(−V/D). For general dimension and general b, σ, we believe Lemma 2.1194

is still true due to (2.14) (one may replace the test function exp(c|x|2) with the derivatives195

x exp(c|x|2) to get the estimates for derivative of π). For interested readers, one may refer196

to [41] for the pointwise estimates at infinity and to, for example, [42, 43, 41] for the theories197

of elliptic equations in unbounded domains.198

3 Several schemes for Fokker-Planck equations on R199

In this section, we focus on the discretization of one dimensional Fokker-Planck equations,
and view the discrete equations as jump processes. We can rewrite the 1D Fokker-Planck
equation into the conservative form as

∂tρ = −∂x((b− σσ′)ρ) +
1

2
∂x(σ2∂xρ). (3.1)

We assume

ρ(x, 0) = ρ0(x) ≥ 0. (3.2)

Clearly, f(x, ρ) = (b−σσ′)ρ =: s(x)ρ. In this case, we have the corresponding decomposition

b− σσ′ =: s+ − s−, s± ≥ 0. (3.3)
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Recall that we use spatial step h to discretize the space and xj = jh. Moreover, we use
Rg : C(R)→ RZ to mean the restriction onto the grid:

Rgϕ = (ϕ(xj)). (3.4)

Now, consider the schemes for conservation laws discussed in the introduction. Since200

the Fokker-Planck equation is a parabolic conservation law, we consider both the upwind201

scheme (1.5) for general conservation laws and the B-schemes for parabolic conservation202

laws.203

Direct discretization of the conservation form (3.1) using the upwind idea (1.5) yields

d

dt
ρj(t) = −

(
s+
j ρj − s+

j−1ρj−1

h
−
s−j+1ρj+1 − s−j ρj

h

)

+
1

2h2

(
σ2
j+1/2ρj+1 − (σ2

j+1/2 + σ2
j−1/2)ρj + σ2

j−1/2ρj−1

)
. (3.5)

The rates (1.8) for the master equation (1.9) are independent of ρ:

αj =
s+
j

h
+

1

2h2
σ2
j+1/2, βj =

s−j
h

+
1

2h2
σ2
j−1/2. (3.6)

Similarly, consider the B schemes with the flux

Jj+1/2 =
Dj+1/2

h

[
B

(
−sj+1/2h

Dj+1/2

)
ρj −B

(
sj+1/2h

Dj+1/2

)
ρj+1

]
, Dj+1/2 =

1

2
σ2
j+1/2. (3.7)

We have

d

dt
ρj =

1

h2
Dj+1/2B

(
sj+1/2h

Dj+1/2

)
ρj+1 +

1

h2
Dj−1/2B

(
−sj−1/2h

Dj−1/2

)
ρj−1

− 1

h2

[
Dj+1/2B

(
−sj+1/2h

Dj+1/2

)
+Dj−1/2B

(
sj−1/2h

Dj−1/2

)]
ρj . (3.8)

Consequently,

αj =
Dj+1/2

h2
B

(
−sj+1/2h

Dj+1/2

)
> 0, βj =

Dj−1/2

h2
B

(
sj−1/2h

Dj−1/2

)
> 0. (3.9)

If B(w) = 1 + w− = 1 + (−w)+, the flux is given by204

Jj+1/2 =
Dj+1/2

h
(ρj − ρj+1) + s+

j+1/2ρj − s−j+1/2ρj+1.

This is also an upwind scheme. The difference from (3.5) is that we used a shifted s(·)205

function. Clearly, this upwind scheme is also consistent. In the case B(w) = w
ew−1 , the206

scheme is SG scheme. The flux is then given by207

Jj+1/2 = sj+1/2
ρj − e−sj+1/2h/Dj+1/2ρj+1

1− e−sj+1/2h/Dj+1/2
.

As Dj+1/2 → 0, the SG scheme will degenerate to the upwind scheme without diffusion.208

In this work, for techanical reasons regarding the discrete Poincaré inequality, we only209

consider B schemes that satisfy the following.210

Assumption 3.1. The function B satisfies

0 < inf
w≥0

B(w) ≤ sup
w≥0

B(w) < +∞. (3.10)
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The function B(w) = 1 + w− = 1 + (−w)+ satisfies Assumption 3.1, while the SG211

scheme does not. However, we emphasize that we can modify the B function for large w212

so that the modified SG scheme satisfies the assumption. The modification near +∞ does213

not alter the behaviors of the schemes too much as the local behavior of B near 0 matters.214

If limw→+∞B(w) has a limit, as Dj+1/2 → 0, the modified SG scheme still tends to the215

upwind scheme without diffusion. The point of Assumption 3.1 is that as sj+1/2 → +∞,216

the αj rate does not vanish so that the diffusive behavior at +∞ still exists.217

The implication of Assumption 3.1 due to B(w)−B(−w) = −w is that

lim
s→+∞

w

B(−w)
= 1, lim

s→+∞

B(w)

B(−w)
= 0. (3.11)

Below, we discuss these schemes uniformly in the viewpoint of jump processes. Denote
the sequence

ρh(t) := (ρj(t))j∈Z. (3.12)

We assume ρ0(·) ∈ L1(R) and ρh(0) is constructed such that

‖ρh(0)−Rgρ0‖`1 ≤ Ch, |‖ρh(0)‖`1 − ‖ρ0‖L1(R)| ≤ Ch. (3.13)

Recall that `1 and L1(R) spaces are introduced in equation (1.10) and section 2.2 respectively.218

Let p0(x) = ρ0/‖ρ0‖L1(R). With Assumption 2.2, the SDE (2.1) is not explosive by [28,219

Theorem 2.3.5]. Hence, p(x, t), the density of the law of X(t), exists and is unique with220 ∫
R p(x, t) dx = 1. It is the solution of (3.1) with initial condition p(x, 0) = p0(x), and thus221

ρ(x, t) = p(x, t)‖ρ0‖L1(R).222

Since the discrete equation is also linear, we can normalize

pj(t) := h
ρj(t)

‖ρh(0)‖`1
≥ 0 (3.14)

so that pj(0) ≥ 0 and
∑
j pj(0) = 1. For convenience, we define the sequence

ph(t) := (pj(t))j∈Z. (3.15)

Remark 3.1. Note that ρh(t) is the numerical approximation of ρ(·, t), but ph(t) is not223

the numerical approximation of the continuous probability density p(·, t) directly. Instead,224

h−1ph(t) approximates the probability density p(·, t) and the reason we use this convention225

shall be clear soon.226

The upwind scheme (3.5) and the B-schemes (3.8) ensure that αj , βj are nonnegative.
Hence, the equation for ph(t)

d

dt
pj = αj−1pj−1 + βj+1pj+1 − (αj + βj)pj =: (L∗hph)j . (3.16)

can be regarded as the the forward equation (discrete Fokker-Planck equation) of a jump227

process or time continuous Markov chain Z(t) [14]. αj is the rate of jumping from site j to228

site j + 1 while βj the the rate of jumping from j to j − 1.229

Here, L∗h : RZ → RZ is defined for any sequence, but the equation may not have solutions230

for arbitrarily given initial data. Later in Section 4, we will see that under Assumption 2.2231

the chain is nonexplosive and equation (3.16) is well-posed for `1 initial data. Moreover,232

pj(0) ≥ 0 and
∑
j pj(0) = 1 imply that and that pj(t) ≥ 0,

∑
j pj(t) = 1. Then pj(t) is the233

probability of appearing at site j and this is why we use the normalization in (3.14).234

For the convenience, we define the semigroup as

etL
∗
hph(0) := ph(t). (3.17)

With the well-posedness facts and the discussion in the introduction (section 1), we can235

deduce easily the following, and we omit the proofs.236

10



Lemma 3.1. The semigroup etL
∗
h for upwind scheme (3.5) or (3.16) is `1 non-expansive and237

nonnegativity preserving. Moreover, the scheme (3.5) is TVD for ρh0 ∈ `1 (i.e.
∑
j |ρj(t)−238

ρj−1(t)| is non-increasing.)239

Remark 3.2. The jump process interpretation for general d is straightforward like in [16].240

The focus of [16] is to establish the convergence accuracy using the viewpoint of jump241

processes, so the analysis can be generalized to multi-dimensions. For our purpose, theoretic242

study of the large time behavior is nontrivial for multi-dimensional space, especially for non-243

uniform meshes in unbounded domains. One issue is that we may lose the detailed balance244

for discrete schemes and the uniform functional inequalities for these cases are hard to prove,245

lacking also compactness. We expect that the functional inequalities for bounded domains246

are doable, possibly using the ideas in [18, 19].247

3.1 Stationary solutions248

Consider a stationary solution πh to (3.16) or (1.6). We then find249

Jhj+1/2 = J = const.

We take j →∞ and find J = 0. Hence, we have

αjπ
h
j = βj+1π

h
j+1. (3.18)

This is the detailed balance condition.250

Lemma 3.2. Suppose the weak confinement 2.2 holds. Then, there is a unique stationary251

distribution πh for the jump process Z(t) corresponding to (3.16).252

Proof. Using (3.18), we find253

πhj = πh0

j∏
k=1

αk−1

βk

With the condition, b(xj) < 0 and |b(xj)| → ∞ for j → ∞. For the usual upwind scheme254

with rates (3.6), and for the B schemes due to (3.11), we have limj→∞
αj−1

βj
→ 0. Hence, πhj255

decays with at least geometric rate. This means
∑
j≥0 π

h
j < ∞. Similarly,

∑
j<0 π

h
j < ∞256

also holds. Hence,
∑
j π

h
j <∞ and we can normalize it to a probability distribution so that257

πh0 is determined uniquely.258

Similar with ph, πh does not approximate the density π(·) of stationary distribution of259

(2.1). Instead, h−1πh approximates π(·). In fact, in section 5.2, we will prove the following,260

which says that h−1πh approximates π(·) with error h:261

Theorem 3.1. Suppose Assumption 2.1 holds with S1 ≤ σ2 ≤ S2. Let πh be the stationary
distribution of the jump process Z(t) for (3.16) corresponding to the upwind scheme (3.5)
or the B-schemes (3.8) satisfying Assumption 3.1, and let π(·) be the stationary solution of
(1.1) with total mass 1 (or density of the stationary distribution of (2.1)). Then there exist
h0 > 0 and C > 0 such that (recall (3.4) for Rg)∥∥∥Rgπ − 1

h
πh
∥∥∥
`1
≤ Ch, ∀h ≤ h0. (3.19)

On bounded domain, usual techniques for the finite difference method of elliptic equations262

can be used to prove such type of results. The difference is that now the domain is infinite.263

The proof relies on the spectral gap of the operator. See Section 5.2 for more details.264

Now, as an example, let us apply the upwind scheme (3.5) to the Ornstein-Uhlenbeck265

(OU) process with b(x) = −x, σ = 1. Then,266 {
αj = 1

2h2 , βj = j + 1
2h2 , j ≥ 0,

αj = |j|+ 1
2h2 , βj = 1

2h2 , j < 0.
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Using the fact
πh
j+1

πh
j

=
αj

βj+1
, we find that πhj is even. Hence, we only need to focus on j ≥ 0.

Clearly, for j ≥ 1,

πhj = Ah

j∏
k=1

1

1 + 2kh2
=: Ahvj , (3.20)

where Ah = πh0 . Let w :=
√

2πRgπ (whether “π” means the circular ratio or stationary
distribution should be clear), or

π(xj) =
1√
2π

exp(−(jh)2) =
1√
2π
wj (3.21)

As j →∞, the leading behavior of vj is like267

vj = exp
(
−

j∑
k=1

ln(1 + 2kh2)
)
∼ exp(−Chj ln j)

which decays slower than wj .268

Clearly, vj is decreasing and269

∑
k≥j+1

hvk ≤ vjh
∞∑
m=1

1

(1 + 2jh2)m
=

vj
2jh

.

Hence, we find ∣∣∣∑
j∈Z

hvj −
∑
j∈Z

hwj

∣∣∣ ≤ ∣∣∣∣∣ ∑
|j|≤M

h|vj − wj |
∣∣∣∣∣+

2vM
2Mh

+
Cπ(xM )

Mh
. (3.22)

Moreover, since −x ≤ − ln(1 + x) ≤ −x+ 1
2x

2, using
∑j
k=1 k

2 ≤ j3, we find270

wj exp(−jh2) ≤ vj ≤ wj exp(−jh2 + 2j3h4).

It follows that |vj −wj | ≤ wjC max(jh2, 2j3h4) for j3h4 ≤ 1 and jh2 ≤ 1. Since there exists271

C independent of h such that272 ∑
j∈Z

hwj max(jh, 2j3h3) < C,

we find (3.22) can be controlled by273 ∣∣∣∑
j∈Z

hvj −
∑
j∈Z

hwj

∣∣∣ ≤ Ch+
( 2vM

2Mh
+
Cπ(xM )

Mh

)
|M=h−4/3 ≤ C1h.

Hence, |h−1Ah − 1√
2π
| ≤ C2h. Consequently, h−1πh − Rgπ is controlled by h both in `∞274

and in `1.275

Remark 3.3. This OU process considered here is the homogeneous Fokker-Planck equation276

in [21]. The same discrete equilibrium formula is obtained there. Moreover, they also prove277

a discrete Poincaré inequality regarding this discrete equilibrium with the Poincaré constant278

to be 1. The proof in [21] needes the concrete property of the equilibrium state. The discrete279

Poincaré inequality we establish in Section 5 is more general and the proof is different.280

3.2 Uniform error estimates281

Note b̃(x) = b(x) (since for d = 1 the detailed balance condition is satisfied always). We282

now use the equation for q to investigate the uniform approximation of upwind scheme to283

the Fokker-Planck equation.284

In [44, sect. 3.1], the following exponential decay has been proved:285
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Proposition 3.1. Suppose that Assumption 2.1 holds and that the derivatives of b and σ
are bounded. Then for any index n > 0, there exist a polynomial pn and γn > 0 such that∣∣∣ ∂n

∂xn
(q(x, t)− 1)

∣∣∣ ≤ pn(x) exp(−γnt). (3.23)

Proposition 3.1, Lemma 2.1 and Theorem 3.1 imply that286

Theorem 3.2. Suppose that Assumption 2.1 holds and that the derivatives of b and σ are
bounded. Then, for any n ≥ 0, there exist Cn > 0 and γ̃n > 0 such that∣∣∣ ∂n

∂xn
(p(x, t)− π(x))

∣∣∣ ≤ Cn exp(−νn|x|2) exp(−γ̃nt). (3.24)

Suppose πh is the stationary solution for (3.16) with
∑
j π

h
j = 1 and recall Rg (3.4). Then

sup
t≥0

∑
j∈Z
|p(xj , t)h− pj(t)| ≤ Ch+ 2

∥∥∥∥Rgπ − 1

h
πh
∥∥∥∥
`1
≤ Ch. (3.25)

Hence, the upwind scheme (3.5) and the B-schemes (3.8) satisfying Assumption 3.1 can
solve the Fokker-Planck equation (1.1) with O(h) error uniformly in time:

sup
t≥0
‖Rgρ(·, t)− ρh(t)‖`1 ≤ Ch. (3.26)

Proof. Note that p− π = π(q − 1). Lemma 2.1 and Proposition 3.1 imply (3.24).287

We insert ψ := p−π into the discrete Fokker-Planck equation (3.16) and by the standard288

Taylor expansion in numerical analysis scheme, we have289

d

dt
ψ(xj , t) = L∗hψ(xj , t) + g(xj , t)h,

where ‖g(xj , t)‖`1 ≤ C exp(−γt) holds uniformly for small h by (3.24). Then, we have

p(xj , t) − π(xj) = etL
∗
h(p(xj , 0) − π(xj)) + h

∫ t
0
e(t−s)L∗hg ds. Since the pj(t) = (etL

∗
hph(0))j

and πh = etL
∗
hπh, we have

p(xj , t)− π(xj)−
1

h
(pj(t)− πhj ) =

etL
∗
h

(
p(xj , 0)− π(xj)−

1

h
(pj(0)− πhj )

)
+ h

∫ t

0

e(t−s)L∗hg(xj , s) ds.

Since etL
∗
h is `1 non-expansive by Lemma 3.1, we have290 ∥∥∥Rgp(·, t)− 1

h
ph(t)

∥∥∥
`1
≤ 2
∥∥∥Rgπ − 1

h
πh
∥∥∥
`1

+
∥∥∥Rgp(·, 0)− 1

h
ph(0)

∥∥∥
`1

+ hC

∫ t

0

exp(−γz)dz.

The first claim (3.25) follows by noticing (3.13) and Theorem 3.1. The claim (3.26) follows291

from the relation between ρh and ph given in (3.15).292

4 Properties of the jump process293

We will investigate the forward and backward equations associated with the jump process
Z(t) corresponding to (3.16). It is convenient to introduce the Green’s function

pt(i, j) := P(Z(t) = j|Z(0) = i) ≥ 0. (4.1)

Following [14, Chapter 2], we introduce the Q matrix as

Q(i, j) =
d

dt
pt(i, j)|t=0. (4.2)
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4.1 Forward and backward equations294

The Green’s function pt(i, j) is a solution to (3.16) with the initial distribution p0(i, j) = δij
(possibly not unique without Assumption 2.2). The equation for the Green’s function is

d

dt
pt(i, j) = αj−1pt(i, j − 1) + βj+1pt(i, j + 1)− (αj + βj)pt(i, j). (4.3)

It follows that

Q(j, j) = −(αj + βj), Q(j, j − 1) = βj , Q(j, j + 1) = αj . (4.4)

Recall the definition of irreducibility295

Definition 4.1. [14, Definition 2.47] A Markov chain is irreducible if pt(i, j) > 0 for all296

i, j and t > 0297

The following observation follows from positivity of αj and βj [14], for which we omit298

the proofs.299

Lemma 4.1. The jumping process Z(t) corresponding to (3.16) is irreducible.300

Then, by [14, Corollary 2.58] and Lemma 3.2, if Assumption 2.2 holds, the chain is301

recurrent.302

The backward equation corresponding to the forward equation (3.16) reads

d

dt
ui(t) =

∑
j∈Z

Q(i, j)uj(t) = βiui−1 − (αi + βi)ui + αiui+1 =: (Lhu)i. (4.5)

Clearly, Lh : RZ → RZ is the dual operator of L∗h. In fact, letting

〈u, v〉h :=
∑
j∈Z

hujvj , (4.6)

we have303

〈Lhg, f〉h = 〈g,L∗hf〉h,
for any test sequence f that has finite nonzero entries. (Note that sequences with finite
nonzero entries are dense in `p with p <∞, so this is general enough.) Let u(t) = (uj(t))j∈Z
be the solution of (4.5). The semigroup defined by

etLhu(0) := u(t) (4.7)

is the dual of etL
∗
h .304

It is well-known that besides the forward equation (4.3), the Green’s function also satisfies
the backward equation (see [14, Theorem 2.14]):

d

dt
pt(i, j) =

∑
k∈Z

Q(i, k)pt(k, j) = βipt(i− 1, j)− (αi + βi)pt(i, j) + αipt(i+ 1, j). (4.8)

Formally, P = etQ and we have QetQ = etQQ. This fact is an analogy to the continuous
case (2.13). Since the chain is irreducible and recurrent, by [14, Corollary 2.34], the total
probability is conserved

∑
j pt(i, j) = 1 for all i (i.e. no probability leaks to infinity). By [14,

Theorem 2.26] and [14, Exercise 2.38], the backward equation (4.8) has a unique bounded
solution in `∞ given any initial data u(0) ∈ `∞. Correspondingly, for general initial data
ph(0) ∈ `1, the solution is a linear combination of pt(i, j). Hence, the forward equation is
also well-posed, nonnegativity preserving and it preserves sum∑

j∈Z
pj(t) =

∑
j∈Z

pj(0). (4.9)
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Hence etLh maps `∞ to `∞ and the semigroup etL
∗
h given in (3.17) maps `1 to `1.305

Note that though the Green’s function pt(i, j) satisfies the backward equation, the prob-
ability distribution pi(t) for general initial data does not. Instead, the lemma below shows
that

∑
i pt(j, i)ui(0) satisfies the backward equation. Before we state the results, we in-

troduce the weighted `p spaces here, which are analogies of the weighted Lp(w) spaces in
section 2.2. Given w with wj ≥ 0, we define `p(w) as

`p(w) :=

q : ‖q‖`p(w) := (
∑
j∈Z

wj |qj |p)1/p <∞

 . (4.10)

Proposition 4.1. Let S(t) := etLh . Then,306

(1) For any u(0) ∈ `∞. It holds that

(S(t)u(0))j =
∑
i∈Z

pt(j, i)ui(0). (4.11)

(2) The semigroup S(t) is TVD, i.e., if u(0) ∈ `1, then
∑
j |uj(t)−uj−1(t)| is nonincreasing.307

(3) S(t) is symmetric in `2(πh) for any t ≥ 0.308

(4) S(t) is non-expansive in `p(πh) for any p ∈ [1,∞].309

Proof. (1). Let vj(t) =
∑
i pt(j, i)ui(0). Using Fubini theorem, we find that v ∈ `∞.

Moreover, since pt(j, ·) ∈ `1 for all j and t ≥ 0, we find by (4.8),

d

dt
vj(t) =

∑
i∈Z

(
βjpt(j − 1, i) + αjpt(j + 1, i)− (αj + βj)pt(j, i)

)
ui(0)

= βjvj−1(t) + αjvj+1(t)− (αj + βj)vj(t).

Hence, v = u by the uniqueness of the bounded solution.310

(2). The backward equation (4.5) can be rearranged into d
dtuj = αj(uj+1−uj)−βj(uj−311

uj−1). It follows that312

d

dt
(uj+1 − uj) = αj+1(uj+2 − uj+1)− (αj + βj+1)(uj+1 − uj) + βj(uj − uj−1).

This is a forward equation for the sequence {uj+1 − uj} and the rates are given so that313

the equation is well-posed. Note that {uj(0) − uj−1(0)} ∈ `1 since u(0) ∈ `1. Since well-314

posed forward equations are `1 non-expansions, S(t) is TVD. (Intuitively, we can multiply315

σj := sgn(uj+1−uj) on both sides of the equations and use σj(uj+2−uj+1) ≤ |uj+2−uj+1|,316

σj(uj − uj−1) ≤ |uj − uj−1| to obtain317

d

dt
|uj+1 − uj | ≤ αj+1|uj+2 − uj+1| − (αj + βj+1)|uj+1 − uj |+ βj |uj − uj−1|.

(3). We denote S := S(1) and p(i, j) := p1(i, j). Clearly, we only have to show that S is318

symmetric by the semigroup property. Using the detailed balance, we have:319 ∑
j

πhj fj(Sg)j =
∑
j

∑
i

fjgiπ
h
j p(j, i) =

∑
ij

πhi p(i, j)fjgi =
∑
i

πhi gi(Sf)i.

(4). Let (uij(t)), i = 1, 2 be two solutions and define ũj = u1
j − u2

j . Then (ũj) is also a
solution and for any convex function ϕ it holds that

d

dt
ϕ(ũj) = Lhϕ(ũ)j + αj(ϕ(ũj) + ϕ′(ũj)(ũj+1 − ũj)− ϕ(ũj+1))

+ βj(ϕ(ũj) + ϕ′(ũj)(ũj−1 − ũj)− ϕ(ũj−1)) ≤ Lhϕ(ũ)j . (4.12)
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If ϕ is not differentiable at ũj , ϕ
′(ũj) is understood as one element in the subdifferential.320

Multiplying πhj and applying the detailed balance (3.18), we have d
dtπ

h
j ϕ(ũj) ≤ L∗h(πϕ(ũ))j .321

Taking sum on j yields that d
dt

∑
j π

h
j ϕ(ũj) ≤ 0. Choosing ϕ(z) = |z|p which is convex, we322

have the claims for p ∈ [1,∞).323

For p =∞, we multiply σj := sgn(ũj) on both sides of the equation and obtain324

d

dt
|ũj | ≤ Lh|ũ|j .

This implies that ‖ũ‖`∞ is non-increasing.325

An important observation is that the discrete scheme always satisfies the detailed balance.
If we define

qh(t) := (qj(t))j∈Z, qj(t) =
pj(t)

πhj
, (4.13)

then qh satisfies the backward equation using the detailed balance condition (3.18):

d

dt
qj = βjqj−1 + αjqj+1 − (αj + βj)qj . (4.14)

With this interpretation, the relation (4.11) can be checked directly:326

qj(t) =
1

πhj

∑
i∈Z

pi(0)pt(i, j) =
∑
i∈Z

pt(i, j)
pi(0)

πhj
.

Using the detailed balance (3.18), we have πhi pt(i, j) = pt(j, i)π
h
j . Hence,

qj(t) =
∑
i∈Z

pt(j, i)qi(0). (4.15)

4.2 Convergence for the weak confinement327

The theory for irreducible time continuous Markov chain with countable state space is well-328

developed. See [14, Chapter 2]. We now use these theories to establish some basic properties329

of the jump processes and the numerical schemes we consider. We have the following:330

Proposition 4.2. Suppose Assumption 2.2 holds. The jump process Z(t) for (3.16) satisfies331

pt(i, j)→ πhj , t→∞, for all i, j.

Moreover, if we assume pj(0) =
hρj(0)
‖ρh(0)‖`1

≤ Cπhj for all j ∈ Z, we then have∑
j∈Z
|pj(t)− πhj | → 0, t→∞. (4.16)

Consequently, for the upwind scheme (3.5) and the B-schemes (3.8) satisfying Assumption
3.1, ∥∥∥∥ρh(t)− 1

h
πh‖ρh(0)‖

∥∥∥∥
`1
→ 0. (4.17)

Proof. By [14, Theorem 2.88,Theorem 2.66], we have for all i, j that pt(i, j)→ πhj as t→∞.332

Now, in general, we have333

pj(t) =
∑
i∈Z

pi(0)pt(i, j).

Since |pt(i, j)| ≤ 1, the dominant convergence theorem implies that334

pj(t)→ πhj , t→∞, ∀j ∈ Z.

16



Equation (4.14) has the maximal principle following the last claim in Proposition 4.1:335

|qj(t)− θ| ≤ max
j∈Z
|qj(0)− θ|, ∀θ ∈ R.

In particular, we take θ = 1. By the assumption, we have |qj(0)| ≤ C and thus |qj(t)− 1| ≤336

C1, ∀t ≥ 0. Since pj(t) → πhj , we have qj(t) → 1,∀j. Dominant convergence theorem then337

yields338 ∑
j∈Z

πhj |qj(t)− 1| =
∑
j∈Z
|pj(t)− πhj | → 0, t→∞.

Using the relation between ph and ρh, we find339 ∥∥∥ρh(t)− 1

h
πh‖ρh(0)‖`1

∥∥∥
`1
→ 0, t→∞.

340

The above proof makes use of the boundedness of pt(i, j) heavily. This clearly has no341

correspondence in the continuous case as h → 0. Naturally, one may wonder whether we342

have the convergence uniform in h→ 0. We will investigate this in the next section.343

5 Large time behaviors for strong confinement344

In section 4.2, we have seen that the distribution of the jump process converges to the345

stationary solution under the weak confinement assumption. However, we do not have any346

rate for the convergence. Under the strong confinement (Assumption 2.1), we know that347

the convergence of the distribution for SDE (2.1) in L1(R) norm is exponential, which is348

obtained by using relative entropy and log Sobolev inequality [40]. Naturally, we desire that349

under Assumption 2.1 the jump process (3.16) has uniform geometric ergodicity under `1350

norm.351

The convergence of ph(t) to πh in total variation norm (or h−1ph(t) → h−1πh in `1)352

is equivalent to convergence of qh(t) to 1 in `1(πh). Hence, we can consider the geometric353

convergence of qh(t) to 1 in `p(πh) (p ≥ 1), which is closely related to spectral gaps of the354

semigroup {etLh}. This is a typical Perron-Frobenius type question. Besides the traditional355

compactness requirement of the semigroup {etLh} in `p(πh), some sufficient conditions for356

the Perron-Frobenius type theorems include the hypercontractivity and uniform integrability357

[45, 37, 46]. The classical result of Gross [47] tells us that the hypercontractivity is equivalent358

to log-Sobolev inequality. Proving such type of results for finite dimensional Markov chains359

can be found, for example, in [18, 19]. For infinite discrete states, one may prove the discrete360

log-Sobolev inequality using the results in [48, 49] and similar strategy in section 5.1. It361

happens to us that showing the discrete Poincaré inequality seems more convenient, which362

uses a quadratic Lyapunov function compared with the relative entropy for log-Sobolev363

inequalities.364

In subsection 5.1, we use the quadratic function as the Lyapunov function and derive the365

discrete Poincaré inequality. In subsection 5.2, we establish the uniform geometric ergodicity.366

5.1 A discrete Poincaré inequality367

Slightly different from equation (4.12), we note the following for a smooth function ϕ:

d

dt
ϕ(qj) = Lh(ϕ′(q)q)j + βjqj−1

(
ϕ′(qj)− ϕ′(qj−1)

)
+ αjqj+1

(
ϕ′(qj)− ϕ′(qj+1)

)
. (5.1)

By the detailed balance condition (3.18), this gives for convex function ϕ that

d

dt

∑
j∈Z

πhj ϕ(qj) = −
∑
j∈Z

αjπ
h
j (qj − qj+1)(ϕ′(qj)− ϕ′(qj+1)) ≤ 0. (5.2)
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This is the energy dissipation relation. If ϕ(q) = q log q−q+1,
∑
j π

h
j ϕ(qj) gives the relative

entropy. What we find useful is the quadratic function ϕ(q) = 1
2 (q −∑k π

h
kqk)2. Then, we

have

d

dt
Fh = −Dh (5.3)

with

Fh :=
1

2

∑
j∈Z

πhj

(
qj −

∑
k∈Z

πhkqk

)2

, Dh :=
∑
j∈Z

αjπ
h
j (qj − qj+1)2. (5.4)

Now we need to control Fh using Dh. This type of control is achieved by Poincaré368

inequality. Below is a lemma modified from [15, Proposition 1] or [46, Lemma 1.3.10], which369

is a discrete Hardy inequality. For the convenience of the readers, we also attach the proof370

in Appendix A. See also [49] for relevant discussions.371

Lemma 5.1. Let θ be a non-negative sequence with
∑
j θj <∞ and µ be a positive sequence

on Z. Set

A := sup
f

max

∑
j≥0

θj

( j∑
k=0

fk

)2

,
∑
j≤−1

θj

( −1∑
k=j

fk

)2

 :
∑
j∈Z

µjf
2
j = 1

 (5.5)

and

B := max

(
sup
j≥0

( j∑
k=0

µ−1
k

)∑
k≥j

θk , sup
j<0

( −1∑
k=j

µ−1
k

)∑
k≤j

θk

)
. (5.6)

Then it holds that B ≤ A ≤ 4B.372

Using Lemma 5.1 and the approach in [46, sect. 1.3.3], it is straightforward to find:373

Lemma 5.2. Let α and β be the rates in (3.16) for the jump process Z(t). Define

κ := inf
f

{∑
j∈Z

αjπ
h
j (fj+1 − fj)2 :

∑
j∈Z

πhj f
2
j = 1,

∑
j∈Z

πhj fj = 0

}
. (5.7)

Then we have

κ−1 ≤ 8 max

sup
j≥0

( j∑
k=0

(αkπ
h
k )−1

) ∑
k≥j+1

πhk , sup
j≤0

( 0∑
k=j

(βkπ
h
k )−1

) ∑
k≤j−1

πhk

 . (5.8)

Proof. Consider θ, µ, A and B in Lemma 5.1. Let374

A1 := sup
g

∑
j≥0

θj

( j∑
k=0

gk

)2

+
∑
j≤−1

θj

( −1∑
k=j

gk

)2

:
∑
j∈Z

µjg
2
j = 1

 .

Then we have A ≤ A1 ≤ 2A.375

Clearly, for any sequence g we can define a sequence f such that376

f0 = 0, gk = fk+1 − fk

and this is a one-to-one correspondence. Then, we can rewrite A1 in terms of f as

A1 = sup
f

∑
j≥0

θjf
2
j+1 +

∑
j≤−1

θjf
2
j :
∑
j∈Z

µj(fj+1 − fj)2 = 1, f0 = 0

 . (5.9)
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It is clear that

A1 = sup
f

{∑
j≥0 θj(fj+1 − f0)2 +

∑
j≤−1 θj(fj − f0)2∑

j∈Z µj(fj+1 − fj)2
:

f 6≡ const,
∑
j∈Z

µj(fj+1 − fj)2 <∞
}
. (5.10)

Now we define θj = πhj+1 for j ≥ 0 and θj = πhj for j ≤ −1, and let µj = αjπ
h
j . Then,

A1 under this particular choice of θ and µ is

A1 = sup
f


∑
j∈Z π

h
j (fj − f0)2∑

j∈Z αjπ
h
j (fj+1 − fj)2

: f 6≡ const,
∑
j∈Z

αjπ
h
j (fj+1 − fj)2 <∞

 . (5.11)

It is then straightforward to find

A−1
1 = inf

f

∑
j∈Z

αjπ
h
j (fj+1 − fj)2 :

∑
j∈Z

πhj (fj − f0)2 = 1

 . (5.12)

In fact, if all sequences with
∑
j∈Z αjπ

h
j (fj+1 − fj)2 < ∞, f 6≡ const satisfy

∑
j∈Z π

h
j (fj −377

f0)2 < ∞, then (5.12) is clear. If there exists f such that
∑
j∈Z αjπ

h
j (fj+1 − fj)2 < ∞378

but
∑
j∈Z π

h
j (fj − f0)2 = ∞, then A1 = ∞. If this case happens, we can then take f̃N =379

AN (fi1|i|≤N )i∈Z with AN picked so that
∑
j π

h
j (f̃Nj − f̃N0 )2 = 1. Then, AN → 0 and the380

infimum in (5.12) over f̃N is zero. Hence, (5.12) holds.381

Using (5.12), we have382

κ = inf
f

∑
j∈Z

αjπ
h
j (fj+1 − fj)2 :

∑
j∈Z

πhj

(
fj −

∑
k

fkπ
h
k

)2

= 1

 ≥ A−1
1 .

This is because for f ∈ `2(πh), the constant c that minimizes infc
∑
j∈`2(πh) π

h
j (fj − c)2 is

the mean c =
∑
k fkπ

h
k . Hence, we conclude by Lemma 5.1 that

κ ≥ 1

2
A−1 ≥ 1

8
B−1.

Using the detailed balance αkπ
h
k = βk+1π

h
k+1 for k ≤ −1, we have383

B = max

sup
j≥0

(
j∑

k=0

(αkπ
h
k )−1

) ∑
k≥j+1

πhk , sup
j≤0

 0∑
k=j

(βkπ
h
k )−1

 ∑
k≤j−1

πhk

 .

The claim then follows.384

Lemma 5.3. Suppose S1 ≤ σ2 ≤ S2 for S2 > S1 > 0 and b is a smooth function. Then,
fixing R > 0, we can find C(R) > 0 and h0 > 0 such that

max
0≤j≤[R/h]+1

πhj ≤ C(R) min
0≤j≤[R/h]+1

πhj , ∀h ≤ h0. (5.13)

and that

max
−[R/h]−1≤j≤0

πhj ≤ C(R) min
−[R/h]−1≤j≤0

πhj , ∀h ≤ h0. (5.14)

Proof. We only prove the claim for 0 ≤ j ≤ [R/h] + 1. The other case is similar.385
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For the upwind scheme (3.5):

πhj = πh0

j∏
k=1

αk−1

βk
= πh0

j∏
k=1

s+
k−1/h+ σ2

k−1/2/(2h
2)

s−k /h+ σ2
k−1/2/(2h

2)
. (5.15)

Hence, for h small enough, we have

πh0

j∏
k=1

1

1 + 2h|s(xk)|/S1
≤ πhj ≤ πh0

j∏
k=1

(
1 + 2h

|s(xk−1)|
S1

)
. (5.16)

Using (5.16), we find386

max0≤j≤[R/h]+1 π
h
j

min0≤j≤[R/h]+1 π
h
j

≤
[R/h]+1∏
k=1

(
1 + 2h

|s(xk−1)|
S1

) [R/h]+1∏
k=1

(
1 + 2h

|s(xk)|
S1

)
.

Note that
∏[R/h]+1
k=1

(
1 + 2h |s(xk)|

S1

)
≤ exp( 2

S1

∑[R/h]+1
k=1 h|s(xk)|). The inside of the right387

hand side is the Riemann sum for the integral 2
S1

∫ R+h

0
|s(x)| dx. Hence, the right hand side388

is bounded by a number depending on R when h is small enough. Similarly,
∏[R/h]+1
k=1 (1 +389

2h |s(xk−1)|
S1

) ≤ C1(R).390

For the B-shemes (3.8), we note

B(−s)
B(s)

= 1 +
s

B(s)
=

1

1− s
B(−s)

. (5.17)

When h is small enough, B
(
sj−1/2h

Dj−1/2

)
≥ 1

2 and thus by (5.17),391

1

1 + h
|s(xk−1/2)|

S1

≤ αk−1

βk
≤ 1 + h

|s(xk−1/2)|
S1

The arguments are similar.392

Now, we are able to conclude the discrete Poincaré inequality:393

Theorem 5.1. Suppose Assumption 2.1 holds with S1 ≤ σ2 ≤ S2. Let πh be the stationary
distribution of the jump process Z(t) corresponding to the upwind scheme (3.5) or the B-
schemes (3.8) satisfying Assumption 3.1. Then the discrete Poincaré inequality holds for
measure πh when h is small enough. In other words, there exist h0 > 0 and κ1 > 0
independent h so that for any f ∈ `2(πh), we have

κ1

∑
j∈Z

πhj f
2
j − (

∑
k∈Z

πhkfk)2

 ≤∑
j∈Z

αjπ
h
j (fj+1 − fj)2, (5.18)

where αj is the rate in (3.6).394

Proof. Recall that

B1 := max

sup
j≥0

(
j∑

k=0

(αkπ
h
k )−1

) ∑
k≥j+1

πhk , sup
j≤0

 0∑
k=j

(βkπ
h
k )−1

 ∑
k≤j−1

πhk


=: (I+, I−),

Below, we consider I+ only because the discussion for I− is just parallel.395

We can find R > 0 such that s(x) = b(x) − σ(x)σ′(x) < −r|x| for x > R. Let us recall396

that397

πhj = πh0

j∏
k=1

αk−1

βk
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For j ≥ [R/h] + 1 =: j∗,398

πhj+n = πhj

n∏
i=1

αj+i−1

βj+i
= πhj

n∏
i=1

σ2
i+j−1/2

σ2
i+j−1/2 + 2hs−i+j

≤ πhj
n∏
i=1

1

1 + 2hs−i+j/S2

, n ≥ 1.

Hence, we have

∑
k≥j+1

πhk ≤ πhj
∑
k≥j+1

1

(1 + 2rh2(j + 1)/S2)k−j
=
S2

2r

πhj
(j + 1)h2

, (5.19)

where we have used s−i+j ≥ r(j + 1)h for i ≥ 1.399

Let K := S2

2r . If 0 ≤ j ≤ [R/h] = j∗ − 1, we have by (5.19) that

∑
k≥j+1

πhk ≤ (j∗ − j) max
0≤k≤j∗

πhk +K
πhj∗

(j∗ + 1)h2
.

Consequently, by Lemma 5.3,400

h2(j + 1)

(
max

0≤k≤j
(πhk )−1

) ∑
k≥j+1

πhk ≤ ((R+ h)2 +K)C(R),

and the right hand side is uniformly bounded for h ≤ h0.401

If j ≥ j∗, using (5.19) again, we have402

h2(j + 1)

(
max

0≤k≤j
(πhk )−1

) ∑
k≥j+1

πhk ≤ K
(

min
0≤k≤j

πhk

)−1

πhj ≤ KC(R).

The last inequality holds because403

min
0≤k≤j

πhk = min
(

min
0≤k≤j∗

πhk , π
h
j

)
.

Clearly, πhj ≤ πhj∗ . If πhj ≥ min0≤k≤j∗ π
h
k , then (min0≤k≤j π

h
k )−1πhj ≤ (min0≤k≤j∗ π

h
k )−1πhj∗ ≤404

C(R) by Lemma 5.3. Otherwise, (min0≤k≤j π
h
k )−1πhj = 1. Hence, I+ is bounded.405

We now consider the B-schemes satisfying Assumption 3.1. Using (3.9), we find406

αk−1

βk
=

B(wk)

B(−wk)
=

1

1 + wk

B(wk)

,

with407

wk = −sk−1/2h

Dk−1/2
.

For k ≥ j∗, B(wj) has both upper and lower bound. Also, the rate αj is bounded below408

by C1

h2 for all j ≥ 0 due to Assumption 3.1 (when 0 ≤ j ≤ j∗, |wj | is bounded independent of409

h so B(wj) is also bounded).The argument is similar as above for the upwind scheme (3.5).410

Overall, B1 is bounded by a constant M depending on R, r, S1, S2 and h0. Then, by411

Lemma 5.2, we have412

κ ≥ 1

8B1
≥ 1

8M
.

Taking κ1 = 1/(8M) finishes the proof.413

5.2 Uniform ergodicity414

Recall that `1 and `p(w) are defined in equation (1.10) and equation (4.10) respectively.415

Using Theorem 5.1, we are able to conclude that416
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Theorem 5.2. Suppose Assumption 2.1 holds with S1 ≤ σ2 ≤ S2. Consider the jump
process Z(t) corresponding to (3.16) and q defined by (4.13). Then for the upwind scheme
(3.5) or the B-schemes (3.8) satisfying Assumption 3.1,∥∥∥qh(t)−

∑
j∈Z

πhj qj

∥∥∥
`2(πh)

= ‖qh(t)− 1‖`2(πh) ≤ ‖qh(0)− 1‖`2(πh)e
−κ1t. (5.20)

Consequently, ph(t) converges to πh exponentially fast in the total variation norm:∑
j∈Z
|pj(t)− πhj | ≤ C exp(−κ1t), ∀t > 0. (5.21)

and ∥∥∥∥ρh(t)− 1

h
‖ρh(0)‖`1πh

∥∥∥∥
`1
≤ C exp(−κ1t). (5.22)

Proof. Recall the definition of Fh and Dh in (5.4). Then, by Theorem 5.1, we have417

d

dt
Fh = −Dh ≤ −2κ1Fh.

Noticing
∑
j π

h
j qj =

∑
j pj = 1 and Fh = ‖q −∑j π

h
j qj‖2`2(πh), the first claim follows.418

By Hölder’s inequality, it holds that419 ∑
j∈Z
|pj(t)− πhj | = ‖qh(t)− 1‖`1(πh) ≤ ‖qh(t)− 1‖`2(πh) ≤ C exp(−κ1t).

Since420

ρj(t) =
1

h
‖ρh(0)‖`1pj(t),

we then have421 ∥∥∥ρh(t)− 1

h
‖ρh(0)‖`1πh

∥∥∥
`1
≤ ‖ρh(0)‖`1

∑
j

|pj(t)− πhj | ≤ C exp(−κ1t).

422

Using the second claim of Theorem (5.2), we conclude the following property of the423

semigroup etL
∗
h :424

Corollary 5.1. Suppose that v ∈ `1 and
∑
j hvj = 0. Then,∥∥∥etL∗hv∥∥∥

`1
≤ C exp(−κ1t). (5.23)

Proof. Let v+ = {vj ∨ 0} and v− = {−vj ∧ 0} so that v = v+ − v−. Let425

p1(t) := etL
∗
h
hv+

‖v+‖`1
, p2(t) := etL

∗
h
hv−

‖v−‖`1
.

By Theorem (5.2), we have∑
j∈Z
|pij(t)− πhj | ≤ Ci exp(−κ1t), i = 1, 2,

for some constants Ci.426

Note that
∑
j hvj = 0 implies ‖v+‖`1 = ‖v−‖`1 = 1

2‖v‖`1 . We have427

‖etL∗hv‖`1 =
∑
j∈Z

∣∣∣‖v+‖`1p1
j (t)− ‖v−‖`1p2

j (t)
∣∣∣ =

1

2
‖v‖`1

∑
j∈Z
|p1
j (t)− pj2(t)| ≤ C exp(−κ1t).

428
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Corollary 5.1 tells us that etL
∗
h has a spectral gap in `1. For any v ∈ `1, we define the

projection onto the space spanned by πh as

Pv :=
(∑
j∈Z

hvj

)( 1

h
πh
)
. (5.24)

Clearly, Pv is invariant under etL
∗
h . Corollary 5.1 implies that if v has no component in the429

direction of πh, then etL
∗
hv decays exponentially fast.430

Now, we are able to conclude Theorem 3.1, i.e. bounding the error for approximating
π(xj) using πhj . Note that for j ∈ Z

L∗h
(
π(xj)−

1

h
πhj

)
= L∗h(π(xj)) = τjh, (5.25)

where |τj | ≤ C and
∑
j h|τj | ≤ C by direct Taylor expansion and Lemma 2.1. Intuitively,431

P (Rgπ − 1
hπ

h) = O(h), and L∗h has a spectral gap in `1. Hence, we may possibly invert L∗h432

and obtain433 ∥∥∥Rgπ − 1

h
πh
∥∥∥
`1
≤ Ch.

This understanding is not quite a rigorous proof. Below, we provide a rigorous proof.434

Proof of Theorem 3.1. We have the following identity for operators from `1 to `1:

I = etL
∗
h +

∫ t

0

e(t−s)L∗hL∗h ds. (5.26)

In fact, for any v ∈ `1 that does not depend on time, we set f = L∗hv. Then, d
dtv+L∗hv = f435

implies that v(t) = etL
∗
hv(0) +

∫ t
0

exp((t − s)L∗h)f(s) ds. Since we have assumed v(t) ≡ v,436

the identity is proved.437

Now, we act the identity on Ej = π(xj)− 1
hπ

h
j . Using equation (5.25), we have438

E = etL
∗
hE + h

∫ t

0

e(t−s)L∗hτ ds,

where ‖τ‖`1 ≤ C. Since τ is in the range of L∗h, we therefore have (recall (4.6))439 ∑
j∈Z

hτj = 〈1, τj〉h = 〈Lh1, E〉h = 0,

by approximating E with sequences that have finite nonzero entries. Moreover, we define440

π̄j =
1

h

∫ xj+h/2

xj−h/2
π(y) dy,

and have ‖π̄ −Rgπ‖`1 ≤ C1h. Applying Corollary 5.1, we have441

‖E‖`1 ≤ ‖etL
∗
h(π̄ −Rgπ)‖`1 + lim

t→∞
‖etL∗h(π̄ − h−1πh)‖`1 + h

∫ ∞
0

Ce−(t−s)κ1t ds.

The second term is zero by Corollary 5.1 and the result follows.442

6 Finite domain with periodic boundary condition443

If the domain is finite with periodic boundary condition or we consider the problems on
torus with length L

T = R/(LZ), (6.1)
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many of the proofs above can be significantly simplified. However, the proofs in this sec-444

tion also differ from the above arguments in the sense that there is no detailed balance.445

Hence, this section may give inspiration to general schemes of conservation laws in higher446

dimensions.447

The Wiener process W is the standard Wiener process in R wrapped into T. Hence, the448

generator and the Kolmogorov equations are unchanged. For SDEs on torus, one may refer449

to [50, 51]. We will assume generally the following.450

Assumption 6.1. Assume b, σ are smooth functions on T and σ2 ≥ S1 > 0.451

By [50, section 2], Assumption 6.1 implies that the SDE has a unique stationary measure
with smooth density. In fact for d = 1, we can verify this directly. Letting v(x) = π(x)σ2(x)
and b1(x) = b(x)/σ2(x), the equation L∗π = 0 implies that

v(x) = exp
(
−
∫ x

0

b1(y) dy
)(

v(0) + C

∫ x

0

exp(

∫ z

0

b1(y) dy) dz

)
. (6.2)

Using v(L) = v(0), we find

v(0) + C

∫ L

0

exp
(∫ z

0

b1(y) dy
)
dz = v(0) exp

(∫ L

0

b1(y) dy
)
> 0, (6.3)

which determines C uniquely. Since
∫ x

0
exp(

∫ z
0
b1(y) dy) dz ≤

∫ L
0

exp(
∫ z

0
b1(y) dy) dz, v(x) >452

0 for all x ∈ [0, L]. Hence, we can normalize so that
∫ L

0
π(x) dx = 1.453

Note that for the Fokker-Planck equation on torus, the corresponding jump process may
not be reversible (the stationary distribution does not have detailed balance). The function
q(x, t) = p(x, t)/π(x) satisfies (2.16) and the modified SDE is given by

dY =

(
1

π
∂x(σ2π)− b

)
dt+ σ dW. (6.4)

As before, π is also the stationary solution to the modified SDE, and (2.22) still holds. With454

this observation, we have455

Lemma 6.1. Suppose Assumption 6.1 holds. Then, let u(x, t) = Exϕ(X) for the SDE (2.1)
or u(x, t) = Exϕ(Y ) for the modified SDE (6.4) where ϕ ∈ C∞(T). Then for any integer
k > 0 we have for some λk > 0 that

‖u− 〈π, ϕ〉‖Ck(T) ≤ C exp(−λkt). (6.5)

Consequently, for any index n, we can find γn > 0 such that

sup
x∈T

∣∣∣ ∂n
∂xn

(ρ(x, t)− π(x))
∣∣∣ ≤ Cn exp(−γnt). (6.6)

The proof of Lemma 6.1 follows closely [44, section 6.1.2], and we put it in Appendix B456

for convenience. This fact is also used in [51, H3].457

For the discretization, we pick a positive integer N and define

h =
L

N
, xj = jh, 0 ≤ j ≤ N − 1. (6.7)

If j falls out of [0, N ], we wrap it back into [0, N ] using periodicity. (For example, j = N +2458

will be understood as j = 2.) We again consider the upwind scheme (3.5) and the B-schemes459

(3.8). However, we emphasize that the Assumption 3.1 for the B-schemes is no longer needed460

in this section.461

Lemma 6.2. Equation (3.16) has on T has a unique stationary solution up to multiplicative
constants. Besides, the one with

∑
j π

h
j = 1 satisfies πhj > 0 for all j. Moreover, we have

for any sequence f that

−
N−1∑
j=0

πhj fjLhfj =

N−1∑
j=0

βj+1π
h
j+1 + αjπ

h
j

2
(fj+1 − fj)2, (6.8)

where Lh is the generator of the jump process Z(t) for (3.16) on T.462
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Proof. Note that the jump process Z(t) is irreducible and aperiodic with finite states. The463

existence of a unique stationary distribution follows from the standard theory of Markov464

chains. See [14], for example. This stationary distribution (denoted as πh) is clearly a465

positive solution of L∗hf = 0 with
∑
j π

h
j = 1. We fix this πh now, and show that all466

solutions are multiples of πh.467

Direct computation shows that for any j = 0, . . . , N − 1468

fjLhfj =
1

2
(Lhf2)j −

βj
2

(f2
j−1 − fj)2 − αj

2
(fj − fj+1)2.

Multiplying πhj and taking the sum on j yield (6.8).469

According to (6.8), we find that Lhf = 0 only has constant solutions. This means that470

the right eigenspace of Lh corresponding to eigenvalue 0 is one dimensional. Hence, the left471

eigenspace of Lh for eigenvalue 0 is also one dimensional. This means that L∗hf = 0 has a472

unique solution up to multiplying constants473

The stationary solution has the following property:474

Lemma 6.3. There exists a constant C independent of h such that for sufficiently small h

max
0≤j≤N−1

πhj ≤ C min
0≤j≤N−1

πhj . (6.9)

Proof. We introduce the variable

zj := πhj /π(xj), j = 0, . . . , N − 1. (6.10)

Since π(·) is bounded from below and above, we only need to investigate zj .475

The discussion for the upwind scheme (3.5) and the B-schemes (3.8) are similar. We476

only take (3.5) as the example.477

Consider first the equation for πhj .

−
(
s+
j π(xj)zj − s+

j−1π(xj−1)zj−1

h
−
s−j+1π(xj+1)zj+1 − s−j π(xj)zj

h

)

+
1

2h2
(σ2
j+1/2π(xj+1)zj+1 − (σ2

j+1/2 + σ2
j−1/2)π(xj)zj + σ2

j−1/2π(xj−1)zj−1) = 0. (6.11)

Since π(x) is a solution to L∗π = 0, there exists h0 > 0 such that for all h ≤ h0,

L∗hπ(xj) = τjh, ∀0 ≤ j ≤ N − 1, (6.12)

where ‖τj‖`∞ ≤ C1 uniformly for h ≤ h0. Subtracting (6.11) with zjL∗hπ(xj) and using
(6.12), we have

Thzj := −
(
s+
j−1π(xj−1)

zj − zj−1

h
− s−j+1π(xj+1)

zj+1 − zj
h

)
+

1

2h2

(
σ2
j+1/2π(xj+1)(zj+1 − zj)− σ2

j−1/2π(xj−1)(zj − zj−1)
)

= −zjτjh. (6.13)

Expanding π(xj±1) in σ2
j±1/2π(xj±1) terms around xj±1/2, it is not hard to see Th is a first

order consistent difference scheme for the modified backward operator

L̃ q =
1

2
∂x(πσ2∂xq)−

(1

2
σ2∂xπ − sπ

)
∂xq, (6.14)

which is clearly the same as the one in (2.20).478

The crucial observation is that both Th and L̃ with Dirichlet boundary conditions have
maximum principles. This allows us to prove the stability of Th. Let us now investigate this

25



in detail. Assume zj attains the maximum value at j∗. Without loss of generality, we can
assume j∗ = 0. Then, define for j = 0, . . . , N − 1 that

ζj :=
zj
z0
− 1. (6.15)

We find then479

Thζj = − zj
‖z‖`∞

τjh, for j = 1, . . . , N − 1,

ζ0 = ζN = 0.

Consider the equation480

L̃φ(x) = 1, φ(0) = φ(L) = 0.

By the maximum principle, φ(x) < 0 for x ∈ (0, L). Since Th is a consistent scheme for L̃,481

for sufficiently small h, we have482

Thφ(xj) ≥ 1/2, j = 1, . . . , N − 1.

Letting ξj := 2‖τ‖∞φ(xj)h− ζj , we have for j = 1, . . . , N − 1,483

Th(ξ)j ≥ 0

with ξ0 = ξN = 0. This means ξj ≤ 0 by maximum principle and hence484

ζj ≥ 2‖τ‖∞φ(xj)h.

Similarly, replacing ζ with −ζ, we have ζj ≤ −2‖τ‖∞φ(xj)h. This means

max
0≤j≤N−1

|ζj | = max
0≤j≤N−1

∣∣∣∣zjz0
− 1

∣∣∣∣ ≤ 2‖τ‖∞‖φ‖∞h. (6.16)

Hence, for all j = 0, . . . , N − 1,

zj
z0
≥ 1− 2‖τ‖∞‖φ‖∞h ≥

1

2
, (6.17)

when h is sufficiently small. The claim (6.9) follows since π is bounded from above and485

below by positive numbers.486

Now, we prove the uniform consistency, which is an analogy of Theorem 3.1 and Theorem487

3.2.488

Theorem 6.1. Consider the upwind scheme (3.5) or the B-schemes (3.8), and the jump489

process Z(t) corresponding to (3.16) on T. Suppose Assumption 6.1 holds. Then,490

(i) The stationary distribution of (3.16) satisfies that

max
0≤j≤N−1

∣∣∣ 1
h
πh − π(xj)

∣∣∣ ≤ Ch. (6.18)

(ii) The following uniform error estimate holds for (3.5). supt≥0 ‖Rgρ(·, t)−ρh(t)‖`1 ≤ Ch.491

The first claim is essentially proven in the proof of Lemma 6.3. There, we have seen that492

|zj/‖z‖∞ − 1| ≤ Ch. Since |∑j hπ(xj) − 1| ≤ C1h and
∑
j zjπ(xj) = 1, we then conclude493

that |h−1‖z‖`∞−1| ≤ C2h. The second claim can be proved in the same way as in the proof494

of Theorem 3.2.495

We now move on to the convergence to equilibrium. Using Lemma 6.3 and that the496

torus is a bounded domain, the following version of discrete Poincaré inequality (analogy of497

Theorem 5.1) can be proved in a straightforward way (one can refer to [26, Proposition 4.6]498

for similar discussion).499
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Lemma 6.4. Suppose Assumption 6.1 holds. Then there exists h0 > 0 and κ1 > 0, so that
for any sequence f , we have

κ1

N−1∑
j=0

πhj

(
fj −

N−1∑
i=0

πhi fi

)2

≤
N−2∑
j=0

βj+1π
h
j+1 + αjπ

h
j

2
(fj+1 − fj)2. (6.19)

Proof. Since fj − f0 =
∑j
k=1(fk − fk−1), we have500

N−1∑
j=0

πhj (fj − f0)2 ≤
N−1∑
j=1

πhj j

j∑
k=1

(fk − fk−1)2

=

N−1∑
k=1

βkπ
h
k + αk−1π

h
k−1

2
(fk − fk−1)2

∑
j≥k

2jπhj
βkπhk + αk−1πhk−1

.

The claim follows from the fact that when h is sufficiently small501

∑
k≤j≤N−1

2jπhj
βkπhk + αk−1πhk−1

≤ 2N2

minj,k(βkπhk/π
h
j + αk−1πhk−1/π

h
j )

≤ 2CN2

mink(βk+1 + αk)

≤ 2C

S1
N2h2,

where we have applied Lemma 6.3 to obtain minj π
h
k/π

h
j ≥ 1

C and minj π
h
k−1/π

h
j ≥ 1

C for502

any k. Since Nh = L and
∑
j π

h
j

(
fj −

∑
i π

h
i fi
)2 ≤∑j π

h
j (fj − f0)2, the claim follows.503

The chain in general is not reversible. In fact, for the stationary solutions, we have504

Jj+1/2 = J = const.

If J = 0, then we must have
∏N−1
j=0 αj =

∏N−1
j=0 βj , which may not be true. Hence, in general

J 6= 0 and the process is not reversible. Defining

β̃j :=
αj−1π

h
j−1

πhj
, α̃j :=

βj+1π
h
j+1

πhj
, j = 0, . . . , N − 1 (6.20)

we have505

αj + βj = α̃j + β̃j , j = 0, . . . , N − 1.

Hence, using (3.16), we can write the equation for qh = ph/πh (ph and qh are similarly
defined as in (3.15) and (4.13)) as

d

dt
qj = β̃jqj−1 + α̃jqj+1 − (α̃j + β̃j)qj =: (L̃hqh)j , j = 0, . . . , N − 1. (6.21)

It is easily verified that πh is also a stationary solution of L̃∗h, the dual operator of L̃h:

(L̃∗hπh)j = α̃j−1π
h
j−1 − (α̃j + β̃j)π

h
j + β̃j+1π

h
j+1 = βjπ

h
j − (αj + βj)π

h
j + αjπ

h
j = 0. (6.22)

With the preparation, we easily conclude the following, similar to Theorem 5.2.506

Theorem 6.2. Consider the upwind scheme (3.5) or the B-schemes (3.8), and the equiv-507

alent discrete Fokker-Planck equation (3.16) on torus. Suppose Assumption 6.1 holds.508

Then, we have ‖qh(t) − 1‖`2(πh) ≤ ‖qh(0) − 1‖`2(πh)e
−κ1t. Consequently, ph(t) converges509

to πh exponentially fast in total variation norm
∑
j |pj(t) − πhj | ≤ C exp(−κ1t), and thus510

‖ρh(t)− 1
h‖ρh(0)‖`1πh‖`1 ≤ C exp(−κ1t).511
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Proof. Let ϕ be a smooth function defined on T. Applying (6.21) and using similar calcu-
lation as in equation (4.12), we have

d

dt

N−1∑
j=0

πhj ϕ(qj) =

N−1∑
j=0

πhj α̃j(ϕ(qj) + ϕ′(qj)(qj+1 − qj)− ϕ(qj+1))

+

N−1∑
j=0

πhj β̃j (ϕ(qj) + ϕ′(qj)(qj−1 − qj)− ϕ(qj−1)) . (6.23)

If we take ϕ(qj) = 1
2 (qj −

∑
i π

h
i qi)

2, we then have by (6.23) and (6.20) that

1

2

d

dt

N−1∑
j=0

πhj

(
qj −

∑
i

πhi qi

)2

= −
N−1∑
j=0

α̃jπ
h
j + β̃j+1π

h
j+1

2
(qj+1 − qj)2

= −
N−1∑
j=0

βj+1π
h
j+1 + αjπ

h
j

2
(qj+1 − qj)2

≤ −
N−2∑
j=0

βj+1π
h
j+1 + αjπ

h
j

2
(qj+1 − qj)2.

(6.24)

Using Lemma 6.4, the remaining proof is similar to the proof of Theorem 5.2, and we omit.512

513

7 A Monte Carlo method514

In this section, we propose some Monte Carlo methods [52] to approximate the upwind
scheme (3.5) or the B-schemes (3.8). One idea is to construct a jump process {Z∆t

n } with
transition probability P̃ = I + ∆tQ using forward Euler scheme in time. In other words,
the probability distribution satisfies

pn+1 = (I + ∆tQ)pn, (7.1)

where pn refers to the probability distribution at n-th step. There are two drawbacks.515

Firstly, the forward Euler introduces numerical errors in time discretization; secondly I +516

∆tQ may have negative entries for any ∆t. One can also consider the backward Euler scheme517

where the transition probability is (I−∆tQ)−1. The disadvantage of this matrix is that it is518

usually full and inconvenient for the full space R. Another idea is to use the continuous time519

random walk. The process waits for a random time that satisfies an exponential distribution520

at a site and then performs a jump. This idea can avoid using the time discretization to521

recover (3.5). If we consider the schemes on R, we need the exponential distribution for522

the waiting time to depend on the site j, and a corresponding Monte Carlo method can be523

developed. For the jump process Z(t) on torus, we can choose the exponential distribution524

independent of the sites. Then the number of jumps is a Poisson process and this motivates525

another Monte Carlo algorithm. For the convenience, we focus on the problems on torus526

only and explain this Monte Carlo algorithm in detail.527

Lemma 7.1 ([14, Example 2.5]). Let P be a transition matrix. Let N (t) be a Poisson process
of intensity λ. If Z1(t) is the process that takes transitions at jumps of N (t) according to
P , then Z1(t) is a continuous time jump process with Q matrix to be

Q = λ(P − I). (7.2)

Recall that Q matrix is defined in (4.2) so that pt(i, j) = P(Z1(t) = j|Z1(0) = i) satisfies528

d

dt
pt(i, j) =

∑
k

Q(i, k)pt(k, j) =
∑
k

pt(i, k)Q(k, j).
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Lemma 7.1 follows easily from the fact Z1(t) is Markovian and that

pt(i, j) = EPN (t)(i, j) = e−λt
∞∑
n=0

(λt)n

n!
Pn(i, j). (7.3)

Here, Pn is defined inductively by Pm+1(i, j) =
∑
k P

m(i, k)P (k, j) with P 1 = P . If Q(i, j)
is bounded, we can take λ large enough so that

P = I + λ−1Q (7.4)

has nonnegative entries. For problems on torus, we can do this and then Z1(t) is a realization529

of Z(t). This then gives the following Monte Carlo method:530

1. Fix T > 0. Pick λ ≥ max(α + β) with α, β in (3.6) or (3.9). Pick M for the number531

of samples.532

2. For m = 1 : M :533

• Sample N ∼ Poisson(λT ), and j0 ∼ pj(0).534

• Sample YN according to the j0-th row of PN . (In other words, we have a discrete535

time Markov chain {Yn}Nn=1 with Y0 = j0 and transition matrix P in (7.4), or536

P (j, j) = 1− λ−1(αj + βj), P (j, j − 1) = λ−1βj , and P (j, j + 1) = λ−1αj .)537

3. Let p̃ be the empirical distribution of YN (with M values of YN ). Then, ρ̃(xj , T ) =538

h−1‖ρh0‖`1 p̃j is the numerical solution.539

As well-known, the Monte Carlo method converges with error bound
√

var(Z(t))/M540

[52]. While the variance is bounded here in time according to the uniform ergodicity, the541

convergence is uniformly in the rate 1/
√
M .542

Remark 7.1. Since EN = λT , λ−1 is like the time step. Hence, λ−1 max(α+β) ≤ 1 is like543

the CFL condition (for parabolic equations).544

Note that we may use fast algorithms to pre-compute Pn to save time. Consider the545

following SDE on T with L = 2π and546

b(x) = cos(x) exp(sin(x)), σ(x) = exp
(1

2
sin(x)

)
.

It follows that547

s(x) = b(x)− σ(x)σ′(x) =
1

2
cosx exp(sinx), π(x) ∝ exp(sin(x)).

By the symbol “π” in this example, whether we mean the circular ratio or the stationary548

solution should be clear in the context.549

Now, we take ρ(x, 0) = 1
2π so that limt→∞ ρ(x, t) = π(x). The initial distribution for550

j0 is therefore the uniform distribution. Figure 1 shows the computed ρ̃ for the upwind551

scheme (3.5) at t = 1, 4, 10, 12, where we take number of grid points N = 26, h = 2π/N ,552

λ = max(αj + β) + 10 ≈ 291.7 and the number of samples M = 106. We find that553

numerical solution of the Monte Carlo method for the jump process indeed converges to a554

stationary solution fast. Moreover, the stationary solution of the numerical solution is close555

to the stationary distribution of the SDE. This example therefore verifies our theory and556

the Monte Carlo method.557
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Figure 1: Monte Carlo simulation of the jump process corresponding to the upwind scheme
(3.5). Number of grids N = 26, λ ≈ 291.7 and number of samples M = 106. The solid
black line shows the exact stationary solution π(·). Others show the computed numerical
solution at t = 1(green dots), t = 4 (brown dotted line), t = 10 (red dash-dotted line) and
t = 12 (blue dashed line). The stationary solution of the numerical solution is close to the
stationary distribution of the SDE.

A Proof of Lemma 5.1565

Proof of Lemma 5.1. Recall that θ is a non-negative sequence with
∑
j θj < ∞ and µ is a

positive sequence on Z. We first pick fi = µ−1
i 1[0,M ](i). By the definition of A, we have

A

M∑
k=0

µ−1
k = A

∞∑
k=−∞

µkf
2
k ≥

∑
j≥0

θj

(
j∑

k=0

fk

)2

≥
∑
j≥M

(
M∑
k=0

µ−1
k

)2

θj .

Similarly, if we pick fi = µ−1
i 1[−M,−1](i), we have

A

−1∑
k=−M

µ−1
k = A

∞∑
k=−∞

µkf
2
k ≥

∑
j≤−1

θj

 −1∑
k=j

fk

2

≥
∑
j≤−M

( −1∑
k=−M

µ−1
k

)2

θj .

This verifies that A ≥ B.566

On the other hand, let us assume
∑
j µjf

2
j = 1. Note the basic inequality

b− a
2
√
b
≤
√
b−√a, a ≥ 0, b > 0. (A.1)

Now let γj :=
∑j
k=0 µ

−1
k . Applying (A.1) and noting γ0 = µ−1

0 , we obtain

j∑
k=0

µ−1
k√
γk

=
µ−1

0√
γ0

+

j∑
k=1

γk − γk−1√
γk

≤ √γ0 + 2
√
γj − 2

√
γ0 ≤ 2

√
γj . (A.2)

Similarly, ∑
j≥k

θj√∑
i≥j θi

=
∑
j≥k

∑
i≥j θi −

∑
i≥j+1 θi√∑

i≥j θi
≤ 2

√∑
i≥k

θi. (A.3)
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Consequently, we find

∑
j≥0

θj

(
j∑

k=0

fk

)2

≤
∑
j≥0

θj

(
j∑

k=0

f2
kµk
√
γk

)(
j∑

k=0

µ−1
k√
γk

)

≤ 2
∑
j≥0

θj
√
γj

j∑
k=0

f2
kµk
√
γk

≤ 2
√
B
∑
j≥0

θj√∑
i≥j θi

j∑
k=0

f2
kµk
√
γk

= 2
√
B
∑
k≥0

f2
kµk
√
γk
∑
j≥k

θj√∑
i≥j θi

≤ 4B
∑
k≥0

f2
kµk ≤ 4B.

The first inequality is due to Hölder inequality. The second inequality is due to (A.2). The567

third inequality is due to (recall the definition of γj and definition of B)568

√
γj

√∑
i≥j

θi ≤
√
B.

The second last inequality is due to (A.3)569

√
γk
∑
j≥k

θj√∑
i≥j θi

≤ 2
√
γk

√∑
i≥k

θi ≤ 2
√
B.

Similarly, defining γj =
∑−1
k=j µ

−1
k , one can control570

∑
j≤−1

θj

 −1∑
k=j

fk

2

≤ 4B.

Hence, A ≤ 4B.571

B Proof of Lemma 6.1572

Proof of Lemma 6.1. Recall the notation573

〈π, f〉 =

∫
T
f(x)π(x) dx.

Without loss of generality, we assume 〈π, ϕ〉 = 0 and consider the equation of u for SDE
(2.1) (the proof for the modified SDE (6.4) is just the same):

∂tu = Lu = b ∂xu+
1

2
Λ∂xxu. (B.1)

We see 〈π, u〉 = 0 for all t > 0. Multiplying 2u, we have574

∂t|u|2 = L|u|2 − Λ|∂xu|2.

Multiplying π and integrating yields

d

dt

∫
T
π(x)|u|2(x) dx = −

∫
T
πΛ|∂xu|2 dx ≤ −λ

∫
T
π|u|2 dx. (B.2)
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The inequality follows from Poincaré inequality since 〈π, u〉 = 0. We then obtain the expo-575

nential decay of 〈π, |u|2〉:576

〈π, |u|2〉 =

∫
T
|u|2π dx ≤ 〈π, ϕ2〉 exp(−λt).

Consequently, multiplying e(λ−δ)t in (B.2) for δ > 0 small and taking integral,577 ∫ ∞
0

e(λ−δ)t
∫
T
πΛ|∂xu|2 dx = −

∫ ∞
0

e(λ−δ)t d

dt

∫
T
π|u|2 dxdt ≤ C.

This means that
∫∞

0
e(λ−δ)t〈π, |∂xu|2〉 dt <∞.578

Now, we perform induction. For the convenience, we will use D to mean either d
dx or

∂
∂x . Assume that we have proved that for all m ≤ n− 1

〈π, |Dmu|2〉 ≤ Cm exp(−γmt) (B.3)

and that for all m ≤ n ∫ ∞
0

eλ̃mt〈π, |Dmu|2〉 dt <∞. (B.4)

We show (B.3)-(B.4) hold for m ≤ n and m ≤ n + 1 respectively. Taking the nth order579

derivative of (B.1), we have580

∂tD
nu = LDnu+ gn,0(x)Dn+1u+ gn,1(x)Dnu+

∑
m≤n−1

gn,n−m+1D
mu,

where gn,m(x) are smooth functions involving b, σ and their derivatives. Multiplying 2πDnu
and taking integral, we have

∂t〈π, |Dnu|2〉 ≤ −
∫
T

Λ|Dn+1u|2π dx+ C

∫
T
|Dn+1uDnu|π dx

+ C〈π, |Dnu|2〉+
∑

m≤n−1

Cm〈π, |DmuDnu|〉. (B.5)

Since
∫
T |Dn+1uDnu|π dx ≤ ν〈π, |Dn+1u|2〉 + 1

4ν 〈π, |Dnu|2〉, the Dn+1u term is controlled581

by the first term on the right hand side. Multiplying on both sides with eλ̃nt and taking582

integral from 0 to t, one can get the results (B.3), (B.4) for m = n and m = n+1 respectively.583

This then finishes the induction.584

Now (B.3)-(B.4) hold for all m ≥ 0. Since π is bounded from below, we find that585

‖u − 〈π, ϕ〉‖2Hk(T) ≤ Cn exp(−γnt). The claims for the decay of ‖u − 〈π, ϕ〉‖Ck follow from586

Sobolev embedding.587

Since p(x, t) = q(x, t)π(x) where q satisfies the backward equation for the modified SDE588

(6.4). The first part of this lemma says that ‖q(·, t) − 1‖Ck ≤ C exp(−γkt). Since π is589

smooth on T, we then have ‖ρ(·, t)− π‖Ck = ‖π(q(·, t)− 1)‖Ck decays to zero exponentially590

fast.591
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