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Abstract Wepropose in this work a fractional stochastic differential equation (FSDE)model
consistent with the over-damped limit of the generalized Langevin equation model. As a
result of the ‘fluctuation-dissipation theorem’, the differential equations driven by fractional
Brownian noise to model memory effects should be paired with Caputo derivatives, and
this FSDE model should be understood in an integral form. We establish the existence of
strong solutions for such equations and discuss the ergodicity and convergence to Gibbs
measure. In the linear forcing regime, we show rigorously the algebraic convergence to
Gibbs measure when the ‘fluctuation-dissipation theorem’ is satisfied, and this verifies that
satisfying ‘fluctuation-dissipation theorem’ indeed leads to the correct physical behavior.
We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs
measure in the nonlinear forcing regime, while leave the rigorous analysis for future works.
The FSDE model proposed is suitable for systems in contact with heat bath with power-law
kernel and subdiffusion behaviors.
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1 Introduction

For a particle in contact with a heat bath (such as a heavy particle surrounded by light
particles), the following stochastic equation is often used to describe the evolution of the
velocity of the particle

mv̇ = −γ v + η,

where dot denotes derivative on time, −γ v counts for friction and η is a Gaussian white
noise which could be understood as the distributional derivative of the Brownian motion (or
Wiener process) up to a constant factor. This equation should be understood in the SDE form

m dv = −γ v dt + √
2Dx dW,

where W is a standard Brownian motion and Dx is some constant to be determined. Adding
the equation for position and considering external force, one has the Langevin equation:

ẋ = v, mv̇ = −∇V (x) − γ v + η. (1.1)

Since the friction coefficient γ and random force η both stem from interactions between the
particle and the environment, they should be related. The ‘fluctuation-dissipation theorem’1

[2,33] provides a precise connection between them, such that the covariance satisfies

E(η(t1)η(t2)) = 2kTγ δ(t1 − t2), (1.2)

where k is the Boltzmann constant and T is the absolute temperature, leading to Dx = kTγ .
E is the ‘ensemble average’ in physical language and it is ‘expectation’ over some underlying
probability space inmathematical language. Relation (1.2) was formulated byNyquist in [33]
and then justified by Callen and Welton in [2]. The physical meaning of this relation is that
the fluctuating forces must restore the energy dissipated by the friction so that the balance is
achieved and the temperature of the heavy particle can reach the correct value. To see this in
another view point, one may derive, either using Ito’s formula or using Green-Kubo formula,
that Dx is actually the diffusion constant for position x , and Dx = kT γ is called the Einstein-
Smoluchowski relation [25]. This relation also says that the fluctuation and dissipation must
be related.

In the ‘overdamped’ regime where the inertia can be neglected (m � 1), the Langevin
equation is reduced to the following well-known SDE [10]:

γ dx = −∇V (x) dt + √
2Dx dW. (1.3)

In [20,30], the generalized Langevin equation (GLE) was proposed to model particle
motion in contact with a heat bath when the random force is no longer memoryless:

ẋ = v, mv̇ = −∇V −
∫ t

t0
γ (t − s)v(s) ds + R(t), (1.4)

where R(t) is some random force. Now the friction is the convolution between a kernel
function γ and the velocity v(s) so that there is memory in dissipation in this model. For
the particle to achieve equilibrium at the prescribed temperature, the fluctuating force R(t)
and the friction kernel γ must be related. Without the external force (i.e. ∇V = 0), Kubo
assumed thatE(v(t0)R(t)) = 0, t > t0 and that v is a stationary process. He derived formally

1 Note that we are putting quotes for the physical theorems as they are critical claims from physics compared
with mathematical theorems that are rigorously justified.
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(though he used the existence of the one-sided Fourier transform of γ , the formal derivation
still holds if γ /∈ L1[0,∞) as we can understand the transform in the distribution sense or
replace the one-sided Fourier transform with Laplace transform) that

E(R(t0)R(t0 + t)) = mE(v(t0)
2)γ (|t |) = kT γ (|t |). (1.5)

There are other formal derivations as well (e.g. [8]). These derivations are not fully con-
vincing though on the mathematical rigorous level. In [20], Kubo assumed the relation
E(v(t0)R(t)) = 0, t > t0 arguing using causality. The issue is though R(t) does not affect
v(t0), v(t0) can affect R(t). In [8], Felderholf obtained this relation from ‘Nyquist’s theorem’,
while no justification is given to the latter.

For a more convincing and rigorous derivation of the GLE (1.4) and relation (1.5), one
could start from a system of interacting particles as the Kac–Zwanzig model (see [9,11,19,
42]). In this model, the surrounding particles in the heat bath have harmonic interactions with
the particle under consideration, which is a good approximation if the configuration is near
equilibrium. The whole system evolves under the total Hamiltonian. If the initial data satisfy
the Gibbs measure, then after integrating out the variables for the surrounding particles, one
obtains the GLE where the relation (1.5) is satisfied. From the Kac–Zwanzig model, we may
find that in GLE the random force R(t) is not necessarily independent of x(0).

Relation (1.5) is called the ‘fluctuation-dissipation theorem’ for GLE. This relation simply
says the random forcemust balance the friction so that the system has a nontrivial equilibrium
corresponds to the prescribed temperature. Note that if the kernel γ (t) tends to γ δ(t), the
relation (1.2) can be recovered. The coefficient ‘2’ comes from the fact that

∫ ∞

−∞
E(R(t0)R(t0 + t)) dt = 2kT

∫ ∞

0
γ (t) dt.

There are few rigorous mathematical justifications of the ‘fluctuation-dissipation theorem’
in the context of generalized Langevin equations. In [35], the author tried to rephrase the
‘fluctuation-dissipation theorems’ and the related linear response theory in mathematical
language. Hairer and Majda in [14] developed a framework to justify the use the linear
response theory through the ‘fluctuation-dissipation theorem’ for studying climate models.

In thiswork, through a scaling argument, we find it reasonable to consider the over-damped
limit of GLE driven by fractional Brownian noise, and obtain the following fractional SDE
(FSDE) model (Eq.2.11)

Dα
c x = −V ′(x) + CH ḂH ,

where the fractional derivative is in Caputo sense while ḂH is the fractional Brownian noise
(the distributional derivative of fractional Brownian motion). This differential form can be
rewritten as an integral form (Eq.2.14):

x(t) = x(0) − 1

Γ (α)

∫ t

0
(t − s)α−1V ′(x(s)) ds + CH

Γ (α)

∫ t

0
(t − s)α−1dBH ,

which is viewedas the rigorous definitionof ourFSDEmodel.After proving that the stochastic
integral is a continuous process in Sect. 4, the existence and uniqueness of strong solutions
become straightforward.

Let us remark that using fractional Brownian motion as a model for long range correla-
tions is quite common: for example, waves in random media [26], subdiffusion process in
complex system [4,18,19,22,29]. It has been observed in [18,19,29] that the systems of pro-
tein molecules have power-law memory kernel and subdiffusion behavior. Remarkably, Kou
and Xie [18,19] showed that incorporating fractional Brownian noise into the generalized
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Langevin equation yields a model with a power-law kernel for subdiffusion and the results
had excellent agreement with a single-molecule experiments from biological science.

If α = α∗ := 2 − 2H , the ‘fluctuation-dissipation theorem’ is satisfied. When the force
is linear, we show rigorously that the process has ergodicity and converges algebraically to
the Gibbs measure (see Theorem 2). When the force is nonlinear, studying the ergodicity and
asymptotic behavior is challenging.We think it is promising to solve this problemby rewriting
the FSDEmodel intoMarkovian processes. So,we propose two possible approaches. The first
approach is to rewrite our FSDEmodel as an infinite-dimensional Ornstein–Uhlenbeck (OU)
process with mixing. We hope this infinite-dimensional OU with mixing can be a possible
framework for proving the convergence to equilibrium satisfying Gibbs measure. Another
approach is to take the limit in a heat bath model. In summary, satisfying the ‘fluctuation-
dissipation theorem’ leads to the correct physical behavior: there is balance between the
dissipation and fluctuation effects from the random forcing such that the Gibbs measure
is the final equilibrium distribution. This means that in the correct physical FSDE models
fractional Brownian noise must be paired with Caputo derivatives.

While FSDEs have been discussed in some previous works already, our FSDE model
(2.14) motivated by the ‘fluctuation-dissipation theorem’ seems to be new. The authors of
[13,15,32] discussed FSDEs driven by fractional Brownian motions but used the usual first
order derivative, which means that the convolution kernel for friction is a Dirac delta and
there is no memory in the dissipating term, while the fluctuation term is given by fractional
Brownianmotions that havememory so that there is no balance. In [39], the Caputo derivative
is used but they used the usual white noise to drive the process. According to the above formal
derivation, when modeling a particle in contact with a heat bath with memory effects, the
natural noise associated with the Caputo derivative should be the fractional noise. This means
we will probably require α = α∗ for the correct model from physical concerns. We admit
however that it is possible that the models with α �= α∗ may be used to describe some other
situations instead of the physical case we consider here.

The rest of the paper is organized as follows. In Sect. 2, we give a brief introduction to
fractional Brownian motions and propose our FSDE model (2.14). In Sect. 3, we study the
stochastic integral in our FSDEmodel (2.14) in detail and prove that it is continuous.Using the
continuity of the stochastic integral,weobtain inSect. 4 the existence anduniqueness of strong
solutions for FSDE (2.14) on the interval [0,∞) provided V ′(·) is Lipschtiz continuous. In
Sect. 5, we focus on the asymptotic behavior of the strong solutions of (2.14). In particular, in
the linear regimes, (i.e. V ′(·) is a linear function), we compute the solutions exactly and show
that the solution converges in distribution to a stationary process satisfying Gibbs measure.
In the nonlinear regime, we provide two possible frameworks for studying the asymptotic
behaviors when the ‘fluctuation-dissipation theorem’ is satisfied. We argue formally that the
FSDE can be reduced from some Markovian processes in infinite dimensions. The rigorous
study of the nonlinear regimes is left for future works.

2 The FSDE Model

In this section, we propose the fractional SDEmodel from the GLEwith fractional Brownian
noise. By a scaling argument in GLE, we argue that in the regimes where the environment
is viscous or the mass is small, we can consider the over-damped limit of GLE driven by
fractional Brownian noise (i.e., the (distributional) derivative of fractional Brownian motion)
and obtain the fractional SDE model, in which the Caputo derivative is associated with
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the fractional Brownian noise. This model is new. It recovers the subdiffusion discussed in
[18,22] and satisfies the ‘fluctuation-dissipation theorem’.

2.1 Fractional Brownian Noise in Complex Systems

The studies in [18,19,22,29] indicate that fractional Brownian noise commonly arises in
complex physical systems. We now give a brief introduction to fractional Brownian motion
and present the GLE with fractional Brownian noise.

The fractional Brownian motion BH (see [24,31] for more detailed discussions) with
Hurst parameter H ∈ (0, 1) is a Gaussian process (i.e., the joint distribution for
(BH (t1), . . . , BH (td)) is a d-dimensional normal distribution for any (t1, . . . , td) ∈ R

d+)
defined on some probability space (Ω,F, P) with mean zero and covariance

E

(
BH
t BH

s

)
= RH (s, t) = 1

2

(
s2H + t2H − |t − s|2H

)
, (2.1)

where Emeans the expectation over the underlying probability space. By definition, BH has
stationary incrementswhich are normal distributionswithE((BH (t)−BH (s))2) = (t−s)2H .
By the Kolmogorov continuity theorem, BH is Hölder continuous with order H − ε for any
ε ∈ (0, H). BH has finite 1/H -variation. Besides, it is self similar: BH (t)

d= a−H BH (at)
where ‘

d=’ means they have the same distribution. It is non-Markovian except for H = 1/2
when it is reduced to the Brownian motion (i.e., Wiener process).

The existence of fractional Brownian motion can be proved by some explicit representa-
tions. In [24], the following representation is given

BH (t) = C1(H)

(∫ t

0
(t − s)H− 1

2 dW (s) +
∫ 0

−∞

(
(t − s)H− 1

2 − (−s)H− 1
2

)
dW (s)

)

= C1(H)

∫ 0

−∞
(−r)H− 1

2 (dW (r + t) − dW (r)), (2.2)

where W is a normal Brownian motion and C1(H) is a constant to make (2.1) valid. This is
also used in [13]. In [3,32], one uses

BH (t) = C2(H)

∫ t

0
(t − s)H− 1

2 F

(
H − 1

2
,
1

2
− H, H + 1

2
, 1 − t

s

)
dW (s), (2.3)

where F is theGauss hypergeometric function.Another representation in [37] using fractional
integrals might be useful sometimes, which we choose to omit here.

One can show that (BH (t + h) − BH (t))/h converges in distribution (i.e. under the
topology of the dual of C∞

c (0,∞)) to ḂH (t) where the dot represents distributional time
derivative. We check that

lim
h→0+,h1→0

E

(
BH (h)

h

BH (t + h1) − BH (t)

h1

)

= lim
h→0+,h1→0

1

2hh1

(
(t + h1)

2H − (t + h1 − h)2H − t2H + (t − h)2H
)

= H(2H − 1)t2H−2. (2.4)

If we pick the initial time in (1.4) as t0 = 0 and consider the random noises corresponding
to fractional Brownian motion as discussed:

RH (t) =
√
kT γ0√

H(2H − 1)Γ (2H − 1)
ḂH (t), (2.5)
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where γ0 is a constant representing the typical scale of friction, we then have the GLEmodel

mv̇ = −∇V (x) − γ0

Γ (2H − 1)

∫ t

0
(t − s)2H−2v(s) ds + RH (t) (2.6)

following the ‘fluctuation-dissipation theorem’.
We will assume throughout the paper that

H ∈
(
1

2
, 1

)
, (2.7)

as they are the physically most realistic regimes [19] and consequently 2 − 2H ∈ (0, 1).

2.2 Over-Damped Limit and the FSDE Model

Assume that we consider the fractional diffusion regime with time scale Tt , the length scale
L = √

kT/γ0T
1−H
t , and velocity scale L/Tt = √

kT/γ0T
−H
t . We then scale the energy

with kT , fractional Brownian motion with T H
t and scale the noise with

√
kT γ0T

H−1
t . The

dimensionless GLE reads

mT 2H
t

γ0
v̇ = −∇V − 1

Γ (2H − 1)

∫ t

0
(t − s)2H−2v(s)ds + RH (t)

In the regimes where mT 2H
t /γ0 is small (viscous environment, particle is small etc), the

mv̇ term in (2.6) can be neglected, and we have the following dimensionless over-damped
equation with fractional noise:

1

Γ (2H − 1)

∫ t

0
(t − s)2H−2v(s) ds = −∇V (x) + RH (t). (2.8)

In the following discussion, we will always assume the equations are dimensionless while
the variables k and T might be used to denote other quantities.

Recall that the Caputo derivative [12,17] starting from t = 0 for a C1 function is given
by

Dα
c w = 1

Γ (1 − α)

∫ t

0

ẇ(s)

(t − s)α
ds. (2.9)

Note that v(s) = ẋ(s). The left hand side of Eq. (2.8) formally becomes the Caputo derivative
of x with α = 2 − 2H and the equation becomes a fractional SDE:

D2−2H
c x = −∇V (x) + RH (t). (2.10)

This means that the power-law memory kernel yields the Caputo derivative of the trajectory
naturally. This over-damped fractional SDE model is simpler compared with the GLE model
(2.6) and we expect it to contain the essential physics (the subdiffusion and ‘fluctuation-
dissipation theorem’) as we will study.

From here on, we will only consider 1D case (x ∈ R) for convenience while the gen-
eral dimension is similar. The above discussion then motivates us to consider the fractional
stochastic differential equation (FSDE) where we relax the constraint between H and α:

Dα
c x = −V ′(x) + CH ḂH , (2.11)

where

CH = 1√
H(2H − 1)Γ (1 − α)

(2.12)
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for α ∈ (1− H, 1). The index obtained from the ‘fluctuation-dissipation theorem’ is denoted
as α∗ = 2 − 2H . We will also denote the (one-sided) kernel associated with the Caputo
derivative as

γ (t) = θ(t)

Γ (1 − α)
t−α, (2.13)

where θ(t) is the standard Heaviside step function.
In [21], a definition of the Caputo derivative based on a convolution group was proposed,

which agrees with (2.9) when the function is absolutely continuous on (0, t). The observation
of the underlying convolution group structure allows us to de-convolve and change theCaputo
derivative to integral form as

x(t) = x(0) + 1

Γ (α)

∫ t

0
(t − s)γ−1Dγ

c x(s) ds

= x(0) − 1

Γ (α)

∫ t

0
(t − s)α−1V ′(x(s)) ds + CH

Γ (α)

∫ t

0
(t − s)α−1dBH , (2.14)

where we formally used RH ds = CH ḂH ds = CH dBH . This integral will then be under-
stood as the rigorous definition of the FSDE (2.11). The last term in (2.14) is an integral with
respect to fractional Brownianmotion, whichwewill make themeaning precise later.Wewill
study FSDE (2.14) and try to understand the role of the ‘fluctuation-dissipation theorem’.
For convenience, we denote

G(t) = CH

Γ (α)

∫ t

0
(t − s)α−1dBH (s) =

∫ ∞

0
ft (s) dBH (s), (2.15)

where ft (s) = CH
Γ (α)

((t − s)+)α−1 and α ∈ (1 − H, 1). We shall study the process G in
Sect. 3.

3 The Process G as a Stochastic Integral

Tomake the meaning of the FSDE precise, wemust understand the processG. In this section,
we first review the stochastic integrals with respect to fractional Brownian motions and then
study some properties of G.

3.1 Stochastical Integrals Driven by Fractional Brownian Motions

The stochastic integrals with respect to fractional Brownian motions have been thoroughly
discussed in literature [3,7,28,41]. In [28,41], the stochastic integrals are defined pathwise
using theRiemann–Stieltjes integrals bymakinguse of certain properties of the paths. In [3,7],
the so-calledMalliavin calculus is used to define the stochastic integrals (Wick–Ito–Skorohod
integrals, or the ‘divergence’) and the Ito’s formula is established, which connects both
definitions. For a review, one can refer to [1,31]. In the case that the integrand is deterministic,
those two definitions agree. By (2.14), we only need the integrals of deterministic processes
with respect to fractional Brownian motion. We shall give a brief introduction to the theory
for deterministic processes and the readers can turn to the references listed here for general
processes.

Let us fix T > 0 and define the stochastic integrals on the interval [0, T ]. The definition
of integration of deterministic processes on [0, T ] starts with the step functions. Let E be the
set of all step functions on [0, T ], i.e. ϕ ∈ E is given by
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ϕ =
m∑

j=1

a j1(t j−1,t j ](t), (3.1)

where 1E (t) is the characteristic function of set E . The integral BH (ϕ) is defined by

BH (ϕ) =
∫ T

0
ϕ dBH (t) =

m∑

j=1

a j

(
BH (t j ) − BH (t j−1)

)
. (3.2)

Consider the inner product

〈ϕ1, ϕ2〉H = E(BH (ϕ1)B
H (ϕ2)). (3.3)

It is easily verified that ∀ϕ1, ϕ2 ∈ E ,

〈ϕ1, ϕ2〉H = H(2H − 1)
∫ T

0

∫ T

0
|r − u|2H−2ϕ1(r)ϕ2(u) dudr

= πκ(2κ + 1)

Γ (1 − 2κ) sin(πκ)

∫ T

0
s−2κ (I κuκ f )(s)(I κuκg)(s) ds, (3.4)

where κ = H − 1
2 and I κ is the right Riemann–Liouville fractional calculus, given by [37]:

(I κ f )(s) =

⎧
⎪⎪⎨

⎪⎪⎩

1

Γ (κ)

∫ T

s
f (u)(u − s)κ−1du, κ > 0,

− 1

Γ (1 − κ)

d

ds

∫ T

s
f (u)(u − s)−κdu. κ < 0.

This then motivates the definition of

H0 =
{
ϕ ∈ L1

loc[0, T ] :
∫ T

0

∫ T

0
|r − u|2H−2|ϕ(r)||ϕ(u)|drdu < ∞

}
(3.5)

and

Λ =
{
f ∈ L1

loc[0, T ] :
∫ T

0
s−2κ (I κuκ f )2(s) ds < ∞

}
. (3.6)

Clearly,H0 ⊂ Λ. The integral BH (ϕ) can then be defined for ϕ ∈ Λ by approximating them
with step functions. In [36,37], it is shown that both inner product spaces H0 and Λ are not
complete and therefore not Hilbert spaces. However, the space BH (E ) clearly has a closure
in L2(Ω, P). This means some elements in the closure corresponds to distributions that are
not in L1

loc[0, T ]. Let H be the space of the closure of E under the inner product (3.3) and
thus H contains some distributions. ∀ϕ1, ϕ2 ∈ H0 ⊂ H ,

〈ϕ1, ϕ2〉H = E(BH (ϕ1)B
H (ϕ2)) = H(2H − 1)

∫ T

0

∫ T

0
|r − u|2H−2ϕ1(r)ϕ2(u) dudr.

(3.7)

The following lemma provides a convenient way to check that some deterministic processes
can be integrated by fractional Brownian motion [27,31]:

Lemma 1 If H > 1/2, then there exists bH > 0 such that for any ϕ ∈ L1/H [0, T ] such that
‖ϕ‖H 0 ≤ bH‖ϕ‖L1/H [0,T ]. (3.8)
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where

‖ϕ‖2H 0
=

∫ T

0

∫ T

0
|r − u|2H−2|ϕ(r)||ϕ(u)| drdr.

3.2 Some Basic Properties of G

We can easily verify that ft ∈ L1/H [0, T ] whenever t ≤ T , and hence the integral on [0, T ]
is well defined. Further, for any T1 > t, T2 > t , the integrals of ft over [0, T1] and [0, T2]
agree on [0,min(T1, T2)]. In this sense, the integral

∫ ∞
0 ft (s)dBH (s) can then be understood

as in [0, T ] for any T > t .
Roughly speaking, since BH is H − ε Hölder continuous for any ε ∈ (0, H), G(t) should

be like α + H − 1 − ε Hölder continuous for any ε ∈ (0, α + H − 1) by the regularity of
BH . We shall make this precise in this subsection.

Lemma 2 G(t) is a Gaussian process with mean zero and covariance given by

φ(t1, t2) = E(G(t1)G(t2)) = B(2H − 1, α)

B(α, 1 − α)Γ (α)

×
∫ min(t1,t2)

0
dr

(
(t1 − r)α−1(t2 − r)2H−2+α + (t2 − r)α−1(t1 − r)2H−2+α

)
.

(3.9)

In particular, if α = α∗, G(t)
d= βH B1−H where

d= means they have the same distribution,
and

βH =
√
2√

Γ (3 − 2H)
. (3.10)

In other words, G(t) is a fractional Brownian motion with Hurst parameter 1 − H up to a
constant βH if α = α∗.

Proof Clearly, G(t) is a Gaussian process with mean zero because any linear operation of
Gaussian process is again Gaussian.

Without loss of generality, we can assume t2 ≥ t1 ≥ 0. The covariance can be computed
using the isometry (3.7)

E(G(t1)G(t2)) = 〈 ft1 , ft2〉H
= 1

Γ (α)B(α, 1 − α)

∫ t1

0

∫ t2

0
|r − u|2H−2(t1 − r)α−1(t2 − u)α−1dudr.

We break the integral into two parts I1 + I2, where

I1 = 1

Γ (α)B(α, 1 − α)

∫∫

u≥r
. . . dudr, I2 = 1

Γ (α)B(α, 1 − α)

∫∫

r≥u
. . . dudr.

By explicit computation,

I1 = 1

Γ (α)B(α, 1 − α)

∫ t1

0
dr(t1 − r)α−1

∫ t2

r
du(u − r)2H−2(t2 − u)α−1

= B(2H − 1, α)

Γ (α)B(α, 1 − α)

∫ t1

0
(t1 − r)α−1(t2 − r)2H−2+αdr.
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This can further be written in terms of the so-called hypergeometric functions but we choose
not to do it. Similarly,

I2 = 1

Γ (α)B(α, 1 − α)

∫ t1

0
du(t2 − u)α−1

∫ t1

u
dr(r − u)2H−2(t1 − r)α−1

= B(2H − 1, α)

Γ (α)B(α, 1 − α)

∫ t1

0
(t2 − u)α−1(t1 − u)2H−2+αdu.

If α = α∗ = 2 − 2H , the integrals I1 and I2 can be evaluated exactly:

I1 + I2 = 1

Γ (3 − 2H)

(
t2−2H
1 + t2−2H

2 − (t2 − t1)
2−2H

)
,

which shows the last claim. ��
The above computation shows trivially that

Corollary 1 In the case V (x) is a constant, the solution of FSDE D2−2H
c x = RH (t) satisfies

Var(x(t)) ∝ t2−2H . In other words, we have subdiffusion.

Remark 1 This agrees with the Langevin model in [19, Theorem 2.2], though the author was
discussing the case with mass. Further, this corollary shows that the solution to our model
usually is a fractional Brownian motion with a Hurst parameter 1 − H ∈ (0, 1/2), and this
agrees with the data analysis in [18,22,29], implying that our model makes physical sense.

Proposition 1 There exists C > 0 such that E|G(t2) − G(t1)|2 ≤ C |t2 − t1|2H+2α−2 and
therefore G(t) is H + α − 1 − ε Hölder continuous for any ε ∈ (0, H + α − 1).

Proof

E|G(t2) − G(t1)|2 = φ(t2, t2) + φ(t1, t1) − 2φ(t1, t2).

To be notationally convenient, let us define

ϕ(s, t) = B(α, 1 − α)Γ (α)

B(2H − 1, α)
φ(s, t).

Without loss of generality, we assume t2 ≥ t1. Applying a+b ≥ 2
√
abwhenever a ≥ 0, b ≥

0, we have

ϕ(t1, t2) ≥ 2
∫ t1

0
(t2 − r)H+α−3/2(t1 − r)H+α−3/2dr

If H + α − 3/2 ≤ 0, then,

ϕ(t1, t2) ≥ 2
∫ t1

0
(t2 − r)2H+2α−3dr = 2

2H + 2α − 2

(
t2H+2α−2
2 − (t2 − t1)

2H+2α−2
)

.

Hence,

E|G(t2) − G(t1)|2 ≤ C1

(
t2H+2α−2
1 − t2H+2α−2

2 + 2(t2 − t1)
2H+2α−2

)

≤ 2C1(t2 − t1)
2H+2α−2,

since 0 < 2H + 2α − 2 ≤ 1, t2H+2α−2
1 − t2H+2α−2

2 ≤ 0.
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If H + α − 3/2 > 0, then

ϕ(t2, t2) + ϕ(t1, t1) − 2ϕ(t1, t2) =
∫ t2

t1
(t2 − r)2H+2α−3dr

+
∫ t1

0

(
(t2 − r)H+α−3/2 − (t1 − r)H+α−3/2

)2
dr.

The first integral is easily seen to be bounded by C |t2 − t1|2H+2α−2 for some constant C .
For the second term, we have:

(
(t2 − r)H+α− 3

2 − (t1 − r)H+α− 3
2

)2 =
(
H + α − 3

2

)2 (∫ t2

t1
(s − r)H+α− 5

2 ds

)2

.

Let Iε = (
∫ t2
t1

(s − r + ε)H+α−5/2ds)2 with r ≤ t1. Then,
∫ t1

0
Iεdr ≤ (t2 − t1)

∫ t1

0

∫ t2

t1
(s − r + ε)2H+2α−5dsdr

= (t2 − t1)
∫ t2

t1

∫ t1

0
. . . drds = (t2 − t1)

|2H + 2α − 4|(2H + 2α − 3)

×
(
(t2 − t1 + ε)2H+2α−3 − ε2H+2α−3 − (s + ε)2H+2α−3|t2t1

)

≤ Cα,H (t2 − t1)(t2 − t1 + ε)2H+2α−3.

Note that 2H + 2α − 4 < 0. Taking ε → 0 shows that the second term is bounded by
C(t2 − t1)2H+2α−2.

The Kolmogorov continuity criteria shows that G(t) is H + α − 1− ε Hölder continuous
for any ε ∈ (0, H + α − 1) almost surely, ending the proof. ��
Lemma 3 Let {gα} be the convolution group in [21]. In particular, for α > −1

gα(t) =

⎧
⎪⎨

⎪⎩

θ(t)
Γ (α)

tα−1, α > 0,

δ(t), α = 0,
1

Γ (1+α)
D (θ(t)tα) , α ∈ (−1, 0).

Here, θ(t) is the Heaviside step function while D means the distributional derivative with
respect to t . Let Gα be the process G with the kernel indexed by α. Let α1 ∈ (1− H, 1) and
α2 + α1 ∈ (1 − H, 1). Then, it holds that gα2 ∗ Gα1 = Gα1+α2 .

Proof It suffices to look at a continuous path of BH . For such a path, we can mollify to
Bε
H = BH ∗ ηε where ηε = 1

ε
η( t

ε
) with η ∈ C∞

c (−∞, 0), 0 ≤ η ≤ 1 and
∫ ∞
−∞ ηdt = 1.

Then, gα2 ∗ (gα1 ∗ d
dt B

ε
H ) = gα1+α2 ∗ d

dt B
ε
H by [21]. Taking ε → 0 and using the Hölder

continuity of BH , we arrive at the conclusion. ��

4 Existence of the Strong Solutions

For the discussion on existence of solutions of a class of SDEs driven by fractional Brownian
motion, one may refer to [13,32]. Our FSDEs are different from those studied in [13,32], as
we have both the Caputo derivatives and fractional Brownian motions.

Mathematically, for fractional differential equations with Caputo derivative of order α ∈
(0, 1), we only need to specify the initial value at one point t = 0 [5,6,21]. For our fractional
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SDE, this is clear from Eq. (2.14). Intuitively, the system is activated at t = 0 and one starts to
count the memory effect from t = 0. For better understanding, our model is the over-damped
case of the generalized Langevin equation, which is derived from Kac–Zwanzig model (see
[11,19]). In the Kac–Zwanzig model, specifying the value at t = 0 is enough. Hence, to
make the FSDE solvable, we only need to specify the data at t = 0.

We first define the so-called strong solution:

Definition 1 Given a probability space (Ω,F, P) and a random variable x0 on this space,
suppose BH is a fractional Brownian motion over this space, which may be coupled to x0. A
Strong solution of the fractional stochastic differential equation (2.11) with initial condition
x0 on the interval [0, T ) (T > 0) is a process x(t) that is continuous and adapted to the
filtration (Gt ) with Gt = ∩s>t (σ (BH (τ ), 0 ≤ τ ≤ s) ∪ σ(x0)), ∀t ∈ [0, T ), satisfying

(1) P(x(0) = x0) = 1.
(2) With probability one, we have ∀t ∈ [0, T ), Eq. (2.14) holds.

It is standard to prove that the strong solution exists and is unique given the initial data
since we have shown that process G is continuous. We state the theorem and put the proof
in the “Appendix” for a reference:

Theorem 1 Let H > 1/2 and α ∈ (1 − H, 1). Assume that V ′(·) is Lipschitz continuous.
Then, there exists a unique strong solution on [0,∞) to the FSDE (2.11) for a given fractional
Brownian motion and initial distribution in the sense of Definition 1.

If V ′(x) is only locally Lipschitz, we probably need V to be confining, or in other words,
lim|x |→∞ V (x) = ∞ and e−βV (x) ∈ L1(R) for any β > 0 for the global existence of the
solution. We are not going to pursue this issue any further in this work.

5 Asymptotic Analysis

In this section, we discuss the ergodicity and convergence to equilibrium satisfying Gibbs
measure. This is important for a physical system.When the force is linear, we show rigorously
that the process is ergodic and converges algebraically to theGibbsmeasure if the ‘fluctuation-
dissipation theorem’ is satisfied (see Theorem 2). When the force is nonlinear, we believe
this problem must be solved by rewriting the FSDE model into Markovian processes and we
propose two possible approaches for this.

5.1 Linear Force Case

Consider that V ′(x) = kx for some k > 0. By Theorem 1, the solution exists and is unique.
In this section, we will show rigorously for the linear force case that our model indeed has
physical meaning.

For the convenience, we introduce the function

eα,k(t) = Eα(−ktα), (5.1)

where

Eα(z) =
∞∑

n=0

zn

Γ (nα + 1)
(5.2)
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is the Mittag–Leffler function. Note that eα,k solves the equation

Dα
c eα,k = −keα,k, eα,k(0) = 1.

See for example [23].
We can now state the result for asymptotic behaviors:

Theorem 2 Let V = 1
2kx

2. As t → ∞, the solution x(t) to the FSDE (2.11) converges in
distribution to a normal distribution, i.e., x(t) tends to a stationary Gaussian process: x∞(t).
The covariance h(τ ) = E(x∞(t)x∞(t + τ)) of this stationary process satisfies

F(h(τ )) = 2Γ (2H + 1) sin(Hπ)

Γ (1 − α)

|ω|1−2H

|(iω)α + k|2 , (5.3)

where F(·) is the Fourier transform operator for tempered distributions. If α = α∗ so that
the ‘fluctuation-dissipation theorem’ is satisfied, the covariance is given exactly by

h(τ ) = 1

k
eα,k(τ ). (5.4)

In particular, x∞(t) satisfies the Gibbs measure

μ(dx) ∼ exp

(
−1

2
kx2

)
dx .

To prove this theorem, our approach is to find out the exact formulas for the solutions:

x(t) = x0eα,k(t) +
(
G(t) +

∫ t

0
G(t − s)ėα,k(s) ds

)

= x0eα,k(t) − CH

k

∫ t

0
ėα,k(t − τ) dBH (τ ) =: X1 + X2. (5.5)

Recall again that the dot means derivative on time. We will analyze the asymptotic behaviors
of this stochastic process to conclude our claim.

Before we give the proof, we remark that the variance of the first term is ∼ t−2α while
the variance of the second term increases to the stationary variance with rate t2H−2−α . The
loss of the variance of the first term can be balanced by the gain of the second term only if
−2α = 2H − 2 − α or α = α∗. If α is too small, then, the effect of initial data dampens
slowly, or the dissipation caused by viscosity is small, which cannot balance the fluctuation.
If α is too big, then the effect of initial data dampens too fast due to strong dissipation. Hence,
the fluctuation-dissipation theorem must be satisfied to model a true physical system so that
there is balance. We also remark that, as we have seen, even if there is no balance between
fluctuation and dissipation, the whole process will still tends to a normal distribution, though
it might not be the correct physical equilibrium.

We now move to the proof of Theorem 2. To do that, we prove several auxiliary lemmas.
We first of all introduce a lemma regarding the behavior of eα,k :

Lemma 4 eα,k , the solution to the initial value problem

Dα
c eα,k = −keα,k, eα,k(0) = 1,

is continuous on [0,∞) and smooth on (0,∞). As t → ∞,

eα,k(t) = O(t−α).
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The derivative is negative: ėα,k(t) < 0. As t → 0+, ėα,k(t) ∼ Ctα−1. Further, there exist
C1 > 0,C2 > 0 such that for t ≥ 1,

C1t
−α−1 ≤ |ėα,k(t)| ≤ C2t

−α−1. (5.6)

We have for t > 0,

ėα,k(t) = −kgα(t) − k

Γ (α)

∫ t

0
(t − s)α−1ėα,k(s) ds. (5.7)

Proof The fact that eα,k is the solution to the IVP is well-known [23]. Denoting the Heaviside
step function as θ(t) and gα(t) = θ(t)

Γ (α)
tα−1. Using the group technique and the inverse

formula introduced in [21], we find that

θ(t)eα,k = θ(t)
(
1 + gα ∗ (−kθ(t)eα,k)

)
.

Taking the distributional derivative on both sides, we find that

θ(t)ėα,k = −kgα − kgα ∗ (θ(t)ėα,k).

Since all distributions are locally integrable, the convolution can be written as Lebesgue
integral and we have the equality (5.7).

By the series expansion of Mittag–Leffler functions (Eq.5.2), we find the local behavior
of ėα,k near t = 0. From the series expansion, it is seen that eα,k is strictly decreasing on
(0,∞). The asymptotic behavior at t → ∞, is obtained by Tauberian analysis [40] using the
Laplace transforms of ėα,k(t) and ëα,k(s) (noting the Laplace transform L(ėα,k) = − k

sα+k ),
or the asymptotic behavior of Mittag–Leffler function directly. ��
Lemma 5 The solution to the FSDE (2.11) with V ′(x) = kx is given by (5.5).

Proof SinceG(t) is almost surely continuous, we just solve the equation for each continuous
sample path of G(t). Let T > 0. We set G̃(t) = G(T ) when t > T so that the Laplace
transform of G̃ exists. Consider the equation

y(t) = x(0) − k

Γ (α)

∫ t

0
(t − s)α−1y(s) ds + G̃(t).

Take the Laplace transform (denoted by L) on both sides. Since L(tα−1) = Γ (α)s−α , we
find

L(y) = x0sα−1

sα + k
+ L(G̃)

(
1 − k

sγ + k

)
.

We have by the Laplace transform of eα,k that

y(t) = x0eα,k(t) + G̃(t) +
∫ t

0
G̃(t − s)ėα,k(s) ds.

Clearly,

x(t) = y(t), t ≤ T .

Since T is arbitrary, then, we have for any t ≥ 0 that the unique solution x(t) is given by

x(t) = x0eα,k(t) +
(
G(t) +

∫ t

0
G(t − s)ėα,k(s) ds

)
.
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Now, we argue that X2 in (5.5) can also be written as

X2(t) = −CH

k

∫ t

0
ėα,k(t − τ) dBH (τ ).

We first of all rewrite
∫ t

0
G(t − s)ėα,k(s) ds = CH

Γ (α)

∫ t

0

∫ t−s

0
(t − s − τ)α−1dBH (τ )ėα,k(s) ds.

As in the proof of Lemma 3, we may mollify the random path. Then, we can change the order
of integration. Taking the mollifying parameter to zero, we get

∫ t

0
G(t − s)ėα,k(s) ds = CH

Γ (α)

∫ t

0

∫ t−τ

0
(t − s − τ)α−1ėα,k(s) ds dBH (τ ).

By the identity for ėα,k (Eq.5.7), we have

1

Γ (α)

∫ t−τ

0
(t − s − τ)α−1ėα,k(s)ds = −gα(t − τ) − 1

k
ėα,k(t − τ).

This then yields
∫ t

0
G(t − s)ėα,k(s) ds = − CH

Γ (α)

∫ t

0
(t − τ)α−1dBH (τ ) − CH

k

∫ t

0
ėα,k(t − τ) dBH (τ ).

This then shows the claim. ��
X2 is Gaussian process since BH is a Gaussian process. The mean of X2 is clearly zero.

We can investigate the variance to see its asymptotic behavior.

Remark 2 X2 never converges in L p or almost surely, so we only consider convergence in
distribution.

For notational convenience, let us denote

r(t) = −ėα,k(t) ≥ 0. (5.8)

By the isometry (3.7), we can compute that

Σ(t) = Var(X2(t)) = H(2H − 1)
C2
H

k2

∫ t

0

∫ t

0
r(t − s)r(t − τ)|s − τ |2H−2dτds

= 1

k2Γ (1 − α)

∫ t

0

∫ t

0
r(s)r(τ )|τ − s|2H−2dτds. (5.9)

Lemma 6 Let α ∈ (1 − H, 1). Σ = limt→∞ Σ(t) exists and there exist C1 > 0,C2 > 0
such that

C1t
2H−2−α < Σ − Σ(t) < C2t

2H−2−α. (5.10)

Proof By Lemma 4 and (5.8), r is positive and
∫ ∞

0
r(t) dt = 1.

By Lemma 4, there exist C1 > 0,C2 > 0 such that for t ≥ 1

C1t
−α−1 ≤ r ≤ C2t

−α−1.
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Then, that Σ = limt→∞ Σ(t) exists is clear.
Consider the remainderΣ −Σ(t), which is an integral over the regionR2≥0 \[0, t]×[0, t].

Due to the symmetry, we have

k2Γ (1 − α)(Σ − Σ(t)) = 2
∫ ∞

t
ds r(s)

∫ s

0
r(τ )(s − τ)2H−2dτ.

Consider that t is large and therefore s ≥ t > 1. Below, the letterC denotes a generic constant
which is independent of s and t but the concrete value could change from line to line. Denote
the inside of the above integral as

J (s) =
∫ s

0
r(τ )(s − τ)2H−2dτ ≤

∫ 1

0
r(τ )(s − τ)2H−2dτ +

∫ s

1
Cτ−α−1|s − τ |2H−2dτ.

The first term is controlled by (s − 1)2H−2
∫ 1
0 r(τ )dτ . The second term is estimated as:

Cs2H−2−α

(∫ 1/2

1/s
z−1−α(1 − z)2H−2dz +

∫ 1

1/2
z−1−α(1 − z)2H−2dz

)

≤ Cs2H−2−α

(
22−2H 1

α
(sα − 2α) + C̄

)
≤ Cs2H−2,

where C̄ = ∫ 1
1/2 z

−1−α(1 − z)2H−2dz independent of s. Hence by the asymptotic behavior
of r ,

Σ − Σ(t) ≤ C
∫ ∞

t
|r(s)|s2H−2du ≤ Ct2H−2−α.

For the other direction, we just note J (s) ≥ s2H−2
∫ 1
0 |r(τ )| dτ . ��

Proof of Theorem 2 By inspection of the solution (5.5), it is clear that X1 → 0 almost surely
and in L2 as t → ∞. We only have to focus on X2.

Since X2 is a Gaussian process with mean zero, by Lemma 6, Var(X2) converges and thus
X2 converges in distribution. We can now show the convergence of the covariance

h(τ ; t) = E(X2(t)X2(t + τ))

= 1

k2Γ (1 − α)

∫ t

0

∫ t+τ

0
r(t − u)r(t + τ − v)|u − v|2H−2dvdu

= 1

k2Γ (1 − α)

∫ t

0

∫ t+τ

0
r(u)r(v)|v − τ − u|2H−2dvdu.

Denote

h(τ ) = 1

k2Γ (1 − α)

∫ ∞

0

∫ ∞

0
r(u)r(v)|v − τ − u|2H−2dvdu ≥ 0. (5.11)

We argue that there exists C > 0 depending on H, α, k such that h(τ ) ≤ C . To do this, we
use r̃(t) to represent the even extension of r . Then, we find

∫ ∞

0

∫ ∞

0
r(u)r(v)|v − τ − u|2H−2dvdu =

∫ ∞

τ

∫ ∞

0
r(u − τ)r(v)|v − u|2H−2dvdu

≤
∫ ∞

0

∫ ∞

0
r̃(u − τ)r(v)|v − u|2H−2dvdu

≤ 1

H(2H − 1)
‖r̃(· − τ)‖H 0‖r‖H 0 .
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The last inequality follows from the fact that (3.7) gives the inner product. According to
Lemma 4, the asymptotic behavior of r(t) = −ėα,k implies that

‖r̃(· − τ)‖1/H1/H ≤ 2‖r‖1/H1/H < ∞
since α ∈ (1 − H, 1). Lemma 1 implies that h(τ ) is bounded.

This means that the integral in (5.11) converges as t → ∞, for −∞ < τ < ∞:

h(τ ; t) → h(τ ) = 1

k2Γ (1 − α)

∫ ∞

0

∫ ∞

0
r(u)r(v)|v − τ − u|2H−2dvdu ≤ C.

Consequently, X2 converges in distribution to a stationary process. The limit process x∞(t)
has the covariance h(τ ) to be bounded.

Since h(τ ) is bounded, it is a tempered distribution. The Fourier transform exists. The
following formal computation can be justified by considering h(τ )e−ετ 2 and then taking the
limit ε → 0 under the topology of the tempered distribution.

∫ ∞

−∞
e−iωτ

∫ ∞

0

∫ ∞

τ

r(u − τ)r(v)|u − v|2H−2dudvdτ

=
∫ ∞

0

∫ ∞

−∞

∫ u

−∞
r(u − τ)e−iωτdτ |u − v|2H−2r(v)dudv.

The inner most integral turns out to be

e−iωu
∫ ∞

0
eiωτ r(τ )dτ = I (−iω)e−iωu,

with

I (s) = k

sα + k
.

The whole thing turns out to be

I (−iω)I (iω)

∫ ∞

−∞
e−iωz |z|2H−2dz = k2

|(iω)α + k|2 (2Γ (2H + 1) sin(Hπ))|ω|1−2H ).

This shows the first claim.
If α = α∗ = 2 − 2H , we find that

F(h(τ )) = 2 sin(Hπ)|ω|1−2H

|(iω)α + k|2 .

Recall that we have the identity
∫ ∞

0
e−ts Eα(−ktα)dt = sα−1

sα + k
.

It follows that
∫ ∞

−∞
e−iωt Eα(−k|t |α)dt = 2

Re((iω)α−1)(k + (−iω)α)

|k + (iω)α|2 = 2k sin(απ/2)|ω|α−1

|k + (iω)|2 .

Hence, we find in this case

h(τ ) = 1

k
eα,k(τ ).
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It follows that the final equilibrium is a normal distribution with variance

Σ = h(0) = 1

k

and the last claim follows. ��
5.2 The General Case

Wehave proved that for linear regimes,whenα = α∗ is considered, the distribution converges
to the Gibbs measure with algebraic rate. The linear forcing case is special, but it shows
that our model makes physical meaning. For general forcing regimes with the ‘fluctuation-
dissipation theorem’ satisfied (α = α∗), proving the ergodicity and that the distribution
converges to the Gibbs measure algebraically seems hard. We believe this problem can be
solved byfiguring out someMarkovian representations. In the following,wepropose two such
possible Markovian embedding approaches that may be helpful for studying the asymptotic
behavior.

5.2.1 Infinitely Dimensional Ornstein–Uhlenbeck Process with Mixing

If the kernel γ (t) is the sum of finitely many exponentials, it is well known the GLE has a
Markovian representation with a particular mixing (see [34] for the details) so that the Gibbs
measure is an invariant measure. However, the result corresponding to a general kernel with
fat tail is yet unknown. In our FSDE, the kernel γ (t) = θ(t)

Γ (1−α)
t−α is of fat tail but it is

completely monotone. A completely monotone function is the Laplace transform of a Radon
measure on [0,∞) by the famous Bernstein theorem [40]. In other words, the kernel γ (·) can
be written as superpositions of infinitely many exponentials. Based on this observation, we
can formally rewrite our FSDE model to an infinite-dimensional OU process with mixing.
We hope the techniques in [34] may be generalized to this infinite OU process to discuss the
ergodicity of our FSDE model. This seems beyond the scope of this paper and we leave the
rigorous discussion to future.

To understand the idea, we first of all consider the deterministic equation

Dα
c x = γ (t) ∗ (θ(t)ẋ) = x, x(0) = x0. (5.12)

It is well-known that the solution of this equation is x(t) = x0Eα(tα), which is continuous
on [0,∞) and smooth on (0,∞), and further ẋ ≥ 0 [21].

The kernel γ (t) is completely monotone and it can be written as

γ (t) =
∫ ∞

0
e−λtρ(λ) dλ, ρ(λ) = 1

B(α, 1 − α)
λα−1. (5.13)

Here B(·, ·) is the Beta function. We then decouple the fractional ODE (5.12) as an infinitely
dimensional Markovian process with a mixing effect:

⎧
⎪⎨

⎪⎩

0 = x(t) + ξ(t), t > 0, x(0+) = x0,

ξ̇λ(t) = −λξλ(t) − √
ρ(λ)ẋ(t), ξλ(0) = 0,

ξ(t) = limε→0
∫ ∞
0 e−λε√ρξλ(t) dλ.

(5.14)

We solve the second equation in (5.14) as

ξλ(t) = −
∫ t

0

√
ρ(λ)e−λ(t−s) ẋ(s) ds, (5.15)
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which implies that ξ in the third equation is well-defined. Provided ẋ ≥ 0, we switch the
order of integration for ξ and applying monotone convergence theorem,

ξ(t) = − lim
ε→0

∫ ∞

0

∫ t

0
ρ(λ)e−λ(t−s+ε) ẋ(s) ds dλ

= − lim
ε→0

1

Γ (1 − α)

∫ t

0
(t − s + ε)−α ẋ(s) ds = −Dα

c x(t). (5.16)

The equation x = Dα
c x, t > 0 then follows. This system then decouples the memory to

a system of uncountable Markovian functions with the simple mixing given by the third
equation in (5.14).

Remark 3 Let us mention a subtlety of the system: it seems that the initial value of x is
unimportant as one can reduce the system to

ξ̇λ(t) = −λξλ(t) + √
ρ(λ)ξ̇ (t), t > 0. ξλ(0) = 0.

ξ(t) = lim
ε→0

∫ ∞

0
e−λε

√
ρ(λ)ξλ(t) dλ.

This seems to be solvable without considering x0. Actually, this system is not well-posed.
The reason is that the equation for ξλ may not be valid at t = 0 and limt→0 ξ(t) �= ξ(0) = 0.
(In the original system, ξ(0) = ξ(0+) = x(0+) is equivalent to limt→0 Dα

c x = 0.) We must
know limt→0 ξ(t) = limt→0 Dα

c x to start the process, which is equivalent to assigning the
initial value of x .

Back to our FSDE (2.11), the computation for the deterministic case then leads us to
consider:

⎧
⎪⎨

⎪⎩

V ′(x(t)) = ξ(t), t > 0

ξ(t) = limε→0+
∫ ∞
0 ξλ(t)e−ελρ(λ)1/2 dλ, t > 0

ξ̇λ(t) = −λξλ(t) − √
ρ(λ)ẋ(t) + √

2λẆλ(t).

(5.17)

Here we assume ξα(0)’s are i.i.d, normal with variance 1. This is a random system of dif-
ferential algebraic equations (DAE), and clearly Markovian. The issue is that we have an
uncountable-dimensional OU process driven by an uncountable-dimensional Wiener pro-
cess (normal Brownian motion).

With the random noise, we may not be able justify the computation as we did for the
deterministic cases. However, a formal computation may still be illustrating, through which
we argue that this DAE system is equivalent to our FSDE. By solving ξλ formally, we have

ξ(t) = lim
ε→0+

(∫

[0,∞)

ξλ(0)
√

ρe−λ(t+ε)dλ +
∫

[0,∞)

∫ t

0

√
2λρe−λ(t−s+ε)dWλ(s)dλ

)

− lim
ε→0

∫

[0,∞)

∫ t

0
ρ(λ)e−λ(t−s+ε) ẋ(s) dsdλ =: R(t) + K (t). (5.18)

In the case t > 0, τ ≥ 0, we have

E(R(t)R(t + τ)) =
∫

[0,∞)

ρe−λ(2t+τ) Var(ξ0) dλ +
∫

[0,∞)

∫ t

0
2λρ(λ)e−λ(2t+τ−2s)dsdλ

= γ (τ + 2t) + γ (τ) − γ (τ + 2t) = γ (τ). (5.19)
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Of course, the change of order of integration and expectation is not justified rigorously, but
the computation is still interesting. Since both R(t) and CH ḂH are Gaussian process and
they have the same covariance, we can then identify them.

For the term K (t) in (5.18), since ρ(λ)e−ελ ∈ L1[0,∞), we may change the order of
integration and K (t) = −Dα

c x for t > 0. Hence,

ξ = −Dαx + R(t), t > 0. (5.20)

This then formally verifies that FSDE (2.11) can be obtained from the Markovian DAE
system.

The same subtlety in Remark 3 appears here. ξ(0) �= −Dαx |t=0 + R(0), which allows us
to specify the initial condition x0.

Since the Gibbs measures for the GLE with the kernel to be finitely exponentials are
invariant measures [34], we think it is promising to show that Gibbs measures are the final
equilibrium measures for our model. The discussion here provides a possible framework for
the study of general V (x). To study the stochastic DAE system, one may have to put some
structure in the space of infinite-dimensional Gaussian process, and then somehow figure out
that the Gibbs measure for the whole system is an invariant measure. This will then be left
for future.

5.2.2 A Heat Bath Model

In this subsection, we summarize the heat bath model proposed in [16,38] for the generalized
Langevin equation. The key point is that one can consider the whole dynamics of the particle
together with the heat bath, which is Markovian. If one integrates out the degrees of freedom
for the heat bath, one obtains the GLE. The whole heat bath model is the continuous version
of the Kac–Zwanzig model mentioned in [11,19,42]. We think this heat bath model may
be another promising direction to study the ergodicity and the asymptotic behavior of our
FSDE model. Formally, if one takes the m → 0 limit for the special kernel γ (t) ∝ |t |−α

(the discussion in [16,38] is not applicable to this kernel though), our FSDE can be obtained.
This limit for the classical Langevin equation (Eq.1.1) is called the Smoluchowski–Kramers
approximation [10] and the limit for generalized Langevin equation has not been studied yet
to our best knowledge. We will summarize the formulation here briefly and then give a brief
discussion to connect it with our FSDE model.

Assume that the particle is put in a heat bath modeled by infinitely many free phonons
and the corresponding scalar field ϕ is given by the massless Klein–Gordon equation (which
is a wave equation),

(−∂2t + Δ
)
ϕ = 0. (5.21)

The Lagrangian density is L = − 1
2∂

μϕ∂μϕ, where μ goes over the time-spatial coordinate
in relativity, and the Hamiltonian is

Hh = 1

2

∫

Rn
(|∇ϕ|2 + |π |2)dx, (5.22)

where π = ∂tϕ should be regarded as a new variable.
This Hamiltonian motivates that the correct space for the heat bath is

V = H1(Rn) ⊗ L2(Rn)
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with the inner product given by

〈 f, g〉 =
∫

Rn
(∇ f1 · ∇g1 + f2g2) dx, ∀ f = ( f1, f2) ∈ V , g = (g1, g2) ∈ V . (5.23)

Note that Gaussian measures can be constructed over this Hilbert space. ∀ f, g ∈ V and ξ

is an V -valued random variable satisfying a Gaussian measure μ
β
φ0

indexed by φ0 ∈ V and
β > 0, then,

E(〈 f, ξ − φ0〉〈ξ − φ0, g〉) = β−1〈 f, g〉. (5.24)

The coupling between the particle and the heat bath is given by

HI =
∫

Rn
ϕ(x)ρ(q − x) dx =

∫

Rn
ϕ(x)ρ(x − q) dx,

where ρ is a radially symmetric function which can be understood as the coupling strength.
In literature [16,38], ρ is assumed to be in L2, so that the coupling strength is finite and can
be approximated by the dipole expansion:

HI =
∫

Rn
ρq · ∇ϕ dx + q2

2

∫

Rn
|ρ2| dx . (5.25)

The second term is some correction added to make the model clean so that the GLE can be
derived from this model.

The total Hamiltonian that describes the coupling between the particle and the heat bath
is given by

H = 1

2m
p2 + V (q) + 1

2

∫

Rn
(|π |2 + |∇ϕ|2) dx +

∫

Rn
ρq · ∇ϕ dx + q2

2

∫

Rn
|ρ2| dx

= 1

2m
p2 + V (q) + 1

2

∫

Rn
|∇ϕ + qρ|2 + |π2| dx . (5.26)

where lim|q|→∞ V (q) = ∞ and exp(−βV (·)) ∈ L1(Rn) for any β > 0.
With this coupling, the authors in [16,38] showed that the particle satisfies the generalized

Langevin equation obeying the ‘dissipation-fluctuation theorem’ provided the initial data
satisfy a certain Gaussian measure. The GLE for n = 1 case is written as

q̇ = v, mv̇ = −V ′(q) −
∫ t

0
γ (t − s)q̇(s) ds + R(t),

γ (t) =
∫

R

|ρ̂|2eikt dk, E(R(t)R(s)) = γ (|t − s|).

With this result, the authors conclude the following:

Proposition 2 Suppose R(t) is a 1D stationary Gaussian process with mean zero and

E(R(t)R(s)) = γ (|t − s|). (5.27)

If γ is the Fourier transform of an L1(R) even nonnegative function, then there exists a
coupling between q(0) = q0 and R(t) so that the equation

q̇ = v, mv̇ = −V ′(q) −
∫ t

0
γ (t − s)q̇(s) ds + R(t) (5.28)
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admits the Gibbs measure

μ(dqdv) ∝ exp

(
−mv2

2
− V (q)

)
dqdv, (5.29)

as the invariant measure.
For any initial distribution μ0 that is absolutely continuous with respect to μ and any

coupling between q0 and R(t), μt converges weakly to the Gibbs measure μ.

Our FSDE model is similar to the problems studied in [16,38], except that γ (t) ∝ |t |−α

and m = 0. Note that the kernel |t |−α is not the Fourier transform of an L1 kernel. One can
therefore mollify γ by

γε(t) = ηε ∗ γ (t), (5.30)

so that γε is the Fourier transform of an L1 kernel. One can then study the GLEwith kernel γε .
If final equilibrium is preserved with ε → 0 limit, then the Gibbs measure is the equilibrium
measure for the GLEwith kernel |t |−α . Then, formally, the Smoluchowski–Kramers approx-
imation m → 0 limit (if valid) yields that the Gibbs measure proportional to exp(−V (q)) is
the final equilibriummeasure of our FSDE (2.14). This provides another possible framework
for general potential V (x) and we leave the rigorous study for future.

Remark 4 TheSmoluchowski–Kramers approximation (m → 0 limit) for the usualLangevin
equations has been discussed in [10]. However, for the generalized Langevin equation, the
limit m → 0 is subtle. The limit equation for a general kernel γ may not be a good initial
value problem. The initial value problem

∫ t

0
γ (t − s)q̇(s) ds = −V ′(q) + R(t), q(0) = q0

generally admits no continuous solution if γ (t) is bounded. Hence, the possible approach is
to show first that convergence to Gibbs measure is valid for the GLE when γ (t) ∝ |t |−α and
then show the m → 0 limit can pass to the final equilibrium measures.
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Appendix: Proof of Theorem 1

Proof We just consider a sample point x0 and a sample path G with G being continuous. We
then construct a path that satisfies the integral equation given this sample initial data.

By Proposition 1, G(t) is continuous. Consider the sequence given by

x (0) = x0,

and x (n), n ≥ 1 is given by

x (n)(t) = x0 − 1

Γ (α)

∫ t

0
(t − s)α−1V ′(x (n−1)(s)) ds + G(t).

Assume L is a Lipschitz constant for V ′(·). Introducing gγ = θ(t)
Γ (γ )

tγ−1, we find that
{gγ }γ>0 forms a convolution semigroup (Lemma 3). We define

en = x (n) − x (n−1).
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Explicit formula tells us that

e1 = −V ′(x0)gα+1 + G(t),

and that

|en | = | − gα ∗ (V ′(xn−1) − V ′(xn−2))| ≤ Lgα ∗ |en−1|, n ≥ 2.

Hence,

|en | ≤ Ln−1g(n−1)α ∗ |e1|.
Direct computation shows that sup0≤t≤T g(n−1)α ∗ |e1| decays exponentially in n. Hence,∑

n |en | converges. It follows that ∑
n e

n converges uniformly on any interval [0, T ] with
T ∈ (0,∞). The limit is also a continuous function. It turns out that the limit satisfies the
integral equation.

For the uniqueness, assume that both x(t) and y(t) are solutions. Then, we take a sample
where both x(t) and y(t) are continuous. For this sample, ∀t > 0,

|x(t) − y(t)| = 1

Γ (α)

∣∣∣∣

∫ t

0
(t − s)α−1(V ′(x(s)) − V ′(y(s)))

∣∣∣∣ ds ≤ L(gα ∗ |x − y|)(t).

Applying this inequality iteratively and using the semi-group property of gγ , we find

|x − y|(t) ≤ Lngnα ∗ |x − y|.
Fixing T > 0, the right hand side goes to zero uniformly on [0, T ]. Then, we find that x = y
on [0, T ] for this sample path. Since both solutions are continuous almost surely, then x = y
on [0, T ] almost surely. By the arbitrariness of T , x = y almost surely. The uniqueness then
is shown. This then completes the proof of the theorem. ��
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16. Jakšić, V., Pillet, C.: Ergodic properties of the non-Markovian Langevin equation. Lett. Math. Phys. 41(1),
49–57 (1997)

17. Kilbas,A.A., Srivastava,H.M., Trujillo, J.J.: Theory andApplications of FractionalDifferential Equations,
vol. 204. Elsevier, Amsterdam (2006)

18. Kou, S., Xie, X.S.: Generalized langevin equation with fractional gaussian noise: subdiffusion within a
single protein molecule. Phys. Rev. Lett. 93(18), 180603 (2004)

19. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat.
2, 501–535 (2008)

20. Kubo, R.: The fluctuation-dissipation theorem. Rep. Prog. Phys. 29(1), 255 (1966)
21. Li, L., Liu, J.G.: A generalized definition of Caputo derivatives and its application to fractional ODEs.

arXiv preprint arXiv:1612.05103v2 (2017)
22. Magdziarz, M., Weron, A., Burnecki, K., Klafter, J.: Fractional brownian motion versus the continuous-

time random walk: a simple test for subdiffusive dynamics. Phys. Rev. Lett. 103(18), 180602 (2009)
23. Mainardi, F., Paradisi, P., Gorenflo, R.: Probability distributions generated by fractional diffusion equa-

tions. arXiv preprint arXiv:0704.0320 (2007)
24. Mandelbrot, B.B., VanNess, J.W.: Fractional Brownianmotions, fractional noises and applications. SIAM

Rev. 10(4), 422–437 (1968)
25. Marconi, U., Puglisi, A., Rondoni, L., Vulpiani, A.: Fluctuation-dissipation: response theory in statistical

physics. Phys. Rep. 461(4), 111–195 (2008)
26. Marty, R., Sølna, K.: A general framework for waves in randommedia with long-range correlations. Ann.

Appl. Probab. 2, 115–139 (2011)
27. Mémin, J., Mishura, Y., Valkeila, E.: Inequalities for the moments of Wiener integrals with respect to a

fractional Brownian motion. Stat. Probab. Lett. 51(2), 197–206 (2001)
28. Mikosch, T., Norvaiša, R.: Stochastic integral equations without probability. Bernoulli 6, 401–434 (2000)
29. Min, W., Luo, G., Cherayil, B.J., Kou, S., Xie, X.S.: Observation of a power-law memory kernel for

fluctuations within a single protein molecule. Phys. Rev. Lett. 94(19), 198302 (2005)
30. Mori, H.: A continued-fraction representation of the time-correlation functions. Prog. Theor. Phys. 34(3),

399–416 (1965)
31. Nualart, D.: Fractional Brownian motion: stochastic calculus and applications. Int. Congr. Math. 3, 1541–

1562 (2006)
32. Nualart, D., Ouknine, Y.: Regularization of differential equations by fractional noise. Stoch. Proc. Appl.

102(1), 103–116 (2002)
33. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32(1), 110 (1928)
34. Ottobre,M., Pavliotis, G.: Asymptotic analysis for the generalized Langevin equation. Nonlinearity 24(5),

1629 (2011)
35. Pavliotis, G.A.: Stochastic Processes and Applications, Diffusion Processes, the Fokker-Planck and

Langevin Equations. Springer, New York (2014)
36. Pipiras, V., Taqqu, M.: Integration questions related to fractional Brownian motion. Probab. Theory Relat.

Fields 118(2), 251–291 (2000)
37. Pipiras, V., Taqqu, M.: Are classes of deterministic integrands for fractional Brownian motion on an

interval complete? Bernoulli 7(6), 873–897 (2001)
38. Rey-Bellet, L., Thomas, L.E.: Exponential convergence to non-equilibrium stationary states in classical

statistical mechanics. Commun. Math. Phys. 225(2), 305–329 (2002)
39. Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential

equations. Nonlinear Anal. Theor. 81, 70–86 (2013)
40. Widder, D.: The Laplace Transform. Princeton University Press, Princeton (1941)
41. Zähle, M.: Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Relat.

Fields 111(3), 333–374 (1998)
42. Zwanzig, R.: Nonlinear generalized Langevin equations. J. Stat. Phys. 9(3), 215–220 (1973)

123

http://arxiv.org/abs/1612.05103v2
http://arxiv.org/abs/0704.0320

	Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem
	Abstract
	1 Introduction
	2 The FSDE Model
	2.1 Fractional Brownian Noise in Complex Systems
	2.2 Over-Damped Limit and the FSDE Model

	3 The Process G as a Stochastic Integral
	3.1 Stochastical Integrals Driven by Fractional Brownian Motions
	3.2 Some Basic Properties of G

	4 Existence of the Strong Solutions
	5 Asymptotic Analysis
	5.1 Linear Force Case
	5.2 The General Case
	5.2.1 Infinitely Dimensional Ornstein–Uhlenbeck Process with Mixing
	5.2.2 A Heat Bath Model


	Acknowledgements
	Appendix: Proof of Theorem 1
	References




