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Abstract
This paper is concernedwith the numerical stability of time fractional delay differential
equations (F-DDEs) based onGrünwald–Letnikov (GL) approximation for the Caputo
fractional derivative. In particular, we focus on the numerical stability region and the
Mittag–Leffler stability. Using the boundary locus technique, we first derive the exact
expression of the numerical stability region in the parameter plane, and show that
the fractional backward Euler scheme is not τ(0)-stable, which is different from the
backward Euler scheme for integer DDE models. Secondly, we prove the numerical
Mittag–Leffler stability for the numerical solutions provided that the parameters fall
into the numerical stability region, by employing the singularity analysis of generating
function. Our results show that the numerical solutions of F-DDEs are completely
different from the classical integer order DDEs, both in terms of τ(0)-stability and the
long-time decay rate. Numerical examples are given to confirm the theoretical results.
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1 Introduction

Time fractional differential equations, or time nonlocal differential equations, have
attracted great attention in recent years. The most important reason is that such equa-
tions are often more accurate than classical integer-order equations in describing
various physical processes with inherited or memory characteristics. Time fractional
differential operators are some kind of convolution integral operators [2,11,21,22], so
they have non-local nature. They usually include the classical integral derivative as
a special case. The time fractional-order equations are usually equivalent to Volterra
integral equations under some conditions [2,11].

Note that the physical interpretation of fractional order calculus is not as intuitive
as integer order calculus, and some authors have tried to give reasonable physical
explanations. Here we would like to mention the explanation given by continuous
time random walk model based on probability theory (see, for example, [9]), which
provides a very natural mathematical basis and physical explanation for fractional
derivatives operator from anomalous diffusion [28]. Also, the generalized Langevin
equations together with fractional noise yield Caputo derivatives naturally [4,19,23].
On the other hand, the delay effect is widespread in various practical models [1,2].
Time delays occur in various models due to the time needed for material, energy,
and information to be transported between different parts of a system. For example,
delays are often used to describe incubation time in biological models. Therefore,
if the memory characteristics and delay effects of the model are taken into account
at the same time, various time fractional order delay differential equations could be
obtained, such as time fractional SIRI epidemic model with relapse and a general
nonlinear incidence rate [20].

For time fractional differential equations, just like the standard integer order equa-
tions, once we know the existence and uniqueness of the solutions, the most important
thing is to study various qualitative properties of the solutions. There are some typ-
ical differences between fractional differential equations and standard integer order
equations, when time tends to the initial point or when time tends to infinity.

As time tends to the initial point, the solutions of time fractional differential equa-
tions usually have low regularity, and are generally Hölder continuous with order α

but without the first order derivative [2,11]. By using operator-valued Fourier mul-
tiplier results on vector-valued Hölder continuous function spaces, a necessary and
sufficient condition of the Cα well-posedness for F-DDEs has been proved in [3]. The
low regularity of the solutions near initial time poses a serious numerical challenge
to the derivation of high order schemes for time fractional equations. Some impor-
tant advances for time fractional differential equations can be found, for example, in
[10,18,26,35–37]. Another problem related to this is how to assign reasonable initial
conditions to time fractional order equations. As pointed out in [14], this is generally
an open and debated issue and earning considerable attention. Nevertheless, this does
not preclude various applications of time fractional order equations. This is not the
focus of this article. We will take the Caputo fractional derivative and impose the
standard initial function for F-DDEs.

When time tends to infinity, the solutions of the time fractional order equations
exhibit a completely different asymptotic behavior from that of the integer order
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equations. The standard integer order equations usually converge exponentially to the
equilibrium state, while the time fractional order equations often have only algebraic
decay rate, which is O(t−α) as t → +∞ and leads to the so-called Mittag–Leffler
stability. See the exact definition below in Sect. 2. For the continuous time fractional
differential equations, several related results have been derived recently in [31,32]
under some structural assumptions. For linear F-DDEs, by constructing a new general-
ized delay matrix function (of Mittag–Leffler type) and studying its related properties,
the authors [5,6] not only gave the optimal decay rate of the solutions to F-DDEs
accurately, but also a fully description of the stability region of F-DDEs. This new
technique is further used in [29] to analyze nonlinear F-DDEs model. In [30], by using
the linearization method combined with a weighted type norm, the authors presented
various qualitative analysis including Mittag–Leffler stability for fractional systems
with time varying delay. Note that Mittag–Leffler stability is a stronger concept than
the usual asymptotic stability, as it finely describes the optimal algebraic decay rate
of the solutions.

Compared with F-ODEs, the numerical stability analysis for F-DDEs faces several
new challenges. Some authors have recently studied various numerical methods of F-
DDEs [10,18,26,35,37]. In [7], the authors provided the stability conditions for pure
delay fractional differential equations for continuous and discrete solutions and proved
that the Grünwald–Letnikov (GL) approximation, or the fractional backward Euler
method, is not τ(0)-stable. This negative result is quite different from the classical
DDEs, in which backward Euler is τ(0)-stable [1,15,17]. This shows the complexity
of the numerical stability region of the F-DDEs from certain aspects, and also shows
that the numerical stability region of F-DDEs is α-dependent. However, the accurate
description of numerical stability region of F-DDEs for general scalar test models is
still open.

For the long-time quantitative analysis of the numerical solutions of time fractional-
order equations (i.e., the numerical Mittag–Leffler stability), there are few results as
far as we know. In [32], a preliminary study was conducted on the F-DDEs through
energy methods. However, this method relies heavily on the special structure of the
coefficients of the numerical scheme so that only low-order schemes can meet the
requirements. In fact, we guess the methods with the special structure should have
orders lower than two. We remark that the CM-preserving schemes introduced in our
recently work [24] satisfy the requirement. It is worth pointing out here that the long
time behavior of numerical solutions for time fractional-order equations usually cannot
be easily obtained fromGrönwall-type inequalities. In order to overcome theweakness
of the energy method in [32], especially in order to establish a direct connection with
the numerical stability region, we turn to the singularity analysis of generating function
as a new tool in [24,33], through which the numerical Mittag–Leffler stability theory
of F-ODEs with or without perturbations near equilibriums was established in [33].

In this paper, we focus on the following scalar test model for F-DDEs with order
α ∈ (0, 1)

Dα
c y(t) = ay(t) + by(t − τ), t > 0,

y(t) = ϕ(t), −τ ≤ t ≤ 0,
(1.1)
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where a, b ∈ R, the delay τ > 0 is a fixed constant, Dα
c y(t) := 1

�(1−α)

∫ t
0

y′(s)
(t−s)α ds

stands for the Caputo fractional derivative and ϕ is the initial function. Although this
model is relatively simple, it is the basis for understandingmore complicated nonlinear
models, and a thorough understanding of this model may provide much insight into
numerical stability of F-DDEs. Note that when b = 0 and a ∈ C, (1.1) is reduced to
the fractional test model or linear Volterra integral equation model, and its theoretical
or numerical stability has been studied a lot [1,2], among which the basic stability
theorem of fractional linear multistep method or convolution quadrature was proved
in [25]. When a = 0 and b ∈ C, (1.1) becomes the fractional pure delay differential
equation, for which the stability results were obtained in [7].

Before we move further, let us recall some basic facts of the stability results for
ODEs, F-ODEs, and DDEs.

• ODEs: Test equation is y′(t) = λy(t), where λ ∈ C. The stability region for the
ODE is S∗ = {λ : Re(λ) < 0} and it is exponentially stable in the stability region,
i.e. |y(t)| ≤ e−Ct with C > 0. The backward Euler scheme is A-stable 1 and the
numerical solution is also exponentially stable, i.e. |yn| ≤ e−Ctn with C > 0 [16].

• F-ODEs: Test equation is Dα
c y(t) = λy(t), where λ ∈ C. The stability region for

the F-ODE is S∗ = {λ : | arg λ| > πα
2 } [25], and it is Mittag–Leffler stable in the

stability region, i.e. |y(t)| ≤ Ct−α with C > 0 and t > 1 [27]. The fractional
backward Euler scheme (GL scheme) is fractional A-stable [25], and the numerical
solution is Mittag–Leffler stable, i.e. |yn| ≤ Ct−α

n with C > 0 and tn > 1 [33].
• DDEs: Test equation is y′(t) = ay(t) + by(t − τ), where a, b ∈ R. The delay-
dependent stability region is S∗ = {(a, b) : all the roos of characteristic equation λ =
a + be−λτ satisfy Re(λ) < 0} and it is exponentially stable in the stability region
[1]. The backward Euler scheme is τ(0)-stable [15] and the numerical solution is
exponentially stable.

Our goal in this article is twofold. Firstly, we aim to give an accurate description
of the stability region of the numerical solutions of F-DDEs based on the GL scheme,
and further study the τ(0)-stability of the numerical scheme. Secondly, we prove the
Mittag–Leffler stability of the numerical solutions provided that the parameters fall
into the numerical stability region by the singularity analysis of generating function.
The main results can be summarized as follows.

Theorem 1.1 (Reformulation of Theorem 4.1 and Theorem 5.1). Fix k ∈ N+, h = τ/k
and consider the GL method for (1.1). When k = 1, the numerical stability region Sk

in the (a, b)-plane lies in the region between a + b = 0 and a − b = (2/τ)α . When
k ≥ 2, the numerical stability region Sk in the (a, b)-plane lies between a + b = 0
and the curve �0:

1 The linear multistep method (LMM) with generating polynomials ρ(ζ ) and σ(ζ ) applying to the test
equation gives the characteristic equation ρ(ζ ) − μσ(ζ ) = 0, where μ = hλ. For backward Euler
method, we have ρ(ζ ) = ζ − 1 and σ(ζ ) = ζ . The numerical stability region Sh = {μ ∈ C :
all roots ζ j (μ) of the characteristic equation satisfy |ζ j (μ)| < 1}. Sometimes one defines Sh = {μ ∈
C : all roots ζ j (μ) of the characteristic equation satisfy |ζ j (μ)| ≤ 1, multiple roots satisfy |ζ j (μ)| < 1},
which is generally called the weak linear stability region. The LMM is called A-stable if Sh ⊃ S∗, i.e.,
Sh ⊃ C

−. See more details in [16, Chapter V].
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�0 :

⎧
⎪⎪⎨

⎪⎪⎩

a = 2αh−α sinα

(
hθ

2τ

)
sin(θ + α(π/2 − hθ/(2τ)))

sin(θ)
,

b = −2αh−α sinα

(
hθ

2τ

)
sin(απ/2 − αhθ/(2τ))

sin(θ)
,

θ ∈
(

1 − α

1 − α/k
π, π

)

. (1.2)

Moreover, for any k ≥ 1, there is always a portion of the stability region S∗ for
(1.1) that is outside the numerical stability region Sk . Consequently, the numerical
method is never τ(0)-stable for α ∈ (0, 1).

The Mittag–Leffler stability holds.

Theorem 1.2 (Reformulation of Theorem 6.1) Let α ∈ (0, 1), a, b ∈ R, k ∈ N
+ and

h = τ/k. Then the numerical solutions for (1.1) based on the GL method is Mittag–
Leffler stable if (a, b) falls into the numerical stability region Sk described above.
Specifically, if (a, b) ∈ Sk ,

yn ∼ − y0
�(1 − α) (a + b)

t−α
n = O(t−α

n ), n → ∞.

The rest of this article is organized as follows. In Sect. 2, we review the related
concepts of the stability region for the time continuous F-DDE model and the corre-
sponding main results. In Sect. 3, in parallel to the continuous case, we first introduce
the concepts of stability and stability region of numerical solutions. Then, we derive
the characteristic polynomial for the numerical scheme based on Grünwald–Letnikov
(GL) approximation for the Caputo fractional derivatives by the discrete Laplacian
transform and generating functions. By means of the boundary locus technique, the
exact numerical stability region is given in Sect. 4. In particular, we highlight the dif-
ferences in the numerical stability region between F-DDEs and classical DDEs, and
prove that GL scheme for F-DDEs is never τ(0)-stable; see Sect. 5. Further, we show
that as long as the numerical solution is stable, it is alsoMittag–Leffler stable in Sect. 6
by the technique of singularity analysis of generating functions. This implies that the
numerical solution has a polynomial decay rate for large time and is consistent with
the continuous equation. Numerical examples are included in Sect. 7.

2 Stability region of the linear scalar F-DDEs

In this section, we collect some definitions and stability properties for the linear scalar
test model (1.1), which will be the foundation of our study in later sections. We first
observe that if we redefine

ã = aτα, b̃ = bτα, t̃ = t/τ, ỹ(t̃) = y(t), ϕ̃(t̃) = ϕ(t), (2.1)

then the form of (1.1) stays unchanged with τ = 1. Hence, dropping the tildes, we
will study the test model (1.1) with τ = 1:

Dα
c y(t) = ay(t) + by(t − 1), t > 0,

y(t) = ϕ(t), −1 ≤ t ≤ 0.
(2.2)
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As long as the properties of (2.2) are obtained, the properties for general τ can be
easily obtained using the relations (2.1).

We will mainly study the stability properties of the model presented in (2.2). For
this purpose, we introduce the following definitions.

Definition 2.1 Let α ∈ (0, 1) and consider parameters a, b ∈ R.

(1) The asymptotic stability region in the (a, b)-plane is defined by S∗ = {(a, b) :
|y(t)| → 0 as t → +∞} for all the initial functions φ.

(2) The solution is called Mittag–Leffler stable if |y(t)| ≤ Cαt−α as t → +∞,
where the constant Cα > 0 is independent of t .

Obviously, Mittag–Leffler stability is stronger than asymptotic stability. Asymp-
totic stability only requires that the solutions tend to zero, but does not describe the
decay rate. Mittag–Leffler stability requires that the decay rate of the solutions being
algebraic, which is a typical feature of time fractional differential equations. The fun-
damental stability result for (2.2) (or equivalently (1.1)) has been proved in [5,6].

Lemma 2.1 [5, Theorem 4,5]. Let α ∈ (0, 1), and a, b ∈ R. The zero solution of
(2.2) is asymptotically stable if and only if (a, b) is an interior point of the region S∗,
bounded by the line a + b = 0 from above and by the following parametric curve �

from below

� : a = a(θ) := θα sin
(
θ + απ

2
)

sin(θ)
, b = b(θ) := − θα sin

(
απ
2
)

sin(θ)
, θ ∈ ((1 − α)π, π) . (2.3)

In the asymptotic stability region, the solution is also Mittag–Leffler stable i.e.,
|y(t)| ≤ Cαt−α as t → ∞.

The stability region S∗ has a vertex P = P(a, b), where a = −b =
[((1−α)π ]α sin( απ

2 )

sin(απ)
> 0. The region can be decomposed into two parts S∗ = R1 ∪ R2,

where

(1) R1 : = {(a, b) : a ≤ b < −a, a ≤ 0},

(2) R2 : =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a, b) : |a| + b < 0 and 1 <
(1 − α)π/2 + arccos[(−a/b) sin(απ/2)]

[

a cos(απ/2) +
√

b2 − a2 sin2(απ/2)

]1/α

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.
(2.4)

The stability region S∗ = R1 ∪R2 in the (a, b)-plane characterized by Lemma 2.1
for α = 0.6 and τ = 1 can be found in Fig. 1.

Remark 2.1 If we want the results for general τ , we may use the scaling (2.1) and
obtain, for example, the lower boundary curve as

a = τ−αθα sin
(
θ + απ

2

)

sin(θ)
, b = −τ−αθα sin

(
απ
2

)

sin(θ)
, θ ∈ ((1 − α)π, π) .
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Redefining θ̃ = τ−1θ , one has

a =
θ̃ α sin

(
τ θ̃ + απ

2

)

sin(τ θ̃)
, b = − θ̃ α sin

(
απ
2

)

sin(τ θ̃)
, θ̃ ∈

(
(1 − α)π

τ
,
π

τ

)

,

which is the same as in [5].

Remark 2.2 It is worth noting that the stability results for F-DDEs presented in
Lemma 2.1 are α-robust [8]. That is, when α → 1−, the stability region for F-DDEs
S∗ = S∗(α) can be reduced to the stability region for the corresponding integer DDEs
[5].

Below, we describe a property of the lower boundary curve given by (2.3), which
will be quite useful when we discuss the numerical stability regions later.

Lemma 2.2 Consider the lower boundary curve � defined in (2.3). Along �, the quan-
tity λ(θ) := a(θ) − b(θ) decreases as θ increases. Geometrically, this means that the
straight line a − b = λ(θ) that goes through the point (a(θ), b(θ)) becomes higher
and higher in the (a, b) plane as θ increases.

Proof Elementary properties of trigonometric functions imply that

λ(θ) = θα sin(θ/2 + απ/2)

sin(θ/2)
,

where θ ∈ ((1 − α)π, π). Now, we show that λ(θ) > 0 is a strictly decreasing
function. To do this, we compute that

d

dθ
ln(λ(θ)) = α

θ
− sin(απ/2)

2 sin(θ/2) sin(θ/2 + απ/2)
.

To show the right hand side is negative, it suffices to show that m(θ) := θ −
2α sin(θ/2) sin(θ/2+απ/2)

sin(απ/2) > 0. Clearly, m(0) = 0 and d
dθ

m(θ) = 1 − α
sin(θ+απ/2)
sin(απ/2) ≥

1 − α
sin(απ/2) > 0 for α ∈ (0, 1). This means that m(θ) > 0 for θ ∈ (0, π). This

completes the proof. �

3 Boundary locus technique for the numerical stability region

In this section, we consider the boundary locus of the stability region for the F-DDEs
model problem with the first order approximation for Caputo derivative by the well-
known Grünwald–Letnikov formula [11]. The GL scheme is also the convolution
quadrature generated by backward Euler scheme [25].

Consider (2.2) and the step size h = 1/k for for some k ∈ N
+. The mesh grid is

given by tn = nh. We will denote yn or fn to be the value defined at tn . The numerical
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scheme for the F-DDE (2.2) based on the GL scheme can be written as

Dα
h yn := 1

hα

n∑

j=0

ωn− j (y j − y0) = ayn + byn−k, n ≥ 1, (3.1)

where (1 − z)α = ∑∞
j=0 ω j z j , and we have the explicit formula ω0 = 1, ω j =

(
1 − α+1

j

)
ω j−1 for j ≥ 1. For the numerical solutions to exist, we require

a �= h−α = kα.

In this paper, the branch cut of function w �→ wα is taken to be (−∞, 0). In other
words, (reiθ )α = rαeiαθ for θ ∈ (−π, π ]. Clearly, y−k is not used. When k = 1, the
data for t < 0 are not used. It is also worth noting that the GL formula is exactly the
numerical scheme given in [7].

We remark that the scaling (2.1) is consistent with the numerical method (3.1) as
well due to the linearity of the GL scheme. In fact, one just needs to define h = τ/k,
h̃ = h/τ for general τ > 0. Hence, studying (3.1) is sufficient. As soon as the results
here are obtained, the results for general τ can be obtained by simple scaling.

Parallel to Definition 2.1, we define some notions of stability for the numerical
solution, following [15].

Definition 3.1 (1) For a given positive integer k ≥ 1, define the numerical stability
region Sk to be the set of pairs (a, b) such that the numerical solutions with
constant step size h = 1/k satisfy that |y(t)| → 0 as n → ∞ for all initial
functions ϕ.

(2) The τ(0)-stability region of a numerical method for F-DDEs is defined by

Sτ(0) =
⋂

k≥1

Sk . (3.2)

The numerical method is called τ(0)-stable if S∗ ⊂ Sτ(0).
(3) If |y(t)| ≤ Cαt−α

n as n → ∞, we call the numerical solutions are Mittag–Leffler
stable.

The boundary locus technique is used to determine the boundary of the stability
region Sk via the discrete Laplace transform (or equivalently the generating function)
of the numerical solution. It has been widely used to determine the accurate stability
region for various continuous and discrete test models [1,5,7].

3.1 The discrete Laplace transform and the generating functions

Consider the discrete function sequence f = ( f0, f1, f2, ...) defined on the mesh
points tn . Let [·]n be the n-th entry of a sequence (i.e., [ f ]n = fn). The discrete
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Laplace transform is defined to be

Lh{ f }(s) := h
∞∑

j=0

f j (1 − hs) j , s ∈ C, (3.3)

where the complex number s is taken such that the the above series is convergent. If
the series converges at some s∗ �= h−1, then it will also be convergent on the disk
D(h−1, r) := {

s ∈ C : |s − h−1| < r
}
where r = |s∗ − h−1|.

Remark 3.1 Note that the definition (3.3) is different from the discrete Laplace trans-
form in [7] because their sequence starts with j = 1. We choose the definition (3.3)
mainly because it is consistent with the convolution we introduce later.

The main advantage of the discrete Laplace transform defined in (3.3) is that it has
quite nice properties similar to the continuous Laplace transform, especially for the
discrete fractional operators and delay functions. To illustrate these, we consider the
weighted discrete convolution (· ∗ ·)h for functions defined on the grid tn :

[( f ∗ g)h]n := h
n∑

j=0

f j gn− j .

Note that the discrete convolution here is also different from that in [7] simply because
starting with j = 0 seemsmore convenient. Moreover, we also consider the difference
operator

∇h yn =
{
0, n = 0,

h−1(yn − yn−1), n ≥ 1.
(3.4)

The following important properties presented in Lemma 3.1 are straightforward
from the definitions:

Lemma 3.1 Let the functions f and g such that Lh{ f } and Lh{g} converge on
D(h−1, r f ) and D(h−1, rg), respectively. Then one has that

(i) Lh{( f ∗ g)h}(s) = Lh{ f }(s) ·Lh{g}(s) on D(h−1, r), where r = min{r f , rg}.
(ii) Lh{∇h f }(s) = sLh{ f }(s) − f0 on D(h−1, r).
(iii) Lh{Dα

h f }(s) = sαLh{ f }(s) − sα−1 f0.

(iv) Lh{ fdk }(z) = (1 − hs)kLh{ f }(s) + h
∑k

j=1 f− j (1 − hs)k− j , where the k-step
delay function given by ( fdk )n = fn−k for n ≥ 0.

Note that the third property can be derived using the fact thatDα
h (yn) = h−1−α[(ω∗

(y − y0))h]n and Lh(ω) = h1+αsα , where ω = (ω0, ω1, ω2, ...) and the coefficients
are given in (3.1). Though the definition now starts from j = 0, the properties almost
stay the same as those in [5,7] (the only difference happens for the Laplace transform
of the delay functions).
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The following important results from [5,7] characterize the asymptotic behaviors
of the discrete function by its discrete Laplacian transform. We remark that though
the definition of the discrete Laplace transform here is different from that in [5,7],
the properties here stay unchanged because the asymptotic behaviors will not change
under reindexing.

Lemma 3.2 (i) Assume that the function f such that Lh{ f } converge on D(h−1, r)

with r > 0. If r > h−1, then f ∈ �1. Otherwise, if r < h−1, then limn→∞ | fn| =
∞.

(ii) Let g ∈ �1. Then there exists f ∈ �1 such that Lh{ f }(z) · Lh{g}(z) = 1 if and
only if

inf
{
|Lh{g}(z)| : z ∈ D(h−1, h−1)

}
> 0.

Arelated function is the generating function of a sequence f = ( f0, f1, . . .) defined
by

F f (z) =
∞∑

n=0

fnzn, z ∈ C. (3.5)

Clearly, the discrete Laplace transform is related to the generating function by

Lh{ f }(s) = hF f (1 − hs). (3.6)

The generating function forgets the underlying grid tn and is applicable for any
given sequence. Corresponding to the generating function, one may also define the
discrete convolution that is unrelated to the underlying grid as well. If f and g are two
scalar sequences with fn, gn ∈ C, we define the discrete convolution

f ∗ g = w, wn =
n∑

j=0

fn− j g j .

It is noted that the only difference from (· ∗ ·)h is an h factor. When f ∗ g = δd , where
δd := (1, 0, 0, ...) is the convolutional identity, we call the sequence f is invertible,
and write the inverse g = f (−1). Note that a sequence f is invertible if and only if
f0 �= 0. It is straightforward to verify that F f ∗g(z) = F f (z) · Fg(z).
Clearly, the discrete Laplace transform and the generating functions are the same

thing in different disguise.We introduce the discrete Laplace transform simply because
many of the numerical stability results in the literature are obtained by the discrete
Laplace transform. The purpose to introduce generating functions is simply because
many of the Tauberian type results [12,34] are given in terms of generating functions
(see Sect. 6 for more details). Below, we explain briefly how one can use the discrete
Laplace transform or the generating functions to characterize the numerical stability
of the discrete solutions.
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Applying the discrete Laplace transform to the numerical scheme (3.1) (when n =
0, the discrete Caputo derivative is zero), we get the Laplace transformation of the
numerical solution sequence y = (y0, y1, y2, ...) as that

Lh{y}(s) =
(

sα − a − b(1 − hs)k
)−1 ·

⎛

⎝sα−1y0 − ahy0 + bh
k−1∑

j=1

y− j (1 − hs)k− j

⎞

⎠ . (3.7)

Introduce

Q(s) := sα − a − b(1 − hs)k (3.8)

with h > 0 and k ∈ N
+, which is defined to be the characteristic polynomial of the

numerical scheme (3.1).
Now, we use zeros of Q(s) and Lemma 3.2 to investigate whether |yn| goes to zero

or not. The issue is that the zero of the denominator and the numerator in (3.7) may
cancel. Some careful calculations lead to the following key observations. Part of them
have essentially been proved in [7].

Proposition 3.1 Suppose that a �= h−α .

(i) If Q(s) has no root in D(h−1, h−1), then |yn| → 0.
(ii) If a + b �= 0 or k ≥ 2, when Q(s) has a root inside the open disk D(h−1, h−1),

then there are some initial data {y j : j ≤ 0} that lead to |yn| → ∞.
(iii) If a + b = 0 and k = 1, then Q(s) = sα − as has two roots s = 0 and

s = a−1/(1−α). In this case, yn = y0 �→ 0 in the numerical solutions. If Q(s)
has a root in the open disk D(h−1, h−1) = D(1, 1) (i.e., a > 2α−1), then for
parameters (a′, b′) near the point (a, b) with a′ + b′ �= 0, |yn| → ∞. Otherwise
when a ≤ 2α−1, there is (a′, b′) that is arbitrarily close to (a, b) such that the
numerical solution is stable.

Proof For (i), one first observe that the sequence whose discrete Laplace transform
is 1/Q(s) is in �1 provided that Q(s) has no zero on D(h−1, h−1). This is in fact a
corollary of Lemma 3.2 (ii).Moreover, the sequencewhose discrete Laplace transform
is sα−1y0−ahy0+bh

∑k−1
j=1 y− j (1−hs)k− j is in �p for some p > 1. In fact, only the

term y0sα−1 affects the asymptotic behavior, and the corresponding sequence decays
like n−α . Then, yn , as the convolution of these two, goes to zero. See the proof of [7,
Theorem 3] for related proofs.

For (ii), we consider first k ≥ 2. When k ≥ 2 and b �= 0, there are always some
initial data {y j : j ≤ 0} that can make the numerator of (3.7) nonzero on the whole
D(h−1, h−1). When k ≥ 2 and b = 0,

Lh{y}(s) = sα−1 − ah

sα − a
y0.

Since a �= h−α , the numerator cannot have the same zero as the denominator (we
recall that sβ = rβeiβθ for s = reiθ+2imπ m ∈ Z, θ ∈ (−π, π ]). Hence, for both
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cases, a zero of the denominator in D(h−1, h−1)will lead a singularity inside the disk.
Lemma 3.2 (i) implies then that |yn| → ∞.

Now, suppose that a + b �= 0. To verify the claim, we only need to consider k = 1
(and thus h = 1) so that

Lh{y}(s) = sα−1 − a

sα − a − b(1 − s)
y0.

The numerator has a zero at s∗ = a− 1
1−α . At this point, the denominator is a− α

1−α −
a − b + ba− 1

1−α = (a + b)(a−1/(1−α) − 1). Since a �= h−α = 1, the denominator is
nonzero at this point. Hence again, a zero of the denominator will lead to a singularity
inside the disk. Lemma 3.2 (i) gives the result.

Consider (iii), one has

Lh{y}(s) = sα−1 − a

sα − as
y0.

The first part of the claim is trivial. Consider a > 2α−1. Then, for any (a′, b′) that is
sufficiently close to the point (a, b) with a′ + b′ �= 0, Q(s) has a zero strictly inside
the disk D(1, 1), while the argument for (ii) implies that the numerator is nonzero at
the same point. Hence, |yn| → ∞. Otherwise, if a ≤ 2α−1, we can find (a′, b′) that
is sufficiently close to the point (a, b) such that Q(s) has no roots in D(1, 1). Then,
for this case |yn| → 0. �

By the discussion above, we can find the parameters (a, b) such that Q(s) has a
root on the circle ∂ D(h−1, h−1). This will be the boundary of the stability region.
(This is true even for the case a + b = 0 and k = 1. In fact, by Proposition 3.1 (iii),
the portion of a + b = 0 with a ≤ 2α−1 belongs to the boundary of the numerical
stability region).

One may use the generating function as well to conclude the same boundary of the
stability region. In fact, Let fn = ayn + byn−k . Then the equation (3.1) can be written
as

1

hα

n∑

j=0

ωn− j (yn − y0) = fn − f0δn,0, n ≥ 0, (3.9)

where δi, j = 1 if i = j and δi, j = 0 if i �= j is the usual Kronecker function. Taking
μ = ω(−1), with the generating function Fμ(z) = (1 − z)−α for the Grünwald–
Letnikov scheme, one then obtains (see more details in [24,33])

Fy(z) − y0(1 − z)−1 = hα
(
Fμ(z) · F f (z) − f0Fμ(z)

)
. (3.10)
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In view of fn = ayn + byn−k for any n ≥ 0 so that F f (z) = aFy(z) +
b
(∑k−1

�=0 y�−k z� + zkFy(z)
)
. Substituting this expression into (3.10) yields that

Fy(z) =
(
1 − hα

(
a+bzk

)
Fμ(z)

)−1 ·
(

y0(1 − z)−1+hα (bg(z) − ay0)Fμ(z)
)

=
(
(1 − z)α − hα

(
a + bzk

))−1 ·
(

y0(1 − z)α−1 + hα (bg(z) − ay0)
)

,

(3.11)

where g(z) = ∑k−1
�=1 y�−k z�. Clearly, (3.6) is satisfied. For the boundary locus, one

needs to find the parameters (a, b) such that 1 − hα
(
a + bzk

)
Fμ(z) has zeros on

the unit circle, agreeing with the claims in Proposition 3.1. The asymptotic behavior
of yn can also be studied using the properties of the generating function on some
neighborhood of unit disc D(0, 1), which has been widely studied in [12]. This will
be useful later in Sect. 6.

3.2 Boundary locus of the numerical stability region

We investigate the boundary locus of the numerical stability region Sk by finding the
parameters (a, b) such that Q(s) has a root on the circle ∂ D(h−1, h−1). The smallest
possible region enclosed by these parameters that includes the half line {(a, b) : a ∈
(−∞, 0), b = 0} will be the stability region Sk .

To perform the discussion, let us first give some basic properties of Q(z) defined
in (3.8).

Lemma 3.3 Let α ∈ (0, 1), a, b ∈ R, τ > 0 and k ∈ N
+.

(i) If a + b ≥ 0, then the equation Q(z) = 0 has at least one nonnegetive real root
on the disc D(h−1, h−1).

(ii) If z is a root of Q(z), then its complex conjugate z̄ is also a root of Q(z), i.e.,
Q(z̄) = 0.

Proof (i) Note that if a + b ≥ 0, then Q(0) = −a − b ≤ 0. It follows from
the the assumption a �= h−α that hαa < 1. On the other hand, we have that
Q(h−1) = h−α − a > 0. Hence, we know that Q(z) = 0 has at least one
nonnegetive real root. Further, Q(z) = 0 has the zero root if a + b = 0 and
Q(z) = 0 has a positive real root if a + b > 0.

(ii) The second is obvious since all the parameters involved are real. �
Lemma 3.3 (i) clearly implies that the stability region is contained in the region

below the line a + b = 0. Now, we perform the boundary locus analysis. Take s ∈
∂ D(h−1, h−1), which can be parameterized as s = 2h−1 cos(φ)eiφ = h−1(1+ ei2φ),
where φ ∈ [−π/2, π/2]. Hence, 1 − hs = −ei2φ . Then,

Q(s) = Q̃(φ) = 2αh−α cosα(φ) (cos(αφ) + i sin(αφ))

− a − b(−1)k (cos(2kφ) + i sin(2kφ)) .
(3.12)
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By Lemma 3.3 (ii), Q̃(φ) is an even function. Hence, we need to find parameters
(a, b) such that the following hold for some φ ∈ [0, π

2 ].
{

2αh−α cosα(φ) cos(αφ) = a + b(−1)k cos(2kφ),

2αh−α cosα(φ) sin(αφ) = b(−1)k sin(2kφ).
(3.13)

Let’s discuss the system of equations (3.13) in three different cases.
Case (I): If φ = 0, then a + (−1)kb = (2/h)α .
Case (II): If φ = π/2, we get the curve a + b = 0.
Case (III): Otherwise, sin(2kφ) can never be zero.We can solve the equation (3.13)

to get that

a = 2αh−α cosα(φ) sin(2kφ − αφ)

sin(2kφ)
, b = (−1)k2αh−α cosα(φ)

sin(αφ)

sin(2kφ)
.

In the third case, by setting θ = kπ − 2kφ ∈ [0, kπ ], one has

a = 2αh−α sinα
(

θ
2k

)
sin(θ + α(π/2 − θ/2k))

sin(θ)
,

b = −2αh−α sinα

(
θ

2k

)
sin(απ/2 − αθ/(2k))

sin(θ)
. (3.14)

These curves obtained are essentially the boundary locus. The smallest region
enclosed by them that include (−∞, 0) will be the stability region Sk . We perform
the discussion in the next section.

Remark 3.2 Clearly ifa ≤ 0, then |b| ≥ �(b(−ei2φ)k) = −a+(2h−1)α cosα(φ) cos(αφ) ≥
−a. Hence, R1 is totally contained in this region. This means the numerical solution
is stable for the parameter pairs (a, b) ∈ R1. The crucial part is to study the numerical
stability when the parameter pairs (a, b) ∈ R2. In order to characterize the corre-
sponding numberical stability region when (a, b) ∈ R2 accurately, we next discuss it
in several cases.

4 Numerical stability region

In this section, we perform detailed discussions on the curves found by the boundary
locus technique to find an explicit formula for the numerical stability region Sk .

4.1 Discussion on the straight lines for� = 0 in Case (I)

When k is even, the line a + (−1)kb = (2/h)α = (2k)α is above a + b = 0, which
never affects the stability. Now, we assume that k is odd, which leads to the line
a − b = 2αkα in the parameter (a, b)-plane. Let us examine the position of this line
in relation to the continuous stability region S∗.
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Lemma 4.1 (i) If k = 1, for any α ∈ (0, 1), the line a − b = 2α lies above part of
the stability region S∗ for the continuous model (2.2).

(ii) If α = 1 or k = 2p + 1 ≥ 3, the line a − b = (2k)α lies below the continuous
stability region S∗.

ByLemma2.2, one only needs to show (2k)α ≥ 2 [(1−α)π ]α sin(απ/2)
sin(απ)

= [(1−α)π ]α
sin(π(1−α)/2)

for the lines being under the stability region. For k = 1, one only needs to show that
2α <

[(1−α)π ]α
sin(π(1−α)/2) . The detailed calculation is an elementary calculus and we attach

it in Appendix A for a reference.
Note that the line a − b = 2α for k = 1 may not intersect with �: it can be above

the curve totally. Here � is the lower boundary curve of stability region S∗ defined in
(2.3). In fact, limθ→π λ(θ) = πα cos(απ

2 ). We find that when α is small enough (near
zero), πα cos(απ

2 ) > 2α . Only when α is big enough, πα cos(απ
2 ) < 2α , in which

case the line intersects with �. See Fig. 2.
Lemma 4.1 implies the zero solution of (3.1) is not stable when k = 1 for some

parameters (a, b) ∈ S∗. This means that the zero solution of (3.1) can not be τ(0)-
stable for F-DDEs in this case. As a remark, when α → 1, we have

[(1 − α)π ]α
sin(π(1 − α)/2)

→ 2.

Hence, for α = 1, the straight line becomes a −b = 2 and it will lie below the stability
region. This is consistent with the fact that the backward Euler method is τ(0)-stable
for classical DDEs, whereas it is not for F-DDEs. This is also an agreement with the
results obtained in the case of pure delay F-DDEs with a = 0, a special case studied
in [7].

To illustrate the results of this lemma, the position relationships between the lines
a − b = (2k)α and stability region S∗ with different parameters are plotted in Fig. 1.
It clearly shows that for k = 1 the line intersects with S∗ in the below boundary at
one point and for k = 3, 5 the lines lies below S∗, as expected.

In order to illustrate the influence of order α on the numerical stability, and thus to
distinguish the F-DDEs from the DDEs, the positional relationships between the line
a −b = 2α and stability region S∗ with different α are drawn in Fig. 2.When the order
α is very small, such as in the first the sub-figure for α = 0.02, the line a − b = 2α is
totally above the curve�. As the order α becomes larger, the line a−b = 2α intersects
the curve �. But as the order α gets larger and approaches 1−, the line slowly slides
out of the stability region and finally does not intersect with S∗.

This shows that the numerical stability of GL for F-DDEs is very different from that
of the integerDDEs, because of the change of the orderα, the numerical stability region
can be reduced such that fractional backward Euler scheme becomes not τ(0)-stable
in Case (I).

4.2 Discussion on the parametrized curves in Case (III)

As we have mentioned already, we only need to consider φ ∈ (0, π
2 ) so that θ =

kπ − 2kφ ∈ (0, kπ) and sin θ �= 0.
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Fig. 1 Position relationship between the lines a − b = (2k)α with k = 1, 3, 5 and stability region S∗ for
τ = 1 and α = 0.6

We first consider θ ∈ ((2m − 1)π, 2mπ) for some integer m, where 2m ≤ k. For
θ in this range, b > 0. Moreover, θ + α(π/2 − θ/2k) ∈ [

(2m − 1)π, 2mπ + απ
2

)
,

so a goes from positive value to negative value. By noting the curve defined by the
expression in (3.14), if it crosses a + b = 0, it must happen for

sin(θ + α(π/2 − θ/2k)) − sin(α(π/2 − θ/2k)) = 0,

which means

θ + α(π/2 − θ/2k) − α(π/2 − θ/2k) = 2mπ.

This is clearly impossible. Hence, the curve never intersects with a + b = 0 and lies
strictly above a + b = 0. Hence, such curves cannot be the boundary of the numerical
stability region (as a + b = 0 is already the upper boundary).

On the other hand, suppose θ ∈ (2mπ, (2m + 1)π) with 2m + 1 ≤ k. Then,
θ + α(π/2 − θ/2k) ∈ (

2mπ,min
{
(2m + 1)π + απ

2 , kπ
})
. In this case, b < 0. The

parameter a either stays positive or changes from positive to negative. This curve
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Fig. 2 Position relationship between the line a − b = 2α (red line with ∗) and stability region S∗ for τ = 1
and different order α = 0.02, 0.1, 0.4, 0.6, 0.8 and 0.99

defined in (3.14) intersects a + b = 0 at θ = (2m+1−α)kπ
k−α

∈ (2mπ, (2m + 1)π ].
Hence, we have a family of curves denoted by �m

(
m = 0, 1, 2, . . . , � k−1

2 �):

⎧
⎪⎪⎨

⎪⎪⎩

a = ak(θ) := 2αh−α sinα

(
θ

2k

)
sin(θ + α(π/2 − θ/2k))

sin(θ)
,

b = bk(θ) := −2αh−α sinα

(
θ

2k

)
sin(απ/2 − αθ/(2k))

sin(θ)
,

θ ∈
[

(2m + 1 − α)kπ

k − α
, (2m + 1)π

)

.

(4.1)

Now let’s present our main results. That is, an accurate description of the numeri-
cally stable region.

Theorem 4.1 Fix k to be a positive integer. When k = 1, the numerical stability region
Sk in the (a, b)-plane lies in the region between a + b = 0 and a − b = 2α . When
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Fig. 3 The curves �0, �1, �2 and �3 for τ = 1, h = 0.1, k = 10 and α = 0.5

k ≥ 2, the numerical stability region Sk in the (a, b)-plane lies between a + b = 0
and the curve �0:

�0 :

⎧
⎪⎪⎨

⎪⎪⎩

a = ak(θ) = 2αkα sinα

(
θ

2k

)
sin(θ + α(π/2 − θ/2k))

sin(θ)
,

b = bk(θ) = −2αkα sinα

(
θ

2k

)
sin(απ/2 − αθ/(2k))

sin(θ)
,

θ ∈
(

1 − α

1 − α/k
π, π

)

. (4.2)

The curves �0, �1, �2 and �3 for τ = 1, h = 0.1, k = 10 and α = 0.8 are plotted
in Fig. 3. It shows that the curve �0 is above other curves �m for m ≥ 1.

To prove Theorem 4.1, we need some auxiliary lemmas.

Lemma 4.2 The curves �m defined in (4.1) intersects the line a + b = 0 at the points
with

a(m)
k =

2αkα cosα
(

(k−2m−1)π
2(k−α)

)

2 cos
(

απ(k−2m−1)
2(k−α)

) .

They are increasing with respect to m for α ∈ (0, 1) and for α = 1, a(0)
k < a(1)

k =
a(2)

k = · · · .

Proof Letφ := (k−2m−1)π
2(k−α)

. In view of the expression in (4.1), we find a(m)
k = −b(m)

k =
2αkα cosα(φ)
2 cos(αφ)

.Taking the derivative on ln(cosα(φ)/ cos(αφ)), wefind that this is decreas-
ing on [0, π/2]. Clearly, asm increases,φ/2 decreases on (0, π/2). Hence, a increases.
This means m = 0 corresponds to the largest a or highest intersection point.
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The claim for α = 1 is obvious, which can be checked directly. �
For the family of curves �m defined in (4.1), �0 plays an important role. We study

the important properties for �0.

Lemma 4.3 For the curve �0, the quantity

λk (θ) := ak (θ) − bk (θ) = 2αkα sinα

(
θ

2k

) sin
(
θ/2 + α( π

2 − θ
2k )

)

sin(θ/2)
, θ ∈

(
(1 − α)kπ

k − α
, π

)

,

is decreasing for k ≥ 2. Moreover, for any k ≥ 2, the straight line determined by
a − b = 2αkα is below the curve �0.

The proof of this lemma involves some nontrivial elementary calculation and is not
central to the main result, so we defer it to Appendix B.

The following lemma lays the foundation to studying the relative positions for the
curves �m . The basic idea is to consider how the line a − b = const that goes through
a specified point on �m corresponding to θ changes when θ is increased by 2π . Note
that increasing θ by 2π corresponds to jumping from one point on �m to a point on
�m+1 if θ + 2π is a legal parameter for �m+1.

Lemma 4.4 Consider again λk(θ) = ak(θ) − bk(θ) for (ak(θ), bk(θ)) on the para-
metric curves �m defined in (4.1). Then, it holds that

λk(β + 2mπ) > λk(β)

for β ∈
[

(1−α)kπ
k−α

, π
)

and β + 2mπ ∈
[

(2m+1−α)kπ
k−α

, (2m + 1)π
)

.

Proof As in Lemma 4.3, we find

λk(β + 2mπ) = 2αkα sinα

(
β + 2mπ

2k

) sin
(
β/2 + mπ + α(π

2 − β+2mπ
2k )

)

sin(β/2 + mπ)
.

Since
sin

(
β/2+mπ+α

(
π
2 − β+2mπ

2k

))

sin(β/2+mπ)
= sin

(
β/2+α

(
π
2 − β+2mπ

2k

))

sin(β/2) , it suffices to show the fol-
lowing function is increasing:

g(t) = sinα(t)
sin

(
β/2 + α π

2 − αt
)

sin(β/2)
, t ∈

[

0,
β + 2mπ

2k

]

.

We find d
dt ln g = α[cot(t) − cot(β/2 + απ/2 − αt)]. Note that β/2 < π/2 and

t < π/2, for this derivative to be positive, we need t < β/2 + απ/2 − αt , or
equivalently t ≤ β/2+απ/2

1+α
. Hence, it suffices to show that β+2mπ

2k ≤ β/2+απ/2
1+α

.

Noting that β + 2mπ ≥ (2m+1−α)
1−α/k π , one then has β ≥ (1−α)π+2mαπ/k

1−α/k ≥ 2mπ
k−1 . In

fact, this holds for both α = 0 and α = 1 (2m +1 ≤ k). Because the expression here is
monotone in α, it holds for all α ∈ (0, 1). Consequently, β+2mπ

2k ≤ β/2 ≤ β/2+απ/2
1+α

since β < π/2. Hence, the claim is verified. �
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Fig. 4 Illustration of the curves γ . Here, γ1 = γ (t; 0.3π), γ2 = γ (t; 0.5π), γ3 = γ (t; 0.8π) for τ = 1,
h = 0.1, k = 10 and α = 0.8

Lemma 4.4 tells us that the straight line a − b = λk becomes lower if we move
from �0 to �m for the corresponding parameters. Consider the points on �m corre-
sponding to θ + 2mπ as m changes. Making them continuous, we shall have a family
of parametrized curves with fixed k:

γ (t;β) :=
(
2αkα sinα(t) sin(β + απ/2 − αt)

sin(β)
,

−2αkα sinα(t) sin(απ/2 − αt)

sin(β)

)

, (4.3)

where β ∈
(

1−α
1−α/k π, π

)
. Along these curves, one sees the points on �0, �1, . . . , �m

consecutively, and the lines going through them with slope 1 become lower and lower.
The intersections between �m (0 ≤ m ≤ 3) and some typical γ curves are shown in
Fig. 4. Note that γ curve may only intersect some �m’s. This means that if we increase

β by 2mπ , the parameter β + 2mπ may fall out of
[

(2m+1−α)kπ
k−α

, (2m + 1)π
)
.

Lemma 4.4 is not enough to imply that �0 is above �m . We must need γ curves to
be well-ordered so that they may be used to show that �0 is above �m . The following
observation fulfills this task.

Lemma 4.5 For any β1 �= β2, γ (t;β1) does not intersect γ (t;β2) in the region |a| +
b < 0.
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Proof Consider the line in the (a, b)-plane determined by a/(−b) = λ ∈ (−1, 1).
We first observe that a = −λb intersects γ (t;β) at most one point. In fact, at the
intersection point,

sin(β + απ/2 − αt)

sin(απ/2 − αt)
= cosβ + sin(β) cot(απ/2 − αt) = λ.

This implicitly defines a function t = t(β) and we find λ−cosβ
sin β

= cos(απ/2−αt)
sin(απ/2−αt) , which

implies that α dt
dβ

= sin2
(

απ
2 − αt

) 1−λ cosβ

sin2 β
> 0. Hence, there is at most one t that

makes the equation hold so that there is at most one intersection.
To show the curves γ (t;β) for different β values do not intersect in the region

|a| + b < 0, it suffices to show that the intersections with a = −λb are monotone in
β for any λ (the lines a = −λb can cover all the region |a| + b < 0 as λ varies). For
fixed λ, to show the intersections are monotone, we show b is monotone in β, or

h(β) = − b

2αkα
= sinα(t) cos(απ/2 − αt)

λ − cosβ

is strictly monotone.
Checking the sign of the derivative of ln(h(β)) reduces to checking the sign of

α
dt

dβ
cos

(απ

2
− αt − t

)
− sin(t) sin

(απ

2
− αt

)

=
(

α
dt

dβ
− 1

2

)

cos
(απ

2
− αt − t

)
+ 1

2
cos

(απ

2
+ (1 − α)t

)
.

Note that απ
2 + (1−α)t ∈ (0, π/2], so the second term is nonnegative. If we can show

α dt
dβ

> 1
2 , then it is done. By the relation above, απ

2 − αt = cot−1
(

λ−cosβ
sin β

)
. Direct

computation shows

−α
dt

dβ
= − 1

1 + [(λ − cosβ)/ sin β]2
(

λ − cosβ

sin β

)′
= − 1 − λ cosβ

1 + λ2 − 2λ cosβ
< −1

2
.

The last inequality is equivalent to 2(1−λ cosβ) > 1+λ2−2λ cosβ, which is clearly
true. �

As shown in Fig. 4, the γ curves can intersect outside the region {(a, b) : |a|+b <

0}. However, since we only care about �m in the region |a| + b < 0, the result above
suffices. We can now prove the theorem.

Proof of Theorem 4.1 If k = 1, there is only �0 curve. Since θ +α
(

π
2 − θ

2k

) ∈ (0, π),
a > |b| > 0, the curve �0 never intersects a + b = 0. Hence, the curve �0 cannot be
the boundary of the numerical stability region. Only the straight line a − b = 2α is
the lower boundary.
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Now, assume k ≥ 2. According to Lemma 4.3, the straight line determined by
a − b = 2αkα is below the curve �0, so we only need to show that �0 is above �m

for m = 2, . . . , � k−1
2 �. By Lemma 4.2, the endpoints are monotone, and it reduces to

checking that �m never intersects �0 in |a| + b < 0.
Suppose otherwise �m intersects �0 at some point (a∗, b∗) satisfying that |a∗| +

b∗ < 0. Then, this point corresponds to some θm ∈
(

(2m+1−α)π
1−α/k , (2m + 1)π

)
for

�m and some β1 ∈ [ (1−α)kπ
k−α

, π) for �0. It can be seen easily that β2 := θm −
2mπ ∈

(
1−α
1−α/k π, π

)
. By Lemma 4.4, we have λk(θm) > λk(β2). This means that the

following point

(
ā, b̄

) = 2αkα

(

sinα

(
β2

2k

)
sin(β2 + α(π/2 − β2/2k))

sin(β2)
,

− sinα

(
β2

2k

)
sin(απ/2 − αβ2/(2k))

sin(β2)

)

on �0 is different from (a∗, b∗). Hence, we have β2 �= β1. However, as we have

seen, γ
(

β2+2mπ
2k ;β2

)
= (a∗, b∗) = γ (β1/2k;β1). This means γ (t;β1) and γ (t;β2)

intersect in {(a, b) : |a| + b < 0}. This contradicts to Lemma 4.5. Hence, the claim is
true. �

5 No �(0)-stability

As we have seen, when k = 1 and α < 1, the straight line intersects the continuous
boundary curve. This means the numerical solution can be unstable for some parame-
ters (a, b) ∈ S∗. However, the regionR1 is fine, or |b| + a < 0. The trouble happens
for some parameters in R2. See the definition for R1 and R2 in (2.4). We define the
lower part of the numerically stable region as Rh

2 with lower boundary curve as �0,
that is, the original lower boundary curve � is replaced by �0; See Fig. 3.

A simple example where (a, b) ∈ S∗ but leads to numerical instability is (0, b)

with − [(1−α)π ]α
2 sin(π(1−α)/2) < b < −2α−1. Hence, the analysis for k = 1 already indicates

that the method is not τ(0)-stable. As we know, k = 1 is special since the data for
t < 0 is never used. A natural question is whether the solution can be stable for k
large enough. Or, will the numerical stability region Sk contain the stability region for
the continuous case? In other words, will the method be τ(0)-stable if we restrict that
k ≥ k∗ for some k∗? Unfortunately, the following result, our second main result, gives
a negative answer.

Theorem 5.1 Assume that α ∈ (0, 1), τ = 1 and h = 1/k. For any k ≥ 1, R1 always
stays in the numerical stability region and there is a portion of R2 that is outside the
numerical stability regionRh

2 . Consequently, the numerical method is never absolutely
stable for α ∈ (0, 1).

The claim regardingR1 and k = 1 has already been proved in Sect. 4.1. We focus
on the second claim for k ≥ 2, which can be proved by the following proposition.
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Fig. 5 Comparison of numerical stability region Sh and continuous stability region S∗ for τ = 1, h =
0.2, k = 5 and α = 0.5

Proposition 5.1 For k ≥ 2, consider the curve �0. Then, we have the following geo-
metric properties

(i) �0 intersects a + b = 0 at Ak :=
(

a(0)
k , b(0)

k

)
and we always have a(0)

k <

[(1−α)π ]α sin( απ
2 )

sin(απ)
. Geometrically, this means the vertex Ak of the numerical stabil-

ity region is above the vertex of S∗.
(ii) �0 has an asymptotic line given by

a − b = 2αkα sinα
( π

2k

)
cos

(
α
(π

2
− π

2k

))
. (5.1)

For α > α∗ ≈ 0.113 or k is sufficiently large, this asymptotic line is below the
asymptotic line for the curve �, in which cases �0 intersects with �.

We compare the numerical stability region Sh = R1 ∪Rh
2 and continuous stability

region S∗ = R1 ∪ R2 with parameter τ = 1, h = 0.1, k = 10 and α = 0.5 in Fig. 5.
We see from this figure that the curves �0 and � have an intersection X = X(a, b)

with a > 0 and b < 0. Let’s do the following simple division as R2 = �1 ∪ �3 and
Rh

2 = �2 ∪ �3. �1 is shown in red and �2 is shown in blue. It is found that in �1
the curve �0 is over � but in �2 the curve �0 is blow �. See a larger sub-figure in
Fig. 5. The intersection of these two curves �0 and � destroys the τ(0)-stability of the
numerical method.

Proof of Proposition 5.1 (i). Consider the intersection of�0 and the line a+b = 0.We
have 2a(0)

k = 2αkα cosα(φ1)
cos(αφ1)

, where φ1 = π(k−1)
2(k−α)

. It is clear that limk→∞ a(0)
k =
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[(1−α)π ]α sin( απ
2 )

sin(απ)
. Hence, (i) will follow if we can show that 2a(0)

k is increasing as
k → ∞. For this purpose, we introduce for ε ∈ (0, 1/2) that

g(ε) = α

[

ln

(
2

ε

)

+ ln sin

(
(1 − α)π

2

ε

1 − εα

)]

− ln cos

(
απ

2

1 − ε

1 − εα

)

.

Clearly, 2a(0)
k = eg(1/k). Hence, we show g(ε) is a decreasing function. Take the

derivative

g′(ε) = −α

ε
+ α cot

(
(1 − α)π

2

ε

1 − εα

)
(1 − α)π

2

1

(1 − εα)2

− cot

(
π

2

1 − α

1 − εα

)
(1 − α)π

2

α

(1 − εα)2
.

Hence, letting y = π
2

1−α
1−εα

, one has g′(ε) = αy
(1−εα) sin(εy)

G, where G =
− (1−εα) sin(εy)

εy + sin[(1−ε)y]
sin y . We now show that G < 0. By the inequality sin x

x ≥
cos x , one has G ≤ sin((1−ε)y)

sin y − (1 − εα) cos εy = cos y cos(εy)
sin y [− tan(εy) +

εα tan y]. Now, we set z = αε and consider

H(z, α) = − tan(εy) + εα tan(y) = − tan

(
π(z/α − z)

2(1 − z)

)

+ z tan

(
π(1 − α)

2(1 − z)

)

,

where 0 < 2z ≤ α ≤ 1. Clearly, H(z, 1) = 0 and for each z < 1
2 , we can

compute

∂ H

∂α
= sec2

(
π(z/α − z)

2(1 − z)

)
π z/α2

2(1 − z)
+ sec2

(
π(1 − α)

2(1 − z)

) −zπ

2(1 − z)
> 0.

The last inequality is equivalent to

cos

(
π(1 − α)

2(1 − z)

)

> α cos

(
π(z/α − z)

2(1 − z)

)

or sin

(
π(α − z)

2(1 − z)

)

> α sin

(
π(1 − z/α)

2(1 − z)

)

.

Since β∗ := π(1−z/α)
2(1−z) ∈ (0, π/2) and x �→ sin x is concave on [0, π/2],

sin(αβ∗) > α sin(β∗) and thus the last inequality holds. Hence, H < 0 in the
region considered and therefore, G < 0. The proof of (i) is thus complete.

(ii). For �0, the value ak(θ) − bk(θ) as a function of θ is decreasing. Moreover, as
θ → π , ak(θ) → −∞, bk(θ) → −∞, ak(θ)/bk(θ) → 1 and ak(θ) − bk(θ) →
2αkα sinα

(
π
2k

)
cos

(
α
(

π
2 − π

2k

))
. These imply that the asymptotic line of �0 is

given by (5.1).
Clearly, as k → ∞, this asymptotic line will tend to the asymptotic line of �.

Consider the function h(x) = [sin(x)/x]α cos(α(π
2 − x)), x ∈ [0, π/4]. It can be

verified directly that d
dx ln h(x) > 0 for x close to 0, and that d2

dx2
log(h(x)) < 0

for all x ≤ π
4 . This means log(h) is a concave function. Consider the value α∗ such
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that h(π
4 ) = h(π

6 ). This value can be found to be α∗ ≈ 0.241. Then, for α > α∗,
2αkα sinα

(
π
2k

)
cos

(
α
(

π
2 − π

2k

))
is decreasing for k = 2, 3, . . .. This means that the

asymptotic line of �0 is montonely becoming higher and higher as k increases. Hence,
it is below the asymptotic line of �.

There is a further critical value α∗ ∈ (0, α∗) such that when α > α∗, the asymptotic
line of �0 for all k is below the one for �. In fact, due to the concave property of ln(h),
the possible highest asymptotic line is k = 2 and k = ∞. Hence, α∗ can be found
easily by solving

4α sinα
(π

4

)
cos

(
α
(π

2
− π

4

))
= πα cos

(απ

2

)
.

This gives α∗ ≈ 0.113.
For α ∈ (0, α∗), when k is small (for example k = 2), the asymptotic line of �0 can

be above that for �. However, since d
dx ln h(x) > 0 for x close to 0, the asymptotic

line of �0 will eventually fall below that for � when k is large enough.
Together with (i), we find that when α > α∗ for all k, or when k is large enough,

�0 intersects with �. �
As soon as Proposition 5.1 is proved, Theorem 5.1 is a straightforward corollary,

and we omit the proof.

Remark 5.1 According to the proof above, it is also not hard to see that if α → 1−,
�0 will then fall below � totally. This implies that the backward Euler scheme is
τ(0)-stable for integer-order DDEs and it agrees with the results in [15,17].

6 Mittag–Leffler numerical stability

Aswe have seen fromSect. 3, boundary locus technique can determine the boundary of
the stability region, but cannot give the asymptotic behavior of the numerical solutions
accurately when the numerical solutions is stable. In order to distinguish the F-DDEs
from the integer-order DDEs, it is very important to describe the long time decay rate
of the solutions accurately. To do that, we introduce the technique of the singularity
analysis of generating functions.

6.1 Singularity analysis of generating functions

The generating functions of μ and ω are related byFμ(z) = 1
Fω(z) if ω = μ(−1). As

usual, we shall often write Fv(z) ∼ f (z) as z → z0, meaning that they are equivalent
in the sense limz→z0

Fv(z)
f (z) = 1.

Lemma 6.1 [13, Corollary VI.I] Assume Fv(z) is analytic on �(R, θ) := {z : |z| <

R, z �= 1, |arg(z − 1)| > θ} for some R > 1 and θ ∈ (0, π
2 ). If Fv(z) ∼ (1− z)−β as

z → 1, z ∈ �(R, θ) for β �= {0,−1,−2,−3, . . .}, then vn ∼ 1
�(β)

nβ−1 as n → ∞.

Note that this singularity analysis is in fact some Tauberian type results [12,34]. The
results are further extended to various typical functions in the monograph [13]. These
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results can also be stated equivalently using the discreteLaplace transform.Wechose to
use the generating function because simply becausemost of such results are statedwith
the generating functions, as in [12,13]. This fundamental lemma allows us to derive
the the asymptotic behavior of the function’s coefficients by studying the function’s
dominant singularities,which perfectly fits the numerical analysis of the time fractional
differential equations. Through the generating functions, one can explicitly derive the
algebraic decay rate of numerical solutions, which is a major feature of time fractional
order equations. In [33], combined with perturbation analysis, this method was used
to establish the numerical Mittag–Leffler stability of fractional LMMs for F-ODEs;
i.e., not only the stability region, but also the optimal algebraic decay rate estimate for
the numerical solutions. In this section, we make use of this lemma again to establish
the Mittag–Leffler numerical stability for F-DDEs.

6.2 Mittag–Leffler numerical stability

In order to apply the singularity analysis of generating functions, we first drive the
expression for the numerical solutions of F-DDEs by generating functions. Consider
the generating function (3.11)

Fy(z) =
(
(1 − z)α − hα

(
a + bzk

))−1 ·
(

y0(1 − z)α−1 + hα (bg(z) − ay0)
)

,

(6.1)

where g(z) = ∑k−1
�=1 y�−k z�. We define

P(z) = (1 − z)α − hα
(

a + bzk
)

.

Clearly, both the numerator and the denominator ofFy(z) are analytical in any�(R, θ)

with R > 1 and θ ∈ (0, π/2). To perform the singularity analysis, we need P(z) to
have no zeros in some �(R, θ) region. Recalling the definition of Q(s) in (3.8), we
easily see that

P(1 − hs) = hα Q(s). (6.2)

With this relation, we show the following result.

Proposition 6.1 If (a, b) ∈ Sk (the open region), then there exists some R > 1 and
θ ∈ (0, π/2) such that P(z) is nonzero in �(R, θ).

Proof Due to the definition of boundary locus, when (a, b) ∈ Sk , Q(s) is nonzero on
D(h−1, h−1). Equivalently, P(z) is nonzero on the whole D(0, 1). Note that P(z) is
analytical in any �(R, θ) and continuous on �(R, θ). Fix θ and set Rn := 1 + 1/n.
If there is always a zero point for any Rn , then we can find a sequence of zeros zn that
tends to some z∗ ∈ ∂ D(0, 1) as n → ∞. By the continuity on �(R, θ), P(z∗) = 0.
This, however, is impossible. The conclusion follows. �
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This simple but surprising finding given in (6.2) for P and Q allows us to take use
of the respective advantages of the two methods to establish numerical Mittag–Leffler
stability for F-DDEs. According to Proposition 6.1, we know thatFy(z) is analytical
on �(R, θ) and the following asymptotic behavior holds

Fy(z) =
(
1 − hα

(
a + bzk

)
Fμ(z)

)−1 ·
(

y0(1 − z)−1 + hα
(
bg(z) − (ay0 + by−k )

)
Fμ(z)

)

= y0(1 − z)−1 + hα
(
bg(z) − (ay0 + by−k )

)
(1 − z)−α

1 − hα
(
a + bzk

)
(1 − z)−α

= y0(1 − z)α−1 + hα
(
bg(z) − (ay0 + by−k )

)

(1 − z)α − hα
(
a + bzk

)

∼ − y0
hα (a + b)

(1 − z)α−1 as z → 1.

(6.3)

Then it follows from Lemma 6.1 that

yn ∼ − y0
hα (a + b)

1

�(1 − α)
n−α = − y0

�(1 − α) (a + b)
t−α
n as n → ∞

provided that a + b �= 0. This shows that the condition a + b = 0 is part of the
boundary of the numerically stable region. Meanwhile, it is noted that P(0) �= 0 if
and only if a �= h−α .

To summarize the above analysis, we get the main results of this section.

Theorem 6.1 Let α ∈ (0, 1), a, b ∈ R, k ∈ N
+ such that h = 1/k. Then the numerical

solutions for the scheme in (2.2) based on the GL method is Mittag–Leffler stable if
(a, b) ∈ Sk . More specifically, when (a, b) ∈ Sk , the numerical solution has the
following polynomial decay rate asymptotically

yn ∼ − y0
�(1 − α) (a + b)

t−α
n = O(t−α

n ) as n → ∞.

As mentioned, the results for general τ > 0 can be obtained by simple scaling. The
corresponding results for τ > 0 are given in the introduction (Theorem 1.2).

There is some subtlety on the boundary of Sk . In fact, the lower boundary curve �0
or the straight line corresponds to some zero of Q(s) on ∂ D(h−1, h−1) that is not 0.
Such parameters is not allowed for the singularity analysis. However, for a + b = 0

with a <
[((1−α)π ]α sin( απ

2 )

sin(απ)
, the zero of Q corresponds to s = 0 (In this case z = 1

for P). There are no other zeros. Then, we can still find some �(R, θ) such that
P(z) is nonzero on it. That means the singularity analysis can be applied. With the
computation in (6.3), we find

Fy(z) ∼ y0(1 − z)−1.
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Table 1 Observed pα with
τ = 1, h = 0.1 and
a = −3, b = 1 for initial
function φ1(t)

tn α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

100 0.0896 0.2918 0.5014 0.7069 0.9080

200 0.0902 0.2931 0.5007 0.7040 0.9041

300 0.0905 0.2938 0.5005 0.7029 0.9028

400 0.0907 0.2943 0.5003 0.7023 0.9022

500 0.0909 0.2946 0.5003 0.7019 0.9017

From here, one cannot obtain the decay of the solution. Instead, one finds |yn| to
be bounded. In fact, if φ(t) = y0 for all t < 0, then yn ≡ y0. Hence, there is no
Mittag–Leffler stability for this case as well. Hence, it seems that it is also necessary
that (a, b) ∈ Sk to have the Mittag–Leffler stability.

7 Numerical example

In this section, we give simple numerical examples to show that the numerical solution
is Mittag–Leffler stable when the parameters (a, b) are inside the numerical stable
region, that is, the numerical solution exhibits the optimal polynomial decay rate
similar to the continuous model.

In the simulation for the F-DDE model (1.1), we take the initial functions φ1(t) =
0.4, φ2(t) = −0.1t − 0.2 and φ3(t) = 0.3 sin(6t), respectively. The numerical solu-
tions for different stability parameter (a, b) with τ = 1, h = 0.05 and α = 0.8 are
plotted in Fig. 6. For the subfigures (a), (b) and (c) where (a, b) lies in the numeri-
cal stability region, the numerical solutions keep stable and decay to zero no matter
what the initial function is. While in subfigure (d) where (a, b) lies out the numerical
stability region, the numerical solutions are not stable and never decay to zero.

In order to test numerical decay rate quantitatively, we introduce the index function

pα(tn) = − ln(‖yn‖/‖yn−1‖)
ln(tn/tn−1)

, tn > 1. (7.1)

The index pα is a numerical observation of α in ‖yn‖ = O(t−α
n ), which is indepen-

dent of the initial value functions, see [32]. It shows in Table 1 that the numerical
observations pα agree with the theoretical analysis and the numerical solutions have
the polynomial decay rate, which is quite different from the exponential decay rate of
the solutions to integer-order DDEs.
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Fig. 6 Numerical solutions with different parameter (a, b) for τ = 1, h = 0.05 and α = 0.8
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A Proof of Lemma 4.1

Proof of Lemma 4.1 For (i), we need to show that

2α < 2
[(1 − α)π ]α sin(απ/2)

sin(απ)
= [(1 − α)π ]α

sin(π(1 − α)/2)
,

by Lemma 2.2. This is equivalent to

sin

(
(1 − α)π

2

)

<

[
(1 − α)π

2

]α

.
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When (1−α)π
2 > 1, the inequality clearly holds. If (1−α)π

2 ∈ (0, 1], then

sin

(
(1 − α)π

2

)

<
(1 − α)π

2
≤

[
(1 − α)π

2

]α

as α ∈ (0, 1).

(ii). By Lemma 2.2, we only need to show that the straight lines are below the
boundary,

2αkα ≥ [(1 − α)π ]α
sin(π(1 − α)/2)

, k ≥ 3. (A.1)

It suffices to show that

sin

(
π(1 − α)

2

)

−
[
(1 − α)π

2k

]α

≥ 0. (A.2)

It’s worth noting that the function h1(x) = sin x
x is decreasing with 2

π
≤ h1(x) ≤ 1 and

it is concave on [0, π/2] (note that the sign of the second order derivative is determined
by the sign of (1 − x2

2 ) sin x
x − cos x , which is negative for x ∈ [0, π/2]).

For k ≥ 5, since sin(π(1 − α)/2) ≥ π
2 (1 − α) 2

π
, it suffices to show that

π

2
(1 − α)

2

π
−

[
(1 − α)π

2k

]α

≥ 0.

The latter is equivalent to show that (setting β = 1 − α) h2(β) = β logβ − (1 −
β) log

(
π
2k

) ≥ 0. The derivative h′
2(β) is negative for k ≥ 5 and the value at β = 1 is

zero. Hence, the inequality (A.2) holds for k ≥ 5.
If k = 3, consider directly (setting β = 1− α) that g(β) := log

(
sin(π

2 β)
)+ (β −

1) log
(

βπ
6

)
. As β → 1−, g(β) tends to 0. Hence, to show g(β) > 0 for β ∈ (0, 1),

we only need to show that the first order derivative

g′(β) = π

2

cos(πβ/2)

sin(πβ/2)
+ log

(π

6

)
+ log(β) + (β − 1)/β

is always negative on β ∈ (0, 1).
It is easy to see that g′(β) < 0 for β ∈ (0.8, 1) (considering only the first two

terms). On the other hand, we have g′′(β) = β−1 + β−2 − (π/2)2 1
sin2(πβ/2)

. This

equation g′′(β) = 0 only has one root β∗ with β ∈ (0, 1) and the root satisfies
sin(πβ∗/2)
(πβ∗/2) = 1√

1+β∗
. This can be seen from the fact h1(x) = sin x

x is decreasing and

concave while the function 1√
1+x

is convex on [0, π/2]. At the same time, we can

check g′′(0.8) > 0 and g′′(1) < 0. Hence, we know that the root β∗ ∈ (0.8, 1) and
g′′(β) is positive on [0, 0.8]. Together with g′(0.8) < 0, we find that g′(β) is negative
on (0, 0.8]. Then the first derivative is always negative on β ∈ (0, 1). Therefore, k = 3
is also proved. �
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B Proof for the properties of the 00 curve

Proof of Lemma 4.3 Define φ = θ/2 ∈
(

(1−α)π
2(1−α/k)

, π
2

)
. Consider that

h(φ) := λk(θ)

2αkα
=

sinα
(

φ
k

)
sin

(
φ + απ

2 − αφ
k

)

sin(φ)
.

To show this function is decreasing, it is sufficient to prove that

d

dφ
ln h(φ) = α

k

cos(φ/k)

sin(φ/k)
+

(1 − α/k) cos
(
φ + απ

2 − αφ
k

)

sin
(
φ + απ

2 − αφ
k

) − cosφ

sin φ
≤ 0.

(B.1)

Separate themiddle termon the left side of the above equation anduse the trigonometric
function formula, the above equation can be equivalent to α

k
sin(φ+απ/2−αφ/k−φ/k)

sin(φ/k) sin(φ+απ/2−αφ/k)
−

sin(απ/2−αφ/k)
sin(φ) sin(φ+απ/2−αφ/k)

≤ 0.Noting that sin(φ+απ/2−αφ/k) > 0 under the assump-

tion φ ∈
(

(1−α)π
2(1−α/k)

, π
2

)
. Hence, we need

α sin(φ + απ/2 − αφ/k − φ/k)

sin(απ/2 − αφ/k)
≤ k sin(φ/k)

sin φ
. (B.2)

We are going to prove that (B.2) is true for k ≥ 2. Since

α sin(φ + απ/2 − αφ/k − φ/k)

sin(απ/2 − αφ/k)
≤ α

sin(απ/2 − αφ/k)
≤ 1

cos(φ/k)
, (B.3)

where the second inequality is due to the fact α
sin(απ/2−αφ/k)

is increasing function
for α ∈ (0, 1). By the concavity of sin(x) on x ∈ (0, π/2), we know that sin(φ) ≤
k
2 sin(2φ/k) is true for k ≥ 2, which implies that 1

cos(φ/k)
≤ k sin(φ/k)

sin(φ)
. This together

with (B.3) shows that the inequality (B.2) is true for k ≥ 2. This completes the first
part of the proof.

Using the above fact, to show that the line is below �0, we only have to show that(
a(0)

k ,−a(0)
k

)
is above the line, where a(0)

k is defined in Lemma 4.2. In other words,

we need

2αkα ≥ 2αkα cos
α(φ1)

cos(αφ1)
, where φ1 = π(k − 1)

2(k − α)
. (B.4)

Since the right hand side is decreasing in φ, the largest value is achieved at φ1 = 0,
which is 2αkα . Hence, the inequality (B.4) is true. �
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