Construction and Analysis of Consistent Atomistic/Continuum Coupling Methods

Lei Zhang 张镭 Department of Mathematics & Institute of Natural Sciences Shanghai Jiao Tong University, China

with Christoph Ortner (Warwick, UK) and Alexander Shapeev (Minnesota, USA)

Dundee, Sep 9, 2013

Outline

In this talk, we will focus on multiscale methods for 2D/3D point defects at 0T, namely, the coupling of length scales.

- Introduction
 - Multiscales in Materials & Crystalline Defects
 - Atomistic Simulation & Its Continuum Coarse Graining
 - Atomistic/Continuum Coupling
 - Issue of Patch Test Consistent (Ghost Force)
- Construction of Consistent Method
 - Overview
 - First Order Consistency
 - Construction
 - Numerical Experiment
 - Optimized construction
- Stability
 - Overview
 - Universally Stable Method
 - Stability Gap and Stabilization
 - Balance between Consistency and Stability
- Outlook

Multiple Scales in Materials

[Modeling Materials, Tadmor & Miller 2012]

Multiple Scales in Materials

[Modeling Materials, Tadmor & Miller 2012]

Structural features:

- range in size from 10⁻¹⁰ to 10⁻³ m
- interact atomistically at short distances and over long distances via long-range elastic stress fields.

Materials processes:

- occur over time scales ranging from 10⁻¹⁵ to years.
- this broad range can sometimes be an asset when scale separation occurs.

Modeling material behavior requires methods able to span across length and time scales.

Point Defects in 2D

Atomistic Mechanics (OT statics)

- Atomistic body: N atoms at positions $y = (y_n)_{n=1}^N \in \mathbb{R}^{d \times N}$
- **Total energy** of configuration *y*:

$\min \mathcal{E}^{\rm tot}_{\rm a}(y) := \mathcal{E}^{\rm a}(y) + \mathscr{P}_{\rm a}(y)$

• \mathcal{E}^{a} = interaction energy, \mathscr{P}_{a} = potential of external frcs, V = multi-body interaction potential

$$\mathcal{E}^{\mathrm{a}}(y) = \sum_{x \in \mathscr{L}} V(y(x+r) - y(x); r \in \mathscr{R})$$

Atomistic Mechanics (0T statics)

- Atomistic body: N atoms at positions $y = (y_n)_{n=1}^N \in \mathbb{R}^{d \times N}$
- **Total energy** of configuration *y*:

$\min \mathcal{E}^{\mathrm{tot}}_{\mathrm{a}}(y) := \mathcal{E}^{\mathrm{a}}(y) + \mathscr{P}_{\mathrm{a}}(y)$

• $\mathcal{E}^{\rm a}=$ interaction energy, $\mathscr{P}_{\rm a}=$ potential of external frcs, V= multi-body interaction potential

Atomistic Simulation

microcrack under macroscopic shear/stretch, EAM potential

$$\begin{split} V(g) &:= \sum_{\rho \in \mathscr{R}} \phi(|g_{\rho}|) + G\bigg(\sum_{\rho \in \mathscr{R}} \psi(|g_{\rho}|)\bigg), \quad \text{where} \\ \phi(s) &:= e^{-2A(s-1)} - 2e^{-A(s-1)}, \psi(s) := e^{-Bs}, \\ \text{and} \ G(s) &:= C\big((s-s_0)^2 + (s-s_0)^4\big). \end{split}$$

Atomistic Simulation

microcrack under macroscopic shear/stretch, EAM potential

$$egin{aligned} \mathcal{V}(m{g}) &:= \sum_{
ho \in \mathscr{R}} \phi(|m{g}_{
ho}|) + Gigg(\sum_{
ho \in \mathscr{R}} \psi(|m{g}_{
ho}|)igg), & ext{where} \ \phi(m{s}) &:= e^{-2A(m{s}-1)} - 2e^{-A(m{s}-1)}, \psi(m{s}) &:= e^{-Bm{s}}, \ ext{and} & G(m{s}) &:= Cig((m{s}-m{s}_0)^2 + (m{s}-m{s}_0)^4ig). \end{aligned}$$

Atomistic Simulation

microcrack under macroscopic shear/stretch, EAM potential

$$egin{aligned} &V(g):=\sum_{
ho\in\mathscr{R}}\phi(|g_
ho|)+Gigg(\sum_{
ho\in\mathscr{R}}\psi(|g_
ho|)igg), & ext{where}\ &\phi(s):=e^{-2A(s-1)}-2e^{-A(s-1)},\psi(s):=e^{-Bs},\ & ext{and}\ &G(s):=Cig((s-s_0)^2+(s-s_0)^4ig). \end{aligned}$$

Stability Analysis

Coarse Graining: Adaptive FEM

• $\|\nabla y_a - \nabla y_h \le \|h\nabla^2 y_a\|_{\Omega \setminus \Omega_a}$ [Lin, Ortner/Süli, Lin/Shapeev, ...] But complexity to evaluate $\mathcal{E}^a|_{\mathscr{Y}_h}$, $\delta \mathcal{E}^a|_{\mathscr{Y}_h}$ is still O(N)!

Coarse Graining: Cauchy–Born Approximation

Atomistic Stored Energy:

$$\mathcal{E}^{\mathrm{a}}(y) = \sum_{x \in \mathscr{L}} V(y(x+r) - y(x); r \in \mathscr{R})$$

Cauchy–Born Stored Energy:

$$\mathcal{E}^{\mathrm{c}}(y) = \int_{\Omega} W(\nabla y) \,\mathrm{dV}, \quad \text{where } W(\mathsf{F}) = V(\{\mathsf{F}r; r \in \mathscr{R}\}).$$

Theorem: [2007, E/Ming] Let $y_a \in \operatorname{argmin} \mathcal{E}_a^{tot}$ be "sufficiently smooth globally", then there exists $y_c \in \operatorname{argmin} \mathcal{E}_c^{tot}$ such that $\|\nabla y_a - \nabla y_c\|_{L^2} \lesssim C(\|\nabla^3 y_a\|_{L^2} + \|\nabla^2 y_a\|_{L^4}^2)$

Coarse Graining: Cauchy–Born Approximation

Atomistic Stored Energy:

$$\mathcal{E}^{\mathrm{a}}(y) = \sum_{x \in \mathscr{L}} V(y(x+r) - y(x); r \in \mathscr{R})$$

Cauchy–Born Stored Energy:

 $\mathcal{E}^{\mathrm{c}}(y) = \int_{\Omega} W(\nabla y) \,\mathrm{dV}, \quad \text{where } W(\mathsf{F}) = V(\{\mathsf{F}r; r \in \mathscr{R}\}).$

- If there are no defects, then the Cauchy–Born model is a highly accurate continuum approximation, $\|y_a y_c\|_{H^1} \sim N^{-2}$.
- If there are defects, then the Cauchy-Born model has O(1) error.

Atomistic/Continuum Coupling: First Attempt

[Tadmor, Ortiz, Philips 1996]

Atomistic/Continuum Coupling: First Attempt

[Tadmor, Ortiz, Philips 1996]

Fails the patch test (ghost force):

$$\begin{split} \delta \mathcal{E}^{\mathrm{a}}(y_{\mathsf{F}}) &= 0\\ \text{and}\\ \delta \mathcal{E}^{\mathrm{c}}(y_{\mathsf{F}}) &= 0,\\ \text{but}\\ \delta \mathcal{E}^{\mathrm{qce}}(y_{\mathsf{F}}) &\neq 0 \ ! \end{split}$$

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Dundee, Sep 9, 2013 9 / 29

9 / 29

Atomistic/Continuum Coupling: First Attempt

[Tadmor, Ortiz, Philips 1996]

A 1D Model Problem

• Periodic displacements:

$$\mathscr{U} = \{ \mathbf{u} = (u_n)_{n \in \mathbb{Z}} : u_{n+N} = u_n, \sum_{n=1}^N u_n = 0 \},$$

$$\mathscr{Y} = \{ \mathbf{y} = (y_n)_{n \in \mathbb{Z}} : y_n = x_n + u_n \text{ where } \mathbf{u} \in \mathscr{U} \}.$$

• Atomistic energy: (next-nearest neighbor pair interactions)

$$\mathcal{E}^{a}(y) = \sum_{n=1}^{N} \phi(y'_{n}) + \sum_{n=1}^{N} \phi(y'_{n} + y'_{n+1}) = \sum_{n=1}^{N} \mathcal{E}^{a}_{n}(y)$$

where $\mathcal{E}_{n}^{a}(y) = \frac{1}{2} \{ \phi(y'_{n-1} + y'_{n}) + \phi(y'_{n}) + \phi(y'_{n+1}) + \phi(y'_{n} + y'_{n+1}) \}$ • Continuum finite element model

$$\mathcal{E}^{c}(y) = \sum_{n=1}^{N} \{\phi(y'_{n}) + \phi(2y'_{n})\} = \sum_{n=1}^{N} \mathcal{E}^{c}_{n}(y)$$

where $\mathcal{E}_{n}^{c}(y) = \frac{1}{2} \{ \phi(2y'_{n}) + \phi(y'_{n}) + \phi(y'_{n+1}) + \phi(2y'_{n+1}) \}$

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

The Energy-Based Quasicontinuum Method

• Choose atomistic and continuum regions:

$$\mathcal{N}^{\mathrm{a}} \cup \mathcal{N}^{\mathrm{c}} = 1, \dots, N$$

• Define a/c hybrid energy

$$\mathcal{E}^{\text{qce}}(y) = \sum_{n \in \mathcal{N}^{\text{a}}} \mathcal{E}^{\text{a}}_{n}(y) + \sum_{\substack{n \in \mathcal{N}^{\text{c}} \\ \int_{\Omega^{\text{c}}} \mathcal{W}(Dy) \, \mathrm{d}x}} \mathcal{E}^{\text{c}}_{n}(y) - \langle g, y \rangle$$

Ghost Forces

Solutions for \mathcal{E}^{a} and \mathcal{E}^{c} :

 $\nabla \mathcal{E}^{\mathrm{a}}(x) = 0$ and $\nabla \mathcal{E}^{\mathrm{c}}(x) = 0$

Insert $y_a = x$ into $\nabla \mathcal{E}^{\text{qce}}$

Alternative Approaches

Interface Correction

Force-based coupling:

- FeAt: Kohlhoff, Schmauder, Gumbsch (1989, 1991)
- Dead-load GF removal: Shenoy, Miller, Rodney, Tadmor, Phillips, Ortiz (1999)
- CADD: Shilkrot, Curtin, Miller (2002, ...)
- . . .

③ Blending methods: $E = \chi E_a + (1 - \chi)E_c$

- Belytschko & Xiao (2004)
- Parks, Gunzburger, Fish, Badia, Bochev, Lehoucq, et al. (2008)
- . . .

Quadrature approaches

• Knapp, Ortiz, Gunzburger, ...

Consistent Energy-Based Coupling

Problem: "... the disadvantage of the energy based approach is that it is extremely difficult to eliminate the non-physical side effects of the coupled energy functional, dubbed 'ghost forces'."

- Tadmor & Miller, 2009

Goal: Construct consistent A/C energy $\mathcal{E}^{\rm ac}$ by interface correction

$$\mathcal{E}^{\mathrm{ac}}(y) = \sum_{x \in \mathscr{L}_{\mathrm{a}}} V_x + \sum_{x \in \mathscr{L}_{\mathrm{i}}} \tilde{V}_x + \int_{\Omega_{\mathrm{c}}} W(Dy) \,\mathrm{d}x$$
find \tilde{V} s.t. patch test consistency holds: $\delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0$ for all $\mathsf{F} \in \mathbb{R}^{d \times d}$.

Questions:

- **1** Does patch test consistency implies accuracy? A priori analysis?
- O How to construct consistent coupling method?

A Priori Error Analysis

Framework: Let $y_a \in \operatorname{argmin} \mathcal{E}_a^{tot}$, $y_{ac} \in \operatorname{argmin} \mathcal{E}_{ac}^{tot}$, then

$$\left\|\nabla(y_{\mathrm{a}} - y_{\mathrm{ac}})\right\|_{\mathrm{L}^{2}} \approx \frac{CONSISTENCY}{STABILITY} = \frac{\left\|\delta\mathcal{E}^{\mathrm{a}}(y_{\mathrm{a}}) - \delta\mathcal{E}^{\mathrm{ac}}(y_{\mathrm{a}})\right\|_{\mathrm{H}^{-1}}}{\inf_{\left\|\nabla u\right\|_{\mathrm{L}^{2}} = 1} \langle \delta^{2}\mathcal{E}^{\mathrm{ac}}(y_{\mathrm{a}})u, u \rangle}$$

3 Steps:

- CONSISTENCY: $\langle \delta \mathcal{E}^{\mathrm{ac}}(y_a) \delta \mathcal{E}^{\mathrm{a}}(y_a), u_h \rangle \lesssim h \| \nabla^2 y_{\mathrm{a}} \|_{\mathrm{L}^2(\Omega_{\mathrm{c}})} \| \nabla u_h \|_{L^2}$
- **2** STABILITY: $\langle \delta^2 \mathcal{E}^{\mathrm{ac}}(y) u, u \rangle \geq C_{\mathrm{stab}} \| \nabla u \|_{\mathrm{L}^2}^2$
- REGULARITY: bounds on ∇²y_a, note that r^{-a} for defects (a = 2 dislocations, a = 3 vacancy)

Numerical Analysis Literature on A/C Coupling

cf 'Atomistic-to-Continuum Coupling', Acta Numerica (2013), Luskin/Ortner

Analysis for Energy-Based Coupling:

• 1D

- NN, variational analysis: [Blanc/LeBris/Legoll, 2005]
- Error estimates for QCE and QNL: [Dobson/Luskin, 2009], [Ming/Yang, 2010], [Ortner, 2010], [Ortner/Wang, 2011], [Li/Luskin, 2011
- Sharp Stability Analysis, Linear Regime: [Dobson/Luskin/Ortner, 2010]
- blending methods: [Luskin/van Koten, 2012]
- 2D, pair interactions, defects: [Ortner/Shapeev, 2012]
- 2D, first order consistency for general finite-range interactions: [Ortner, 2012]
- 3D, pair interactions: [Shapeev, 2012]
- 2D, multi-body interactions: [Ortner/LZ, 2012, 2013]
- 3D, first order consistency for general finite-range interactions: [LZ, 2013]
- 1D/2D, stability of consistent energy based coupling: [Ortner/Shapeev/LZ, 2013]

Numerical Analysis Literature on A/C Coupling

cf 'Atomistic-to-Continuum Coupling', Acta Numerica (2013), Luskin/Ortner

Analysis for Energy-Based Coupling:

• 1D

- NN, variational analysis: [Blanc/LeBris/Legoll, 2005]
- Error estimates for QCE and QNL: [Dobson/Luskin, 2009], [Ming/Yang, 2010], [Ortner, 2010], [Ortner/Wang, 2011], [Li/Luskin, 2011
- Sharp Stability Analysis, Linear Regime: [Dobson/Luskin/Ortner, 2010]
- blending methods: [Luskin/van Koten, 2012]
- 2D, pair interactions, defects: [Ortner/Shapeev, 2012]
- 2D, first order consistency for general finite-range interactions: [Ortner, 2012]
- 3D, pair interactions: [Shapeev, 2012]
- 2D, multi-body interactions: [Ortner/LZ, 2012, 2013]
- 3D, first order consistency for general finite-range interactions: [LZ, 2013]
- 1D/2D, stability of consistent energy based coupling: [Ortner/Shapeev/LZ, 2013]

Analysis for Force-based Coupling:

Dobson/Luskin (2008); Ming (2009); Dobson /Luskin/Ortner (2009, 2010, 2010); Makridakis/Ortner/Süli (2010); Dobson/Ortner/Shapeev (2012), Lu/Ming (2012)

Numerical Analysis Literature on A/C Coupling

cf 'Atomistic-to-Continuum Coupling', Acta Numerica (2013), Luskin/Ortner

Analysis for Energy-Based Coupling:

• 1D

- NN, variational analysis: [Blanc/LeBris/Legoll, 2005]
- Error estimates for QCE and QNL: [Dobson/Luskin, 2009], [Ming/Yang, 2010], [Ortner, 2010], [Ortner/Wang, 2011], [Li/Luskin, 2011
- Sharp Stability Analysis, Linear Regime: [Dobson/Luskin/Ortner, 2010]
- blending methods: [Luskin/van Koten, 2012]
- 2D, pair interactions, defects: [Ortner/Shapeev, 2012]
- 2D, first order consistency for general finite-range interactions: [Ortner, 2012]
- 3D, pair interactions: [Shapeev, 2012]
- 2D, multi-body interactions: [Ortner/LZ, 2012, 2013]
- 3D, first order consistency for general finite-range interactions: [LZ, 2013]
- 1D/2D, stability of consistent energy based coupling: [Ortner/Shapeev/LZ, 2013]

Analysis for Force-based Coupling:

Dobson/Luskin (2008); Ming (2009); Dobson /Luskin/Ortner (2009, 2010, 2010); Makridakis/Ortner/Süli (2010); Dobson/Ortner/Shapeev (2012), Lu/Ming (2012)

Analysis for Multi-Lattices:

Dobson/Elliott/Luskin/Tadmor (2007); Abdulle/Lin/Shapeev (2011, 2012)

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Patch Test Consistency implies First-order Consistency?

Suppose \mathcal{E}^{ac} is patch test consistent (no ghost force for homogeneous deformation):

$$\delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0 \qquad \forall \mathsf{F} \in \mathbb{R}^{d \times d}$$

"Theorem:"

[First-order Consistency]

Suppose $\delta \mathcal{E}^{ac}$ passes the patch test, V finite range multi-body potential + technical conditions +

- d= 2, Ω_{a} connected; [Ortner, 2012] or
- d = 3, Ω_a connected [LZ, 2013]

then

$$\langle \delta \mathcal{E}^{\mathrm{ac}}(y) - \delta \mathcal{E}^{\mathrm{a}}(y), u_h \rangle \lesssim \|h \nabla^2 y\|_{\mathrm{L}^2(\Omega_{\mathrm{c}} \cup \Omega_{\mathrm{i}})} \|\nabla u_h\|_{\mathrm{L}^2}$$

With the assumption of stability, $||y_a - y_{ac}|| \sim N^{-1}$.

Consequence of Patch Test Consistency

If an A/C energy $\mathcal{E}^{\rm ac}$ satisfies patch test consistency,

$$0 = \langle \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}), u \rangle = \sum_{T \in \mathscr{T}} |T| \Sigma_{\mathrm{ac}}(y_{\mathsf{F}}; T) : \nabla_T u$$

then $\Sigma_{\rm ac}$ is discrete divergence free.

Lemma: \exists a function $\psi(\mathsf{F}, T) \in \mathrm{N}_1(\mathscr{T})^2$, such that $\Sigma_{\mathrm{ac}}(y_{\mathsf{F}}; T) = \partial W(\mathsf{F}) + J \nabla \psi(\mathsf{F}; T)$

 $N_1(\mathscr{T})$ is Crouzeix–Raviart finite element space,

J is the counter-clockwise rotation by $\pi/2$.

 $J\nabla\psi(\mathsf{F}; T)$ is divergence free piecewise constant tensor field [Arnold/Falk, Polthier/Preuß].

C. Or

Consequence of Patch Test Consistency

If an A/C energy $\mathcal{E}^{\rm ac}$ satisfies patch test consistency,

$$0 = \langle \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}), u \rangle = \sum_{T \in \mathscr{T}} |T| \Sigma_{\mathrm{ac}}(y_{\mathsf{F}}; T) : \nabla_T u$$

then $\Sigma_{\rm ac}$ is discrete divergence free.

Lemma:

 \exists a function $\psi(\mathsf{F}, \mathcal{T}) \in \mathrm{N}_1(\mathscr{T})^2$, such that

$$\Sigma_{\rm ac}(y_{\sf F};T) = \partial W({\sf F}) + J\nabla \psi({\sf F};T)$$

Coupling

- For general deformation y, deformation gradient average for patch ω_f = (T₁ ∪ T₂), F_f(y) = ∫_{ω_f} ∇y dx,
 Corrector function: ψ̂(y; ·) = Σ_{f∈𝔅} ψ(F_f(y); m_f)ζ_f
- Define the 'modified' stress function,

$$\widehat{\Sigma}_{\mathrm{ac}}(y; T) := \Sigma_{\mathrm{ac}}(y; T) - \mathsf{J} \nabla \widehat{\psi}(y; T), \quad \text{ for } T \in \mathscr{T}.$$

•
$$\widehat{\Sigma}_{ac}(y_{\mathsf{F}}; T) = \partial W(\mathsf{F}) = \Sigma_{a}(y_{\mathsf{F}}; T)$$

 $u_1 \underbrace{\begin{array}{c} T_1 \\ J_{n_1} \\ n_2 \\ T_2 \\ T$

Construction of Consistent A/C Schemes

$$\begin{split} \mathcal{E}^{\mathrm{ac}}(y_h) &= \sum_{\mathbf{x} \in \mathscr{Q}_{\mathrm{a}}} V_{\mathbf{x}} + \sum_{\mathbf{x} \in \mathscr{Q}_{\mathrm{c}}} \tilde{V}_{\mathbf{x}} + \sum_{\mathbf{x} \in \mathscr{Q}_{\mathrm{c}}} V_{\mathbf{x}}^c \\ \text{Construct } \tilde{V} \text{ s.t. } \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0 \text{ for all } \mathsf{F} \in \mathbb{R}^{d \times d}. \end{split}$$

General Construction: [1D, Shimokawa et al, 2004; E/Lu/Yang, 2006]

$$\begin{split} \tilde{V}_{x} &= V\big(\tilde{g}_{x,r}; r \in \mathscr{R}\big) \\ \tilde{g}_{x,r} &= \sum_{s \in \mathscr{R}_{x}} C_{x,r,s} g_{s} \end{split}$$

$$\begin{array}{l} \rightarrow \mbox{ Find } C_{x,r,s} \mbox{ s.t. } \delta \mathcal{E}^{\rm ac}(y_{\sf F}) = 0 \quad \forall {\sf F} \\ \rightarrow \mbox{ geometric conditions only! } \end{array}$$

- Explicit constructions for 2D general interface: [Ortner/LZ; SINUM, 2012]
- In general: compute $C_{x,r,s}$ numerically in preprocessing

2d, NN, multibody potential, triagular lattice

Construction of Consistent A/C Schemes

$$\begin{split} \mathcal{E}^{\mathrm{ac}}(y_h) &= \sum_{\mathsf{x} \in \mathscr{L}_{\mathrm{a}}} \mathsf{V}_{\mathsf{x}} + \sum_{\mathsf{x} \in \mathscr{L}_{\mathrm{i}}} \tilde{\mathsf{V}}_{\mathsf{x}} + \sum_{\mathsf{x} \in \mathscr{L}_{\mathrm{c}}} \mathsf{V}_{\mathsf{x}}^{\mathsf{c}} \\ & \text{Construct } \tilde{\mathsf{V}} \text{ s.t. } \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0 \text{ for all } \mathsf{F} \in \mathbb{R}^{d \times d}. \end{split}$$

General Construction: [1D, Shimokawa et al, 2004; E/Lu/Yang, 2006] 2. Patch Test Consistency

$$\begin{split} \tilde{V}_{x} &= V\left(\tilde{g}_{x,r}; r \in \mathscr{R}\right) \\ \tilde{g}_{x,r} &= \sum_{s \in \mathscr{R}_{x}} C_{x,r,s} g_{s} \\ \rightarrow & \text{Find } C_{x,r,s} \text{ s.t. } \delta \mathcal{E}^{\operatorname{ac}}(y_{\mathsf{F}}) = 0 \quad \forall \mathsf{F} \\ \rightarrow & \text{geometric conditions only!} \end{split} = \underbrace{\sum_{x \in \mathscr{L}} \sum_{r \in \mathscr{R}} V_{\mathsf{F},r} \sum_{s \in \mathscr{R}} C_{x,r,s} D_{\mathsf{s}} u}_{s \in \mathscr{R}} \\ = \sum_{x \in \mathscr{L}} \sum_{r \in \mathscr{R}} \sum_{s \in \mathscr{R}} (C_{x-a_{\mathsf{s}},r,s} V_{\mathsf{F},r} - C_{x,r,s} D_{\mathsf{r}} V_{\mathsf{F},r}) u(x) \\ \vdots \text{ total Energy Consistency } \tilde{V}(y_{\mathsf{F}}) = V(y_{\mathsf{F}}) \end{split}$$

$$=\sum_{s\in\mathscr{R}_{x}}C_{x,r,s}s. \quad (a)$$

$$\Rightarrow \sum_{r\in\mathscr{R}}\sum_{s\in\mathscr{R}}(C_{x-s,r,s}V_{\mathsf{F},r}-C_{x,r,s}V_{\mathsf{F},r})=0. \quad (b)$$

 $\begin{array}{l} \text{Solve (a)} + (b) + \text{B.C. in } \mathcal{L}_a \text{ and } \mathcal{L}_c \text{ to obtain } \mathcal{C}_{x,r,s} \text{ for } x \in \mathcal{L}_i.\\ \text{unknowns: } |\mathcal{L}_{\mathcal{I}}||\mathcal{R}|^2, \text{ eqns: } |\mathcal{L}_{\mathcal{I}}|(2|\mathcal{R}|+3). \end{array}$

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Construction of Consistent A/C Schemes

$$\begin{split} \mathcal{E}^{\mathrm{ac}}(y_h) &= \sum_{\mathbf{x} \in \mathscr{Q}_{\mathrm{a}}} V_{\mathbf{x}} + \sum_{\mathbf{x} \in \mathscr{Q}_{\mathrm{i}}} \tilde{V}_{\mathbf{x}} + \sum_{\mathbf{x} \in \mathscr{Q}_{\mathrm{c}}} V_{\mathbf{x}}^c \\ \text{Construct } \tilde{V} \text{ s.t. } \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0 \text{ for all } \mathsf{F} \in \mathbb{R}^{d \times d}. \end{split}$$

General Construction:

Interface with corner T_{1} T_{2} C T_{1} T_{2} T_{3} T_{4} T_{6} T_{6} T_{7} T_{4} T_{7} T_{5} T_{7} T_{7} T_{7} T_{7}

 $C_{x,r,r}$ for NN interaction, multibody potential, one-sided construction. 1. works for general interface in 2d

2. preprocessing for longer interaction range

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Numerical Experiment

Test Problem: microcrack in the triangular lattice, EAM multi-body potential

$$V = F_{lpha}\left(\sum_{i \neq j}
ho_{eta}(r_{ij})
ight) + rac{1}{2}\sum_{i \neq j} \phi_{lphaeta}(r_{ij})$$

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

13 21 / 29

Optimization of the Reconstruction Coefficients

[Ortner/LZ, 2013]

Left: H^1 Error with coefficients from least square solution Right: H^1 Error with coefficients from L^1 minimization

• The coefficients needs to be pre-computed for longer range interactions, also needs to be optimized for better accuracy.

Optimization of the Reconstruction Coefficients

[Ortner/LZ, 2013]

Left: H^1 Error with coefficients from least square solution Right: H^1 Error with coefficients from L^1 minimization

Consistency Error Estimate

$$\begin{split} \left\langle \delta \mathcal{E}^{\mathrm{ac}}(y) - \delta \mathcal{E}^{\mathrm{a}}(y), u_h \right\rangle &= \sum_{T \in \mathscr{T}} (\Sigma_{\mathrm{ac}}(y; T) - \Sigma_{\mathrm{a}}(y; T)) : \nabla u_h \\ &\leq C \| h \nabla^2 y \|_{\mathrm{L}^2(\Omega_{\mathrm{c}} \cup \Omega_{\mathrm{i}})} \| \nabla u_h \|_{\mathrm{L}^2} \end{split}$$

The constant C is controled by $\sum_{r \in \mathbb{R}} \sum_{s \in \mathbb{R}} |r| |s| C_{x,r,s}$.

• The coefficients can be obtained by solving a constrained L^1 minimization problem.

Stability of Consistent A/C Coupling Method

[Ortner/Shapeev/LZ, 2013]

• Study the Hessians

$$egin{aligned} &\langle H^{\mathrm{a}}_{Dy} \mathsf{v}, \mathsf{v}
angle &:= \langle \delta^{2} \mathcal{E}^{\mathrm{a}}(y) \mathsf{v}, \mathsf{v}
angle &:= \sum_{\xi \in \mathbb{Z}} \sum_{\xi,\varsigma \in \mathscr{R}} V_{\rho\varsigma}(D \mathsf{y}(\xi)) \cdot D_{\rho} \mathsf{v}(\xi) D_{\varsigma} \mathsf{v}(\xi) \ &\langle H^{\mathrm{ac}}_{Dy} \mathsf{v}, \mathsf{v}
angle &:= \langle \delta^{2} \mathcal{E}^{\mathrm{ac}}(y) \mathsf{v}, \mathsf{v}
angle &:= \sum_{\xi \in \mathbb{Z}} \sum_{\xi,\varsigma \in \mathscr{R}} \tilde{V}_{\rho\varsigma}(D \mathsf{y}(\xi)) \cdot D_{\rho} \mathsf{v}(\xi) D_{\varsigma} \mathsf{v}(\xi) \end{aligned}$$

Stability of Consistent A/C Coupling Method

[Ortner/Shapeev/LZ, 2013]

Study the Hessians

$$egin{aligned} &\langle H^{\mathrm{a}}_{Dy} \mathsf{v}, \mathsf{v}
angle &:= \langle \delta^{2} \mathcal{E}^{\mathrm{a}}(y) \mathsf{v}, \mathsf{v}
angle &:= \sum_{\xi \in \mathbb{Z}} \sum_{\xi,\varsigma \in \mathscr{R}} V_{\rho\varsigma}(D \mathsf{y}(\xi)) \cdot D_{\rho} \mathsf{v}(\xi) D_{\varsigma} \mathsf{v}(\xi) \ &\langle H^{\mathrm{ac}}_{Dy} \mathsf{v}, \mathsf{v}
angle &:= \langle \delta^{2} \mathcal{E}^{\mathrm{ac}}(y) \mathsf{v}, \mathsf{v}
angle &:= \sum_{\xi \in \mathbb{Z}} \sum_{\xi,\varsigma \in \mathscr{R}} \tilde{V}_{\rho\varsigma}(D \mathsf{y}(\xi)) \cdot D_{\rho} \mathsf{v}(\xi) D_{\varsigma} \mathsf{v}(\xi) \end{aligned}$$

• Stability constant:

$$\gamma(H) := \inf_{\substack{u \in \mathscr{W}_0 \\ \|\nabla u\|_{L^2} = 1}} \langle Hu, u \rangle.$$

We say that H is stable if $\gamma(H) > 0$.

Stability of Consistent A/C Coupling Method

[Ortner/Shapeev/LZ, 2013]

Study the Hessians

$$egin{aligned} &\langle H^{\mathrm{a}}_{Dy} \mathsf{v}, \mathsf{v}
angle &:= \langle \delta^{2} \mathcal{E}^{\mathrm{a}}(y) \mathsf{v}, \mathsf{v}
angle &:= \sum_{\xi \in \mathbb{Z}} \sum_{\xi,\varsigma \in \mathscr{R}} V_{
ho\varsigma}(D \mathsf{y}(\xi)) \cdot D_{
ho} \mathsf{v}(\xi) D_{\varsigma} \mathsf{v}(\xi) \ &\langle H^{\mathrm{ac}}_{Dy} \mathsf{v}, \mathsf{v}
angle &:= \langle \delta^{2} \mathcal{E}^{\mathrm{ac}}(y) \mathsf{v}, \mathsf{v}
angle &:= \sum_{\xi \in \mathbb{Z}} \sum_{\xi,\varsigma \in \mathscr{R}} \tilde{V}_{
ho\varsigma}(D \mathsf{y}(\xi)) \cdot D_{
ho} \mathsf{v}(\xi) D_{\varsigma} \mathsf{v}(\xi) \end{aligned}$$

• Stability constant:

$$\gamma(H) := \inf_{\substack{u \in \mathscr{W}_0 \\ \|\nabla u\|_{L^2} = 1}} \langle Hu, u \rangle.$$

We say that H is stable if $\gamma(H) > 0$.

• For homogenous deformation y_F,

•
$$\gamma(H_{\mathsf{F}}^{\mathrm{ac}}) \leq \gamma(H_{\mathsf{F}}^{\mathrm{a}})$$
 for all $\mathsf{F} > 0$.
• $\gamma(H_{\mathsf{F}}^{\mathrm{c}}) = W''(\mathsf{F}) \geq \gamma(H_{\mathsf{F}}^{\mathrm{a}})$ for all $\mathsf{F} > 0$

Universally Stable Method

Question: For any potential V, can we find such a A/C scheme, such that $\gamma_{\rm F}^{\rm ac} > 0$ if an only if $\gamma_{\rm F}^{\rm a} > 0$? If exists, such method is called <u>univerally</u> stable.

• universally stable method in 1D

$${\sf z}^* := \left\{egin{array}{cc} z(\xi), & \xi \leq 0, \ 2z(0) - z(-\xi), & \xi > 0. \end{array}
ight.$$

$$\mathcal{E}^{\mathrm{rfl}}(y) := \mathcal{E}^*(y) + \int_0^\infty W(\nabla y) \,\mathrm{d}x, \quad \text{where}$$
$$\mathcal{E}^*(y) := \sum_{\xi = -\infty}^{-1} \left[V(Dy^*(\xi)) - V(\mathsf{F}\mathscr{R}) \right] + \frac{1}{2} \left[V(Dy^*(0)) - V(\mathsf{F}\mathscr{R}) \right].$$

Universally Stable Method

Question: For any potential V, can we find such a A/C scheme, such that $\gamma_{\rm F}^{\rm ac} > 0$ if an only if $\gamma_{\rm F}^{\rm a} > 0$? If exists, such method is called <u>univerally</u> stable.

• universally stable method in 1D

$$z^* := \left\{ egin{array}{cc} z(\xi), & \xi \leq 0, \ 2z(0) - z(-\xi), & \xi > 0. \end{array}
ight.$$

$$\begin{aligned} \mathcal{E}^{\mathrm{rfl}}(y) &:= \mathcal{E}^*(y) + \int_0^\infty W(\nabla y) \, \mathrm{d}x, \quad \text{where} \\ \mathcal{E}^*(y) &:= \sum_{\xi = -\infty}^{-1} \left[V(Dy^*(\xi)) - V(\mathsf{F}\mathscr{R}) \right] + \frac{1}{2} \left[V(Dy^*(0)) - V(\mathsf{F}\mathscr{R}) \right]. \end{aligned}$$

• Nonexistence of universally stable method in 2D, even for flat interface.

Stability Gap and Stabilization

Figure : Stability test for C = 1, D = -0.5. The black circles indicate which eigenmodes (u_1 -component) are plotted in (b, c).

$$V(g) := \sum_{\rho \in \mathscr{R}} \phi(|g_{\rho}|) + G(\sum_{\rho \in \mathscr{R}} \psi(|g_{\rho}|)) + D \sum_{j=1}^{6} (r_{j} \cdot r_{j+1} - 1/2)^{2},$$
where $\phi(s) := e^{-2A(s-1)} - 2e^{-A(s-1)}, \quad \psi(s) := e^{-Bs}, \text{ and } G(s) := C((s-s_{0})^{2} + (s-s_{0})^{4})^{2}$
C. Ortner, A. Shapeev, L. Zhang Consistent A/C Coupling Dundee, Sep 9, 2013 25 / 29

Stability Gap and Stabilization

Figure : Stability test for $C = 1, D = -0.5, \kappa = 0.1$. The black circles indicate which eigenmodes (u_1 -component) are plotted in (b, c).

$$\mathcal{E}^{ ext{stab}}(y) := \mathcal{E}^{ ext{ac}}(y) + \kappa \langle Su, u
angle, \qquad ext{for } y = \mathsf{F} x + u, u \in \mathscr{W}_0,$$

where

$$\langle Su, u \rangle := \sum_{\xi \in \mathscr{L}^{(0)}} |D^2 u(\xi)|^2,$$

C. Ortner, A. Shapeev, L. Zhang

٤

Consistent A/C Coupling

Stability Gap and Stabilization

Figure : Stability test for $C = 1, D = -0.5, \kappa = 1$. The black circles indicate which eigenmodes (u_1 -component) are plotted in (b, c).

$$\mathcal{E}^{ ext{stab}}(y) := \mathcal{E}^{ ext{ac}}(y) + \kappa \langle Su, u
angle, \qquad ext{for } y = \mathsf{F} x + u, u \in \mathscr{W}_{0,y}$$

where

$$\langle Su, u \rangle := \sum_{\xi \in \mathscr{L}^{(0)}} |D^2 u(\xi)|^2,$$

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Stablization: Consistency vs. Stability

"Theorem:" [Critical Strain for Stablized A/C Coupling] Let V have hexagonal symmetry, $F \propto I$, $V_{i,i+2} = V_{i,i+3} \equiv 0$, and $\tilde{c}_1^{(1)} - \tilde{c}_1^{(-1)} \neq 0$; then there exists constants $c_1, c_2 > 0$ such that $\gamma(H_F^a) - \frac{c_1}{\kappa^2} \leq \gamma(H_F^{ac} + \kappa S) \leq \gamma(H_F^a) - \frac{c_2}{\kappa^2}$.

• existence of a critical loading parameter $t_*^{\kappa} \in [t_0, t_*]$ for which $\gamma(H_{t_*^{\kappa}}^{ac} + \kappa S) = 0$ and such that

$$|t_*^\kappa - t_*| pprox rac{1}{\kappa^2}.$$

• Therefore, if we wish to admit at most an $O(N^{-1})$ error in the critical strain, then we must accordingly choose $\kappa = O(N^{1/2})$. Unfortunately, this has a consequence for the consistency error of the stabilised A/C method, which will accordingly scale like $O(N^{1/2})$.

Stability Analysis

Recipe for General Interaction Range

2nd nearest neighbor EAM potential

Outlook

Summary

- Consistent energy based method has accuracy $O(N^{-1})$
- Construction of consistent energy-based a/c methods
- Stability of consistent energy-based a/c methods

Outlook

Summary

- Consistent energy based method has accuracy $O(N^{-1})$
- ${\scriptstyle \bullet}$ Construction of consistent energy-based a/c methods
- $\bullet\,$ Stability of consistent energy-based a/c methods

Ongoing Work

- \bullet Optimize the A/C coupling method
- Implementation, benchmarks, applications
- 3D
- dislocation

Outlook

Summary

- Consistent energy based method has accuracy $O(N^{-1})$
- ${\scriptstyle \bullet}$ Construction of consistent energy-based a/c methods
- $\bullet\,$ Stability of consistent energy-based a/c methods

Ongoing Work

- \bullet Optimize the A/C coupling method
- Implementation, benchmarks, applications
- 3D
- dislocation

Major Open Problems

- $\bullet~A/C$ methods for multi-lattices
- $\bullet~A/C$ methods for Coulomb interaction
- ${\scriptstyle \bullet}$ A/C methods for electronic structure models
- A/C methods for molecular dynamics

Thanks for Your Attention!

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Dundee, Sep 9, 2013 29 / 29

The Force-based Approach

A possible solution are **force-based a/c methods**:

- Dead-load GF removal: Shenoy, Miller, Rodney, Tadmor, Phillips, Ortiz (1999)
- FeAt: Kohlhoff, Schmauder, Gumbsch (1989, 1991)
- AtC: Parks, Gunzburger, Fish, Badia, Bochev, Lehoucq, et al. (2007, ...)
- CADD: Shilkrot & Curtin & Miller (2002, ...)
- Adaptive Resolution MD: Delle Site et al. (2007, ...)
- Brutal Force Mixing: Bernstein, Csanyi et al. (2007, ...)
-
- Analysis: Dobson & Luskin (2008); Ming (2009); Dobson & Luskin & Ortner (2009, 2010, 2010); Makridakis & Ortner & Süli (2010, preprint); Dobson & Ortner & Shapeev (preprint), Lu & Ming (manuscript)

Consistency

Numerical Analysis Literature on Energy-Based Coupling:

- 1D, NN, variational analysis: [Blanc/LeBris/Legoll, 2005]
- 1D, Error estimates for QCE and QNL: [Dobson/Luskin, 2009], [Ming/Yang, 2010], [Ortner, 2010], [Ortner/Wang, 2011]
- 1D, Sharp Stability Analysis, Linear Regime: [Dobson/Luskin/Ortner, 2010]
- 1D, finite range: [Li/Luskin, preprint]
- 1D, EAM potentials: [Li/Luskin, 2011]
- 1D, blending methods: [Luskin/van Koten, preprint]
- 2D, pair interactions, defects: [Ortner/Shapeev, preprint]
- 2D, NN interactions: [Ortner/Zhang, manuscript]
- 2D, consistency for general finite-range interactions: [Ortner, preprint]

Cauchy–Born Approximation

Atomistic Stored Energy:

$$\mathcal{E}^{\mathrm{a}}(y) = \sum_{x \in \mathscr{L}} V(y(x+r) - y(x); r \in \mathscr{R})$$

Cauchy–Born Stored Energy:

 $\mathcal{E}^{\mathrm{c}}(y) = \int_{\Omega} W(\nabla y) \,\mathrm{dV}, \quad \text{where } W(\mathsf{F}) = V(\{\mathsf{F}r; r \in \mathscr{R}\}).$

Cauchy–Born Approximation

Atomistic Stored Energy:

$$\mathcal{E}^{\mathrm{a}}(y) = \sum_{x \in \mathscr{L}} V(y(x+r) - y(x); r \in \mathscr{R})$$

Cauchy–Born Stored Energy:

 $\mathcal{E}^{\mathrm{c}}(y) = \int_{\Omega} W(\nabla y) \,\mathrm{dV}, \quad \text{where } W(\mathsf{F}) = V(\{\mathsf{F}r; r \in \mathscr{R}\}).$

 $\begin{array}{ll} \text{Theorem:} & [\text{Similar to result by E/Ming; 2007}] \\ \text{Let } y_{a} \in \mathop{\mathrm{argmin}} \mathcal{E}_{a}^{tot} \text{ be "sufficiently smooth globally", then} \\ \text{there exists } y_{c} \in \mathop{\mathrm{argmin}} \mathcal{E}_{c}^{tot} \text{ such that} \\ & \| \nabla y_{a} - \nabla y_{c} \|_{L^{2}} \lesssim \mathcal{C} \big(\| \nabla^{3} y_{a} \|_{L^{2}} + \| \nabla^{2} y_{a} \|_{L^{4}}^{2} \big) \\ \end{array}$

If there are no defects, then the Cauchy–Born model is a highly accurate continuum approximation.

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Atomistic/Continuum Coupling: First Attempt

 $\mathcal{E}^{\mathrm{a}}(y_h) \approx \mathcal{E}^{\mathrm{ac}}(y_h) := \sum_{\mathbf{x} \in \mathscr{L}_{\mathrm{a}}} V_{\mathbf{x}} + \int_{\Omega_{\mathrm{c}}} W(\nabla y_h) \, \mathrm{d}\mathbf{x}$

Atomistic/Continuum Coupling: First Attempt

$$\mathcal{E}^{\mathrm{a}}(y_h) \approx \mathcal{E}^{\mathrm{ac}}(y_h) := \sum_{x \in \mathscr{L}_{\mathrm{a}}} V_x + \int_{\Omega_{\mathrm{c}}} W(\nabla y_h) \, \mathrm{d}x$$

Fails the patch test:

 $\delta \mathcal{E}^{a}(y_{\mathsf{F}}) = 0$ and $\delta \mathcal{E}^{c}(y_{\mathsf{F}}) = 0,$ but $\delta \mathcal{E}^{qce}(y_{\mathsf{F}}) \neq 0,$ C. Ortner, A. Shapeev, L. Zhang

Main Challenges:

• **Construction** of patch test consistent \mathcal{E}^{ac} : still largely unsolved

[Shimokawa et al; 2004], [E/Lu/Yang; 2006], [Shapeev; preprint], [Iyer/Gavini; preprint], [Ortner/Zhang; preprint], [Xiao/Belytschko, 2004], [Klein/Zimmermann, 2006], ...

Main Challenges:

 \bullet Construction of patch test consistent $\mathcal{E}^{ac}{:}$ still largely unsolved

[Shimokawa et al; 2004], [E/Lu/Yang; 2006], [Shapeev; preprint], [Iyer/Gavini; preprint], [Ortner/Zhang; preprint], [Xiao/Belytschko, 2004], [Klein/Zimmermann, 2006], . . .

• Accuracy: Does passing the patch test imply "good" accuracy?

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Consisency of The Schemes

$$\begin{split} \mathcal{E}^{\mathrm{ac}}(y_h) &= \sum_{\mathsf{x} \in \mathscr{L}_{\mathrm{a}}} \mathsf{V}_{\mathsf{x}} + \sum_{\mathsf{x} \in \mathscr{L}_{\mathrm{i}}} \tilde{\mathsf{V}}_{\mathsf{x}} + \sum_{\mathsf{x} \in \mathscr{L}_{\mathrm{c}}} \mathsf{V}_{\mathsf{x}}^{\mathsf{c}} \\ \text{Construct } \tilde{\mathsf{V}} \text{ s.t. } \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0 \text{ for all } \mathsf{F} \in \mathbb{R}^{d \times d}. \end{split}$$

$$\begin{split} \tilde{V}_{x} &= V(\tilde{g}_{x,r}; r \in \mathscr{R}) \\ \tilde{g}_{x,r} &= \sum_{s \in \mathscr{R}_{x}} C_{x,r,s} g_{s} \\ &\rightarrow \text{Find } C_{x,r,s} \text{ s.t. } \delta \mathcal{E}^{\text{ac}}(y_{\mathsf{F}}) = 0 \quad \forall \mathsf{F} \\ &\rightarrow \text{ geometric conditions only!} \end{split}$$

Theorem: [Ortner/Zhang, '11] There exists a constant C that depends only on $M_2(V)$ and $M_3(V)$ such that

$$\left\|\delta \mathcal{E}^{\mathrm{ac}}(y) - \delta \mathcal{E}^{\mathrm{a}}(y)\right\|_{\mathscr{U}^{-1,p}} \leq C \big(\|D^3y\|_{\ell^p(\Omega_{\mathrm{c}})} + \|D^2y\|_{\ell^{2p}(\Omega_{\mathrm{c}})}^2 + \|D^2y\|_{\ell^p(\Omega_{\mathcal{I}})}\big)$$

C. Ortner, A. Shapeev, L. Zhang

Consistent A/C Coupling

Outlook on A/C Methods

Summary

- $\bullet~\mbox{Ghost}$ force removal $\Rightarrow~\mbox{Patch}$ test consistency $\Rightarrow~\mbox{consistency}$
- Construction of practical energy-based a/c methods
- Sharp consistency error estimates through stress based formulation

Outlook on A/C Methods

Summary

- ${\scriptstyle \bullet}\,$ Ghost force removal \Rightarrow Patch test consistency \Rightarrow consistency
- Construction of practical energy-based a/c methods
- Sharp consistency error estimates through stress based formulation

Open Problems

- Stability
- A/C coupling at surfaces
- Implementation, benchmarks, applications

Outlook on A/C Methods

Summary

- ${\scriptstyle \bullet \,}$ Ghost force removal \Rightarrow Patch test consistency \Rightarrow consistency
- Construction of practical energy-based a/c methods
- Sharp consistency error estimates through stress based formulation

Open Problems

- Stability
- A/C coupling at surfaces
- Implementation, benchmarks, applications

Major Open Problems

- A/C methods for multi-lattices
- $\bullet~A/C$ methods for Coulomb interaction
- A/C methods for electronic structure models (done only for insulators)
- A/C methods for molecular dynamics

Consequence of Patch Test Consistency

If an A/C energy $\mathcal{E}^{\rm ac}$ satisfies patch test consistency,

$$0 = \langle \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}), u \rangle = \sum_{T \in \mathscr{T}} |T| \Sigma_{\mathrm{ac}}(y_{\mathsf{F}}; T) : \nabla_T u$$

then $\Sigma_{\rm ac}$ is discrete divergence free.

Lemma: \exists a function $\psi(\mathsf{F}, T) \in \mathrm{N}_1(\mathscr{T})^2$, such that $\Sigma_{\mathrm{ac}}(y_{\mathsf{F}}; T) = \partial W(\mathsf{F}) + J \nabla \psi(\mathsf{F}; T)$

 $N_1(\mathscr{T})$ is Crouzeix–Raviart finite element space,

J is the counter-clockwise rotation by $\pi/2$.

 $J\nabla\psi(\mathsf{F}; T)$ is divergence free piecewise constant tensor field [Arnold/Falk, Polthier/Preuß].

Consequence of Patch Test Consistency

If an A/C energy $\mathcal{E}^{\rm ac}$ satisfies patch test consistency,

$$0 = \langle \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}), u \rangle = \sum_{T \in \mathscr{T}} |T| \Sigma_{\mathrm{ac}}(y_{\mathsf{F}}; T) : \nabla_T u$$

then $\Sigma_{\rm ac}$ is discrete divergence free.

Lemma:

 \exists a function $\psi(\mathsf{F}, T) \in \mathrm{N}_1(\mathscr{T})^2$, such that

$$\Sigma_{\rm ac}(y_{\sf F};T) = \partial W({\sf F}) + J\nabla \psi({\sf F};T)$$

Coupling

- For general deformation y, deformation gradient average for patch ω_f = (T₁ ∪ T₂), F_f(y) = ∫_{ω_f} ∇y dx,
 Corrector function: ψ̂(y; ·) = Σ_{f∈𝔅} ψ(F_f(y); m_f)ζ_f
- Define the 'modified' stress function,

C. Or

$$\widehat{\Sigma}_{\mathrm{ac}}(y; T) := \Sigma_{\mathrm{ac}}(y; T) - \mathsf{J} \nabla \widehat{\psi}(y; T), \quad \text{ for } T \in \mathscr{T}.$$

•
$$\widehat{\Sigma}_{ac}(y_{\mathsf{F}}; T) = \partial W(\mathsf{F}) = \Sigma_{a}(y_{\mathsf{F}}; T)$$

there, A. Shapeev, L. Zhang Consistent A/C

 $u_1 \underbrace{\begin{array}{c} T_1 \\ J_{n_1} \\ n_2 \\ T_2 \\ T$

Consisency of The Schemes

$$\begin{split} \mathcal{E}^{\mathrm{ac}}(y_h) &= \sum_{\mathbf{x} \in \mathscr{L}_{\mathrm{a}}} V_{\mathbf{x}} + \sum_{\mathbf{x} \in \mathscr{L}_{\mathrm{i}}} \tilde{V}_{\mathbf{x}} + \sum_{\mathbf{x} \in \mathscr{L}_{\mathrm{c}}} V_{\mathbf{x}}^{\boldsymbol{c}} \\ \text{Construct } \tilde{V} \text{ s.t. } \delta \mathcal{E}^{\mathrm{ac}}(y_{\mathsf{F}}) = 0 \text{ for all } \mathsf{F} \in \mathbb{R}^{d \times d}. \end{split}$$

"Theorem:"

[Ortner/Zhang]

There exists a constant C that depends only on $M_2(V)$ and $M_3(V)$ such that

$$\left\|\delta \mathcal{E}^{\mathrm{ac}}(y) - \delta \mathcal{E}^{\mathrm{a}}(y)\right\|_{\mathscr{U}^{-1,p}} \leq C \big(\|\nabla^3 y\|_{\ell^p(\Omega_{\mathrm{c}})} + \|\nabla^2 y\|_{\ell^{2p}(\Omega_{\mathrm{c}})}^2 + \|\nabla^2 y\|_{\ell^p(\Omega_{\mathcal{I}})} \big).$$

Proof of Consistency

$$\begin{split} \langle \delta \mathcal{E}^{\mathrm{ac}}(y) - \delta \mathcal{E}^{\mathrm{a}}(y), u \rangle &= \sum_{T \in \mathscr{T}} (\Sigma_{\mathrm{ac}}(y; T) - \Sigma_{\mathrm{a}}(y; T)) : \nabla u \\ &= \sum_{T \in \mathscr{T}} (\widehat{\Sigma}_{\mathrm{ac}}(y; T) - \Sigma_{\mathrm{a}}(y; T)) : \nabla u \end{split}$$

$$\begin{array}{l} \mathbf{O} \quad T \in \Omega_{\mathcal{A}}, \ \widehat{\Sigma}_{\mathrm{ac}}(y; T) = \Sigma_{\mathrm{a}}(y; T), \\ \mathbf{O} \quad T \in \Omega_{\mathcal{C}}, \ \widehat{\Sigma}_{\mathrm{ac}}(y; T) - \Sigma_{\mathrm{a}}(y; T) = \Sigma_{\mathrm{c}}(y; T) - \Sigma_{\mathrm{a}}(y; T), \ \text{2nd order consistency} \\ \mathbf{O} \quad T \in \Omega_{\mathcal{I}}, \ \text{Let} \ y_{\mathcal{T}} = y_{\nabla y(\mathcal{T})}, \ \text{we have,} \\ |\widehat{\Sigma}_{\mathrm{ac}}(y; T) - \Sigma_{\mathrm{a}}(y; T)| \leq |\widehat{\Sigma}_{\mathrm{ac}}(y; T) - \partial W(\nabla y(T))| + |\partial W(\nabla y(T)) - \Sigma_{\mathrm{a}}(y; T)| \\ = |\widehat{\Sigma}_{\mathrm{ac}}(y; T) - \widehat{\Sigma}_{\mathrm{ac}}(y; T)| + |\Sigma_{\mathrm{a}}(y_{\mathcal{T}}; T) - \Sigma_{\mathrm{a}}(y; T)| \\ \leq C ||\nabla y(T) - \nabla y||_{\ell^{\infty}} \leq C |D^{2}y| \end{aligned}$$

 $\left\|\delta \mathcal{E}^{\mathrm{ac}}(y) - \delta \mathcal{E}^{\mathrm{a}}(y)\right\|_{\mathscr{U}^{-1,p}} \leq C \big(\|\nabla^3 y\|_{\ell^p(\Omega_{\mathrm{c}})} + \|\nabla^2 y\|_{\ell^{2p}(\Omega_{\mathrm{c}})}^2 + \|\nabla^2 y\|_{\ell^p(\Omega_{\mathcal{I}})} \big).$

 \Rightarrow

Consistent A/C Coupling