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@ Introduction

@ Periodic media with scale separation.
@ Nonseparable scales

o Homogenization via harmonic mapping — the solution space is 'low
dimensional’

o Homogenization via flux norm — optimality of the approximation order

o Homogenization via localized basis — balancing accuracy and efficiency

O Outlook
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Model Problem

We want to homogenize:

o Scalar case:
—div(aVu) =g x€eQ (1)
u=20 x € Q2

Q C RY bounded, open; a = {a;;(x) € L>(Q)} symmetric, uniformly
elliptic; g € L%(Q), u € HY(Q).
o Vectorial case:

—div(C:Vu)=b x€Q 2)
u=0 x € 082

Q C RY, d > 2, bounded, open; C = {Cj/(x) € L>(Q)} symmetric
elastic modulus, b € (L?(2))? load; u € (H*(£2))? displacement field.
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Classical homogenization theory

Typically, for homogenization, conditions on a(x) are required

o Classical periodic homogenization: a(y) periodic; a (f) e—0
(Bachvalov, Sanchez-Palencia, Zhikov, Kozlov, Lions, Oleinik, Papanicolaou; ...)

o in real life, no e-family of media

o Random coefficients a (%;w): stationarity, ergodicity (Kozlov,
Papanicolaou/Varadhan, ...)
General coefficients
o Abstract operator convergence — existence, justification of
homogenized limit
o G-convergence Spagnolo

o H-convergence Murat-Tartar

Question:
Is there a constructive way to approximate solution in terms of given data?
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Scale Separation Nonseparable Scales
Goal of Numerical Homogenization

scales 1> H > ¢,

o ¢: smallest scale of the problem.

o H: an artificial scale, determined by available computational power and
desired precision, corresponding dof is N, H ~ N—1/4.
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Introduction

Goal of Numerical Homogenization

scales 1> H > ¢,

o ¢: smallest scale of the problem.

o H: an artificial scale, determined by available computational power and
desired precision, corresponding dof is N, H ~ N—1/4.

Goal:

Construct a finite dimensional space Vy, and approximate solution
u € V by uy € Vi in a certain norm, such that,

e want error estimate, e.g., ||u — uy|| < CH

o Vy constructed via several precomputed problems which do not
depend on RHS and BC (c.f., cell problems).

Note: Linear FEM can be arbitrarily slow (Babuska, Osborn, '99)
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Introduction Scale Separation Nonseparable Scales

Model Problem
To solve for g € L%(Q).

—div(aVu) =g x€Q
u=0 x € 002

Lei Zhang Num. Homogenization Nonseparable Scales Shanghai, Sep 20, 2013 5/ 44



Model Problem
To solve for g € L%(Q).

—div(aVu) =g x€Q
u=20 x € 09

Mapping from the RHS to solutions: g — u
o When RHS € H1("): H}(Q) — H}(Q)
o When RHS € L2(") : L%(Q) — V

V= {v e H}(Q)|div(aVv) € [2(Q)}
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Model Problem
To solve for g € L%(Q).

—div(aVu) =g x€Q
u=20 x € 09

Mapping from the RHS to solutions: g — u
o When RHS € H1("): H}(Q) — H}(Q)
o When RHS € L2(") : L%(Q) — V

V= {v e H}(Q)|div(aVv) € [2(Q)}

Compactness of the solution space V:
V cc H}Q), V ~ H*(Q)
Now the question is:
How to approximate V with a finite dimensional space?
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Literature

Compute local effective conductivities

o HMM: Engquist, E, Abdulle, Runborg, et al. 2003-...
o Equation-free: Kevrekidis et al. 2003-...

e Stochastic Homogenization: Gloria, Otto, Le Bris, Legoll, et al. 2009-,
Bal, Jing, 2010-...

Solve local cell problems

o MsFEM (Oscillating test functions): Murat-Tartar 1978,
Babuska-Osborn 1984, Hou, Wu, Effendiev, et al. 1997-... Nolen,
Papanicolaou, Pironneau, 2008

o Resonance Errors: Efendiev, Hou, Wu, 1999, Gloria 2010.
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Introduction

Literature
Pre-Computed Global Solutions

o White-Horne 1987, reservoir simulation

o Babuska-Caloz-Osborn 1994, d =1

o Owhadi-Zhang 2005, harmonic coordinates, d arbitrary
o Efendiev-Hou 2006-..., two-phase flow simulations

Local Solutions

o Chu-Graham-Hou, 2010, finite number of inclusions

o Efendiev-Galvis-Wu, 2010, finite number of inclusions or masks
o Babuska-Lipton, 2010, local boundary eigenvectors

o Owhadi-Zhang, 2011, Green's function with exponential decay
o Grasedyck-Greff-Sauter, 2012, AL basis

o Malqvist-Peterseim, 2012, localized basis
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Scale Separation

Homogenization of Periodic Media

x € 00

{ —div(a(¥)Vu?) =g x € QCRY, a periodic iny = x/e,
=0

Ut — ug in HY; up(x)—coarse scale only, solves the homogenized problem

—dlvx(aVXuo) =g xeQ
x € 0f2.

u—two scales, asymptotic expansion of u® = u(x, x/e) in &

= d cell problems (Y—periodicity cell, d dimension):

—divy(a(Vyx,-—l—e,-)) =0 xevY, 1<i<d
i € Hper(Y)
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Homogenization of Periodic Media

Two objectives:
e Find effective coefficients 3.

Determined by cell problems only, 3; = [y (e + Vi) " a(y)(e; + Vx;)dy —
bypass for arbitrary coefficients.

e Find approximate solution *~homogenization approximation.

|uf — || < caé,where

0 =uo—eXxi (%) G0
= Up + €

Xi are solutions of cell problems. To find approximation up (and ug + euy),
solve coarse scale problem—requires precomputing d cell problems for y;
which do not depend on f and Q.
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Scale Separation

Numerical Homogenization of Periodic Media —
Multiscale Finite Element Method

The oscillating basis function ¢¢ is locally a-harmonic in the mesh Ty with size H
Babuska, Osborn; Hou, Efendiev, Wu, Chen; Allaire, Brizzi;...,

—divaVe*=0 in KeTy
©° has boundary condition (linear, oscillatory, etc.)

©° has the similar two-scale expansion as u*®

8800

90 _LPO—I—EZXI

= |lu” - u| §c<H+\/§)

e computation of ¢ can be done in parallel — crucial for efficiency
o error: resonance effect, boundary layer effect — oversampling technique
o justified for the periodic medium — non-periodic case?
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Introduction Scale Separation Nonseparable Scales

Homogenization via a-Harmonic mapping
Harmonic coordinates F associated with a(x).

—divaVF =0 in Q
F(x)=x on 02

F=(F,Fy,....,Fq), x=(x1,x2, ..., Xd)

o d =2, Fis a homeomorphism Q — Q
Ancona, Alessandrini, Nesi. .

det(VF) >0 a.e.

o d >3, F can be non-injective (well chosen

a). ]
det(VF) can become negative Briane, ; DN
ilton, Nesi. N RRSS)
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Homogenization via a-Harmonic mapping

Theorem (Finite element by composition rule,
Owhadi-Zhang, '07)

Under Cordes type condition, 3C > 0, the finite
element solution uy € Vjy satisfies

|u = unll@) < CHlgll2(q)- Vu

o While u € HY(Q), uo F~! € H*(Q) - improved
regularity — compact solution space in H*!

o uo F~! can be approximated with O(H) by
wy € P1(£2) — piecewise linear finite element space
on regular triangulation 7.

@ u can be approximated with O(H) by VuoF
un € Vi :={¢oF| g€ P(Q)}.
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Introduction Scale Separation
Homogenization via a-Harmonic mapping

Theorem (Finite element by composition rule,
Owhadi-Zhang, '07)

Under Cordes type condition, 3C > 0, the finite
element solution uy € Vy satisfies

|u— unllm@) < CHlgll2(q)-

Remark:

@ Cordes type condition restricts anisotropy in higher
dimensions

. . o
@ Harmonic coordinates approach cannot be VuoF
extended to vectorial case
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Homogenization via the Flux Norm

Key notion: the Flux Norm

For k € (L%(2))?, kpor — potential part of k, i.e., the orthogonal projection
of k onto {Vf : f e HY(Q)}.

For ¢ € H}(Q), define

[¥][a-flux = [[(@VY)pot [l (12())e-
| - || s-fiux is @ norm on H3(), for all v € H}(R),

Amin(3) VYl (2(0))e < [¥]]a-flux < Amax(3) VY[l (12(0))e-
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Homogenization via the Flux Norm

Motivation for the flux norm:

o flux norm of solution of (1) is independent on a: rewrite (1) as
div(aVu+ VA=) =0 = aVu+ VA~If is a divergence free vector
field, its potential part is 0. Thus
(aVu)por + VAT =0 = ||ul| aiux = [|[VATLF| 2.

o Why (-)pot? Fluxes £ (heat, electric field, stress) are of interest

[ ¢onds = [ div(©)d = | div(gper)ox.

o In classical homogenization convergence of energies (I'-convergence) or
convergence of fluxes (G-, H-convergence) a*Vu® — a°VuP. Fluxes
converge weakly, no flux norm was needed.
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Transfer Property of Flux Norm

For a finite-dimensional linear subspace V C H}(Q), define (divaVV), a
finite-dim. subspace of H=%(Q), by

(divaVV) :={div(aVv) : v € V}.

Theorem(Transfer property of the flux norm), [Berlyand-Owhadi, '10]

Let V" and V be finite-dimensional (approximation) subspaces of H3 ().
For f € L?(Q)

o let u solve div(aVu) = f with conductivity a(x),
o let u' sove div(a’'Vu') = f with conductivity a’(x).

If (divaVV) = (diva’V V'), then approximation errors are equal:

. ”U - VHa—qux . . Hul - V”a’—ﬂux
sup |nf —F7 — Ssup |nf —_——
rerr@)veV  |Iflleq) rer2@)veV’ Il
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Transfer Property of the Flux Norm

Idea of the proof:
@ Show (recall ||u — v|lafx = [[(aVu = aVV)pot | (12(0)))
||(aVu - aVv)potH(Lz(Q))d . ||(VW - aVv)potH(Lz(Q))d

sup inf = sup inf
FEL2(Q) vev ||f||L2(Q) weEH2(Q)NHL(RQ) vev ||AWHL2(Q)

(4)

Proof of (4):

Since f € L2(Q), Iw € H*(Q) N H}(Q) s.t. —Aw = f for x € Q.

div(aVu) = —f =div(Vw) = (aVt)por = (VW)pot = Vw.

Then, for any v € V, [(Vw — aVV) ot [l (120 = I(aVu — aVv)pot |l (12(0))¢ -

Q@ Show

Vw —aVv)p,
[(Vw V)potll(2))r sup Izl 2() (5)

|[Aw||2(0) se@vavw)t V2l

sup inf
weH(Q)NHL(Q) vEV

Proof. Appendix
© The theorem then follows by combining (4) with (5) and noting that the RHS

of (5) is the same for all pairs (a, V) and (&', V') whenever

div(aVV) = div(a'VV’).
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Nonseparable Scales

Optimal Approximation Space w.r.t Flux Norm

Kolmogorov n-width d,(A, X), measures how accurately a given set of functions
A C X can be approximated by a n—dim linear subspace E, C X

dn(A, X) = inf sup inf ||lw— g||x
E, WGAgeEn
for a normed linear space X.
In our case:

o X: HY(Q) with || - ||o—fiux-norm,
o A: set of all solutions of (1) as f spans L?
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Optimal Approximation Space w.r.t Flux Norm

Kolmogorov n-width d,(A, X), measures how accurately a given set of functions
A C X can be approximated by a n—dim linear subspace E, C X

dn(A, X) = inf sup inf ||w —
(A4, X) = nf sup inf Jjw —glx

for a normed linear space X.
In our case:
o X: HY(Q) with || - ||o—fiux-norm,
o A: set of all solutions of (1) as f spans L?
The corresponding n—width is given by
1

\V4 An—}—l

suppose that (u;, ;) is the ith eigenpair for Dirichlet eigenvalue problem w.r.t —A
in €, the optimal n—term approximation space is given by

dn(A, X) = ~ n~ Y7 diam(Q)

V :=span{v;,—divaVy, = \ju;, v, =00Q,i=1---n}
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Localization of the Basis

Take &’ = Iy in the transfer property so that div(a'V) = A

V"= span{yp;}

—V - aV; ~Api Q,
bi = 0 09,

Vi = span{¢;}

sup inf 7||U_V”a—flux

< CH
gcr2@)veVn gl

C independent of contrast.
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Localization of the Basis

! = 0 09, D; = suppy;, Qi = supp;,
1
GO~ =
w7,-_T _ vavw;" = —Ap; Q;
wiT — 0 89,

The zeroth-order term (a strange term from
nowhere) makes Green's function decay
exponentially.

Papanicolaou-Varadhan 1979,
Yurinskii 1986, Gloria-Otto 2010.

x =yl
)< ——exp(—
GT(X/y)— ‘X*y|d72 exp( Cﬁ)
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Nonseparable Scales

Localization of the Basis
Xp = span{y;}, diam(supp(yi)) = O(H),

infuexy [[w = vl < CHllw[p
infyex, lw —vim < CH?|wllys

3G > 0, Qi = B(x;, CLH? log(%)) (suboptimal), T = H,

H™ Y = VaVy = —Ap; Q
Vi = 0 0%

Theorem(Localized basis), [Owhadi-Zhang, '11]
dCy > 0, s.t. for C > G
— H?
M < C(H e _) < CH
lglli2(e) T
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Nonseparable Scales

New Idea: Approximate V by Interpolating its
Elements.

Assume d < 3,

V= {v e H}(Q)|div(aVv) € [*(Q)}

°d<3 De Giorgi, Stampacchia\
o div(aVv) € L2(Q) ’
Elements of V are continuous and have well defined point values

v e C*Q).

@ Pick N points (x1, X2, , xn)

@ For (v1,...,vy) €RN,
find v e V, sit. v(x;) = vi.

Question: Which v to pick? Choice is not unique.
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Nonseparable Scales

New Idea: Approximate V by Interpolating its
Elements.

Assume d < 3,

V= {v € H}(Q)|div(aVv) € [3(Q)}

e d<3
o div(aVv) € L2(Q)
Elements of V' are continuous and have well defined point values

De Giorgi, St hi
e Giorgi, Stampacc |a/ ve Ca(Q)

@ Pick N points (x1, X2, , xn)

Q@ For (vi,...,vy) € RV,
find v e V, sit. v(xi) = vi.

Answer: Pick v minimize the || - ||\/-norm.
where || - [|3, = [, | div(aVe)[?.
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Nonseparable Scales

New Idea: Approximate V by Interpolating its
Elements.
Assume d < 3,

V= {v e H}(Q)|div(aVv) € [3(Q)}

o d<3
o div(aVv) € L2(Q)
Elements of V' are continuous and have well defined point values

De Giorgi, Stampacchia\

ve CYQ).

@ Pick N points (x1,x2, -+ ,Xxn)

Q@ For (vi,...,vy) €RV,
find v e V, sit. v(x;) = v;.

Answer: Pick v minimize the || - ||y-norm.
The elements of V' have bounded || - ||y norm implies the compactness of V
in H}(Q).
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Nonseparable Scales

New Ildea: Approximate V by Interpolating its
Elements.

o Interpolation Problem:
For (vi,...,vy) €RN find v € V, st. v(x)=v;.
o Answer: Pick v as the minimizer of

Minimizer | div(aVw)| 12(q)-
Subject to w(x;) = v;.

o Questions:

o Is the minimization problem well-posed? Existence & Uniqueness?
o Is the interpolation space linear?
o Is there an interpolation basis?
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Existence of an Interpolation Basis
Formulation: For each i, find ¢; € V, s.t.

Minimize H dIV(aV¢)HL2(Q)
Subject to ¢i(x;) = dj;.

V= {v e H}(Q)|div(aVv) € [3(Q)}

Vi = {¢ € V|p(x;) = dj,for j e {1,...,N}}

Theorem [Well-posedness of ¢]:
o V; is a non-empty closed affine subspace of V.

o (6) is a strictly convex (quadratic) minimization problem over V;.

o ¢; is the unique minimizer of (6).
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Nonseparable Scales

Representation Theorem for the Interpolation Basis

Theorem [Representation of ¢;]:

N
Bi(x) = 3 Pyr(x, )

where

T(x,y) = /Q G(x,2)G(z,y)dz

G: Green's function of (1)

{ —divy(aVxG(x,y)) =d(x—y) x€Q
G(x,y)=0 x € 02

7: fundamental solution of (div(aV-))?
—div(aVi(divy aVx7(x,¥)))) =d(x —y) x€Q
T(Xay) = divx(avxT(X,y)) =0 X € 09
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Introduction Scale Separation
Representation Theorem for the Interpolation Basis

Theorem [Representation of ¢;]:

N
Bi(x) = 3 Pyr(x, )

where

T(x,y) = /Q G(x,2)G(z,y)dz

©: N x N pos. def. sym. matrix
©ij = 7(xi, X))
P: N x N pos. def. sym. matrix
p:=07!
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Representation Theorem for the Interpolation Basis

©;j = 7(xi, xj)
I

01y = | Glyx)6(y.)dy

Theorem [Property of ©]: © is symmetric positive definite. For / € RY,
"ol = ”V”%2(Q)' where v is the solution of

—div(aVv) = Zszl i6(x —x;) x€Q
v(x) =0 x € 00
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Introduction Scale Separation
Representation Theorem for the Interpolation Basis

P: Discretization of (div(aV-))? over (x;)ien

0 O :=7(x;, Xj)
o 7: fundamental solution of L := (div(aV-))2.
o P:=071 [ =771

= P=1Ly
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Representation Theorem for the Interpolation Basis

P: Discretization of (div(aV-))? over (x;)ien

0 O :=7(x;, Xj)
o 7: fundamental solution of L := (div(aV-))2.
o P:=071 [ =771

= P=1Ly

‘(ﬁ; : Approximation of a Dirac at x; ‘

o P = Ly, P discretization of L over (x;)ien -
o ¢i(x) ==L, PyT(x, %)
(*) qf),' = LdT

= ¢ ~ d(x — x;).
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Introduction Scale Separation
Rough Polyharmonic Splines

o for d < 3. ¢; is biharmonic
(div(aV-))21(x) = 0 for x # x;
o Generalization to d > 4, m > d/2. ¢; minimizer of
[ 1div(avo)m
Q
subject to ¢ € H3(Q) and ¢(x;) = &; ).
(div(aV))"6,(x) = O for x #

¢i: is polyharmonic (m-harmonic).
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Rough Polyharmonic Splines (RPS)

We call {¢;}iear Rough Polyharmonic Splines (RPS), a generalizeation of
polyharmonic splines to PDEs with rough coefficients.

pi(x;) =0
. \xj
Polyharmonic Splines: o © g e
[} ° © °
° e o 5} © ° (<]
e °® °

<) (<)
/.aj’io ° ° °

¢z(xz) — 1 © ° L4 °© (A)m¢z=0

¢; minimizes
965 13
( / > alpa)dx)
d X
R a€eNY |al=m
¢a > 0 are usually chosen to be equal to m!/a! to ensure the rotational invariance of the
semi-norm (sometimes chosen as 1)
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Nonseparable Scales

Literature on Polyharmonic Splines

Harder-Desmarais, 1975: Interpolation of functions of two variables
based on the minimization of a quadratic functional corresponding to
the bending energy of a thin plate.

Atteia 1970: fonctions splines.
Schoenberg 1973: Cardinal spline interpolation (1d case)

Duchon 1976, 1977, 1978: Seminal work and extensions to higher
dimensions.

Madych-Neslon 1990: Cardinal polyharmonic splines.
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Example: d =1
d=1,Q=(01).

a(x) =1 —|— - sm Z k™% (C1k sin(kx) + ok cos(kx)))

{C1k}, {Cok}: i.i.d. uniformly distributed in [—5,5
([a(k)I?) =~ [k
Example taken out of [Hou-Wu 1997] and [Ming-Yue 2006].

basis at node 40

Y |

—02 ' . " L . " L R
0 01 02 03 04 05 08 07 08 09 1
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Introduction Scale Separation
Example: d =1

error of local basis at node 40
o1 x10* ~diva grad of basis at node 40

. loc !
¢ — o) | s
008 o [ div(aV i)
\‘ \
ﬂ i
0 1 A | I
! ‘\ I
-0.05 05 “
01 B
0155 02 04 06 08 1 % 01 oz 03 o4 05 06 07 08 09 1
og,(10°+/¢/) at node 40 log10 of ~div a grad of basis at node 40
20 5
¢i in Iog Scale ,\(\ —div(aV¢:) in log scale
o : M h
fl 1 ll\
f / )
- ' 0 { y
1 1
ilTHtA f
-4r ) i i h
i h ﬂ hy
i h A
6t B f -5 f{“ {\
f /{“ \
(‘ I f \
-8l 1 1
{ m { “n
Al h - A h
0 03 04 0.5 06 0.7 08 0.9 1 o 0.1 02 03 0.4 05 06 07 08 09 1
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Example: d =1

Matrix ©

0,025+,
002

0,015

Lei Zhang

~Matrix P

x 10’

™~
~——
0o

Num. Homogenization Nonseparable Scales

Matrix log(1+abs(P))

Matrix P in log scale

Shanghai, Sep 20, 2013
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Introduction Scale Separation
Accuracy of the Rough Polyharmonic Splines

o Need: A measure of regularity of the
distribution of the points (x;)jcnr-

o The accuracy depends on the
property of the discrete set (x;)ien,
i.e., the constant
H := sup,cq minjen |x — xil.
meshless method, does not depend
on the aspect ratio of the mesh
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Accuracy of the Rough Polyharmonic Splines

Variational Property of the Interpolation Basis

V= {v e H}(Q)|div(aVV) € [}(Q)}

‘ Vo :={v € V]v(x;) = 0 for all I}‘

Theorem |[variational property]:

o The basis ¢; is orthorgonal to Vg w.r.t
the product (-, -) associated with
V-norm.

o YN wi¢; is the unique minimizer of

/Q(div(aV(,u))2

over all w € V such that w(x;) = w;.
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Accuracy of the Rough Polyharmonic Splines

Higher order Poincare Inequality

V= {v e H}(Q)|div(aVv) € [3(Q)}

‘ Vo :={v € V]v(x;) = 0 for all /}‘

Theorem [Higher Order Poincare]: Let
f € V. It holds true that

[VFll2(@) < CH|ldiv(aVT)|2(q)

C depends on Amin(a).

Proof by contradiction.
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Introduction Scale Separation Nonseparable Scales

Accuracy of the Rough Polyharmonic Splines

—div(aVv) =g x€Q
v(x)=0 x € 00

u: Solution of (1)
u™ = 301 u(xi)di(x).

Theorem [Accuracy of RPS]:

lu = u"ll @) < CHlgll 20

C depends on Amin(a).
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Accuracy of the Rough Polyharmonic Splines

Vo :={v € V]v(x;) =0 for all i}

Proof [Accuracy of RPS]:
u—u"eV

Higher order Poincare inequality

[VFll2i@) < CH|l div(aVT)|2(q)

Variational property of the interpolation basis

Idiv(aVu™) || 2(q) < [ div(aVu)| 2()
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Accuracy of the FEM

—div(aVv) =g x€Q
v(x)=0 x € 00

u: Solution of (1)
ut: F.E. solution of (1) over span(¢;)

Theorem [Accuracy of the FEM]:
H
lu—u"llgy@) < CHllgll 20

C depends on Amin(a), Amax(a), does not depend on the aspect ratio
of the mesh.
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Introduction Scale Separation
Localization of the RPS

o Subdomain €; around x;.

o Define localized basis ¢/ in Q;.
$'°°: minimizer of Jo, |div(aVe)|?,
subject to ¢ € H3(Q;) and ¢(x;) = J;;

(div(aV-))?¢1°°(x) = 0 for x # x;

—minimizing variational problem, thus sparse
and elliptic, numerically stable

o Q; is of size CHlog(+) — super localization.
(B(xi, C*Hlog £) N Q) C
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Introduction

u: solution of PDE (1)

Localization of the RPS
—div(aVu)=f xeQ
u=20 x €00

ut1oc: Finite Element solution of (1) over span(¢°°).

Scale Separation Nonseparable Scales

Theorem [Accuracy of the FEM]: If (B(x;, CH Iog(%) N Q) C Q;, then
l|u— UHJOCHH(}(Q) < CHl|lgll2(q)

C depends on Amin(a), Amax(a)-

B !

ES
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Numerical Results: d =2
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Outlook: Straightforward Applications

o Domain decomposition preconditioner
o A posteriori error estimate
o Hyperbolic equations

{ p(x)0?u(x, t) —div(aVu(x, t)) = g(x,t) x € Qr (7)
B.C. + I.C.

uftioc(x, t) = 3 ci(t)g°°(x)
i
10e(u = u™) | 2() + lu =t 20,7 11(2y) < CH
up to T = O(1).
o Linear elasticity and elastodynamics

o Coarse graining of atomistic systems
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Outlook: Further Questions

Effective Equation of —div a(x)Vu = f on scale H > ¢, could it be a
non-local equation?

Nonlinear Problem, —div W(x, Vu) = f or —div W(%,Vu) = f, how
to obtain a low-dimensional approximating space?
Wave equation

ug = diva(x)Vu
using basis from elliptic problem might be problematic, approximating
H-measure?

Coarse graining atomistic system, incorporating finite temperature
effect?
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Happy Birthday Professor Tartar!
Thanks for Your Attention!
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Nonseparable Scales

The method is local and the support Hlog(1/H).

The interpolation is nodal (so it solves the inverse problem from going
from point measurements to the actual function).

Even after localization the method remains variational and of the form:
minimize x T Ax where A is sparse.

Because it is sparse AND elliptic it has the smallest cost we know of in
terms of number of operations to find the localized basis:
((H(log(1/H))/h)~9) (H=size of coarse mesh, h=size of fine mesh).

Because it is sparse and a minimization problem it is robust with
respect to the contrast of the medium (no proof there but we observe
it numerically at this stage).
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