Homework 2

March 7, 2017, due Mar 13, 2017

Problem 1. Prove Theorem 1.7 at page 31 of Braess book.
Problem 2. Justify that $u(x, y)=\log \log \frac{2}{r} \in H^{1}(D)$, where D is the unit disk; and $u(x)=r^{-\alpha} \in H^{1}, \alpha<(n-2) / 2$ for $n \geq 3$.

Problem 3. Problem 1.14 at page 33 of Braess book.
Problem 4. Problem 2.16 at page 43 of Braess book.

Problem 5. Consider the boundary value problem

$$
\begin{equation*}
-\Delta u=f(x), \quad x \in \Omega \tag{1}
\end{equation*}
$$

with boundary condition $u(x)=0$ for $x=\left(x_{1}, x_{2}\right) \in \partial \Omega$. Let $\Omega=[0,1] \times[0,1]$, we can impose the exact solution as

$$
\begin{equation*}
u(x)=x_{1}\left(1-x_{1}\right) \sin \left(\pi x_{2}\right)+x_{2}\left(1-x_{2}\right) \sin \left(\pi x_{1}\right) . \tag{2}
\end{equation*}
$$

and use $f(x)=-\Delta u=\left(\pi^{2} x_{1}\left(1-x_{1}\right)+2\right) \sin \left(\pi x_{2}\right)+\left(\pi^{2} x_{2}\left(1-x_{2}\right)+2\right) \sin \left(\pi x_{1}\right)$.
(a) Solve this problem with 5 -point finite difference method for $m=4,8,16,32,64$. You can use natural ordering for the unknowns. Evaluate the error with respect to the exact solution u in terms of the norm

$$
\begin{equation*}
\left\|v_{h}\right\|^{2}:=h^{2} \sum_{i=1}^{m} \sum_{j=1}^{m} v_{h}^{2}(i h, j h) \tag{3}
\end{equation*}
$$

where $h=1 /(m+1)$. Justify the convergence rate for 5-point finite difference method. For Julia user, you can refer to http://nbviewer.jupyter.org/url/ homepages.warwick.ac.uk/staff/C.Ortner/julia/Laplacian.ipynb

