## Homework 4

March 22, 2017

Problem 1. Braess book, Chapter 2, 4.4
Problem 2. Braess book, Chapter 2, 4.5
Problem 3. Braess book, Chapter 2, 5.15
Problem 4. Given 1-d finite element mesh in Figure4, where $h_{i}=x_{i}-x_{i-1}$. Formulate

$$
\begin{array}{lllll}
0 \\
\underbrace{h_{1}}_{x_{0}} & x_{1} & h_{2} & x_{2} & \\
x_{2} & x_{n} & x_{n+1}
\end{array}
$$

Figure 1: 1d FEM mesh
the Galerkin finite element method for

$$
\left\{\begin{array}{cc}
-u^{\prime \prime}=f, & x \in(0,1)  \tag{1}\\
u=0, & x=0,1
\end{array}\right.
$$

Problem 5. Solve the two-point boundary value problem

$$
\begin{equation*}
-u^{\prime \prime}+u=f(x), \quad 0<x<1, \quad u(0)=u(1)=0 \tag{2}
\end{equation*}
$$

(a) Using the finite element method with piecewise linear basis. Evaluate the local(element) stiffness matrix $K_{j}$ for the interval $\left[x_{j-1}, x_{j}\right]$, and local(element) mass matrix $M_{j}$. The (global) mass matrix is defined as the matrix $M$, such that $M_{i j}:=\int_{0}^{1} \phi_{i} \phi_{j} \mathrm{dx}$.
(b) Use those results to construct the global stiffness matrix $K$ and mass matrix $M$, for $f(x)=x$ evalue the load vector $F$. Write down the Galerkin form of equation (2). Solve the resulting linear system of the form $(K+M) U=F$.
(c) For $f(x)=x$, the exact solution is $u(x)=x-\frac{\sinh x}{\sinh 1}$. Justify the convergence rate for linear basis.

