Homework 8

April 19, 2017

Problem 1. Braess book 8.6
Problem 2. Braess book 8.7
Problem 3. Braess book 8.8
Problem 4. Consider the boundary value problem,

$$
\begin{equation*}
-\Delta u=f(x), \quad x \in \Omega . \tag{1}
\end{equation*}
$$

with boundary condition $u(x)=0$ for $x=\left(x_{1}, x_{2}\right) \in \partial \Omega$. Let $\Omega=[0,1] \times[0,1]$, we can impose the exact solution as

$$
\begin{equation*}
u(x)=x_{1}\left(1-x_{1}\right) \sin \left(\pi x_{2}\right)+x_{2}\left(1-x_{2}\right) \sin \left(\pi x_{1}\right) . \tag{2}
\end{equation*}
$$

and use $f(x)=-\Delta u=\left(\pi^{2} x_{1}\left(1-x_{1}\right)+2\right) \sin \left(\pi x_{2}\right)+\left(\pi^{2} x_{2}\left(1-x_{2}\right)+2\right) \sin \left(\pi x_{1}\right)$.
(a) Solve this problem with piecewise linear finite element method for $m=4,8,16,32,64$, the triangulation is the same as in Figure [7. Compute the entries $a\left(\phi_{1}, \phi_{i}\right), i=$ $2,3, \cdots, 7$, which can be used to construct the global stiffness matrix. ϕ_{i} is the piecewise linear nodal basis at node x_{i}. The difference with 5 -point finite difference method is that you need to evaluate $\int f \phi_{i} \mathrm{~d} x$ for each i instead using the value of f directly, this can be done with an appropriate Gauss-Legendre quadrature rule for triangles which is shown in class.
The Gauss-Legendre quadrature rule can also help evaluate the H^{1} error and the L^{2} error. Justify the convergence rate we learned in class.
For Julia user, you can refer to http://nbviewer.jupyter.org/url/homepages. warwick.ac.uk/staff/C.Ortner/julia/FiniteElementMethod.ipynb.

Figure 1: 2d triangulation

