Quiz

May 17, 2017

Problem 1. (6 pts) Consider the two-point Dirichlet problem

$$\begin{cases} -(p(x)u')' + q(x)u = f(x) & 0 < x < 1\\ u(0) = u(1) = 0. \end{cases}$$

with p(x) > 0, $q(x) \ge 0$, and f(x) being smooth functions on $0 \le x \le 1$.

- 1. Write down the Galerkin(weak) formulation for the solution u in $V = H_0^1(0, 1)$, and the finite element formulation for a finite dimensional subspace $V_h \subset V$.
- 2. Write down the Céa's lemma for this problem, and give the proof.
- 3. Let $x_k = kh$, h = 1/N, those nodes introduce a discretization \mathcal{T}_h of [0, 1]. Define the piecewise linear finite element space $V_h \subset V$ on \mathcal{T}_h . What are the triple (T, Π, Σ) for V_h ?
- 4. Let $I_h u$ be the interpolation of $u \in H^2(0, 1)$ in V_h . Write down the Bramble-Hilbert lemma.
- 5. For uniform discretization \mathcal{T}_h , prove that $||u I_h u||_1 \leq ch|u|_2$ using scaling argument and Bramble-Hilbert lemma, for example, you can choose a reference interval [-1, 1].
- 6. Write down the H^1 error estimate for V_h .

Problem 2. (4 pts) The bilinear basis for reference region $[0, 1] \times [0, 1]$ is

$$N_{0,0} = (1 - \xi)(1 - \eta)$$
$$N_{0,1} = (1 - \xi)\eta$$
$$N_{1,0} = \xi(1 - \eta)$$
$$N_{1,1} = \xi\eta$$

1. Calculate the 4×4 local stiffness matrix for the reference region $[0,1] \times [0,1]$.

2. Consider solving the Poisson equation

$$\begin{cases} -\triangle u = f \text{ in } \Omega\\ u = 0 \text{ on } \partial \Omega \end{cases}$$

using bilinear basis on $\Omega = [0, 1] \times [0, 1]$. Suppose the discretization is a regular lattice with $h = \frac{1}{n+1}$. Assemble the global stiffness matrix A using natural order.