QUIZ

May 21, 2017

Problem 1. (6 pts) Consider the two-point Dirichlet problem

$$
\left\{\begin{array}{l}
-\left(p(x) u^{\prime}\right)^{\prime}+q(x)=f(x) \quad 0<x<1 \tag{1}\\
u(0)=u(1)=0
\end{array}\right.
$$

with $p(x)>0, q(x) \geq 0$, and $f(x)$ being smooth functions on $0 \leq x \geq 1$.

1. Wright down the Galerkin(weak) formulation for the solution u in $V=H_{0}^{1}(0,1)$, and the finite element formulation for a finite dimensional subspace $V_{h} \subset V$.
2. Wright down the Cea's lemma for the problem, and give the proof.
3. Let the $x_{k}=k h, h=1 / N$, those nodes introduce a discretization of \mathcal{T}_{h} of $[0,1]$. Define the piecewise linear finite element space $V_{h} \subset V$ on \mathcal{T}_{h}. What are the triple (T, Π, Σ) for V_{h}
4. Let the $I_{h} u$ be the interpolation of $u \in H^{2}(0,1)$ in V_{h}. Write down the BrambleHilbert lemma.
5. For uniform discretization \mathcal{T}_{h}, prove that $\left\|u-I_{h} u\right\|_{1} \leq c h|u|_{2}$ using scaling argument and Bramble-Hilbert lemma, for example, you can choose a reference interval $[-1,1]$.
6. Write down the H_{1} error estimate for V_{h}.

Proof. 1. the Galerkin formulation reads

$$
\int_{0}^{1} p(x) u^{\prime} v^{\prime}+q(x) u v d x=\int_{0}^{1} f v d x \text { for all } v \in H_{0}^{1}(0,1)
$$

and the formulation for a finite dimensional subspace $V_{h} \in V$ reads

$$
\int_{0}^{1} p(x) u_{h}^{\prime} v_{h}^{\prime}+q(x) u_{h} v_{h} d x=\int_{0}^{1} f v_{h} d x, \text { for all } v_{h} \in V_{h}
$$

Let $\left\{\phi_{i}\right\}_{i=1}^{N}$ be the basis for subspace V_{h}. Assuming u_{h} has the form $u_{h}=$ $\sum_{k=1}^{N} c_{k} \phi_{k}$, we have the system of equations

$$
\sum_{k=1}^{N} c_{k} a\left(\phi_{k}, \phi_{i}\right)=\left\langle\ell, \phi_{i}\right\rangle, \text { for } i=1,2 \ldots, N
$$

where $a(u, v)=\int_{0}^{1} p(x) u^{\prime} v^{\prime}+q(x) u v d x$, and $\langle\ell, v\rangle=\int_{0}^{1} f v d x$
2. To prove cea's lemma for the problem. We need to prove the bilinear form a is elliptic in $H_{0}^{1}(0,1)$. The continuous is obvious. Noting that $p(x)>0$ and $q(x) \geq 0$, there exist some positive constant α, such that $a(v, v) \geq \alpha|v|_{1}$ for all $v \in H_{0}^{1}(0,1)$. Combined with Poincare Inequality on $H_{0}^{1}(0,1)$, we can get the ellipticity. Here we probably need the condition that $p(x), q(x) \in C^{\infty}[0,1]$. The rest of the proof is the same as textbook
3. T is interval $\left[x_{k}, x_{k+1}\right]$. Π is the linear function space on T. Σ are two functionals which involve point evaluation of functions on $x_{k}, x_{k+1} .(T, \Pi, \Sigma)$
4. Refer to Braess book lemma 6.3
5. Refer to Braess book remark 6.5
6. By the convexity of Ω, the problem is $H^{2}(0,1)$ regular, and $\|u\|_{2} \leq c\|f\|_{0}$. By the conclusion of, there exist $v_{h} \in V_{h}$, such that $\left\|u-v_{h}\right\|_{1} \leq c h|u|_{2}$. Combining these facts with cea's lemma gives $\left\|u-u_{h}\right\|_{1} \leq c\|f\|_{0}$

Problem 2. (4pts)The bilinear basis for reference region $[0,1] \times[0,1]$ is

$$
\begin{aligned}
& N_{0,0}=(1-\xi)(1-\eta) \\
& N_{0,1}=(1-\xi) \eta \\
& N_{1,0}=\xi(1-\eta) \\
& N_{1,1}=\xi \eta
\end{aligned}
$$

1. (2pt) Calculate the 4×4 local stiffness matrix for the reference region $[0,1] \times[0,1]$.
2. $(2 \mathrm{pt})$ To solve the Poisson equation

$$
\left\{\begin{align*}
-\triangle u & =f \text { in } \Omega \tag{2}\\
u & =0 \text { on } \partial \Omega
\end{align*}\right.
$$

using bilinear basis on $\Omega=[0,1] \times[0,1]$. Suppose the discretization is a regular lattice with $h=\frac{1}{n+1}$. Assemble the global stiffness matrix A using natural order.

Proof. 1. $a(u, v)=\int_{0}^{1} \int_{0}^{1} \nabla u \nabla v d x d y$. For the nodal basis given in the problem, we have

$$
\begin{aligned}
& a\left(N_{0,0}, N_{0,0}\right)=\int_{0}^{1} \int_{0}^{1}(-1+x,-1+y)^{\prime} \cdot(-1+x,-1+y) d x d y=2 / 3 . \\
& a\left(N_{0,0}, N_{0,1}\right)=\int_{0}^{1} \int_{0}^{1}(-1+x,-1+y)^{\prime} \cdot(-x, 1-y) d x d y=-1 / 6 . \\
& a\left(N_{0,0}, N_{1,1}\right)=\int_{0}^{1} \int_{0}^{1}(-1+x,-1+y)^{\prime} \cdot(x, y) d x d y=-1 / 3
\end{aligned}
$$

By the symmetry property, we have all the other items in local stiffness matrix.

$$
\left(\begin{array}{cccc}
2 / 3 & -1 / 6 & -1 / 6 & -1 / 3 \\
-1 / 6 & 2 / 3 & -1 / 3 & -1 / 6 \\
-1 / 6 & -1 / 3 & 2 / 3 & -1 / 6 \\
-1 / 3 & -1 / 6 & -1 / 6 & 2 / 3
\end{array}\right)
$$

2. Let
$A=\left(\begin{array}{ccccc}8 / 3 & -1 / 3 & & & \\ -1 / 3 & 8 / 3 & -1 / 3 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 / 3 & 8 / 3 & -1 / 3 \\ & & & -1 / 3 & 8 / 3\end{array}\right), B=\left(\begin{array}{ccccc}-1 / 6 & -1 / 3 & & & \\ -1 / 3 & -1 / 3 & -1 / 3 & & \\ & \ddots & \ddots & \ddots & \\ & & -1 / 3 & -1 / 3 & -1 / 3 \\ & & & -1 / 3 & -1 / 6\end{array}\right)$
Let

$$
C=\left(\begin{array}{ccccc}
A & B & & & \\
B & A & B & & \\
& \ddots & \ddots & \ddots & \\
& & B & A & B \\
& & & B & A
\end{array}\right)
$$

Then, $h^{2} C$ is the global stiffness matrix

