QUIZ

May 21, 2017

Problem 1. (6 pts) Consider the two-point Dirichlet problem

$$\begin{cases} -(p(x)u')' + q(x) = f(x) & 0 < x < 1\\ u(0) = u(1) = 0 \end{cases}$$
(1)

with p(x) > 0, $q(x) \ge 0$, and f(x) being smooth functions on $0 \le x \ge 1$.

- 1. Wright down the Galerkin(weak) formulation for the solution u in $V = H_0^1(0, 1)$, and the finite element formulation for a finite dimensional subspace $V_h \subset V$.
- 2. Wright down the Cea's lemma for the problem, and give the proof.
- 3. Let the $x_k = kh$, h = 1/N, those nodes introduce a discretization of \mathcal{T}_h of [0,1]. Define the piecewise linear finite element space $V_h \subset V$ on \mathcal{T}_h . What are the triple (T, Π, Σ) for V_h
- 4. Let the $I_h u$ be the interpolation of $u \in H^2(0,1)$ in V_h . Write down the Bramble-Hilbert lemma.
- 5. For uniform discretization \mathcal{T}_h , prove that $||u I_h u||_1 \leq ch|u|_2$ using scaling argument and Bramble-Hilbert lemma, for example, you can choose a reference interval [-1,1].
- 6. Write down the H_1 error estimate for V_h .
- *Proof.* 1. the Galerkin formulation reads

$$\int_0^1 p(x)u'v' + q(x)uv \, dx = \int_0^1 fv \, dx \quad for \ all \ v \in H^1_0(0,1)$$

and the formulation for a finite dimensional subspace $V_h \in V$ reads

$$\int_{0}^{1} p(x)u'_{h}v'_{h} + q(x)u_{h}v_{h} \, dx = \int_{0}^{1} fv_{h} \, dx, \text{ for all } v_{h} \in V_{h}$$

Let $\{\phi_i\}_{i=1}^N$ be the basis for subspace V_h . Assuming u_h has the form $u_h = \sum_{k=1}^N c_k \phi_k$, we have the system of equations

$$\sum_{k=1}^{N} c_k a(\phi_k, \phi_i) = \langle \ell, \phi_i \rangle, for \ i = 1, 2..., N$$

where $a(u,v) = \int_0^1 p(x)u'v' + q(x)uv \, dx$, and $\langle \ell, v \rangle = \int_0^1 fv \, dx$

- 2. To prove cea's lemma for the problem. We need to prove the bilinear form a is elliptic in $H_0^1(0, 1)$. The continuous is obvious. Noting that p(x) > 0 and $q(x) \ge 0$, there exist some positive constant α , such that $a(v, v) \ge \alpha |v|_1$ for all $v \in H_0^1(0, 1)$. Combined with Poincare Inequality on $H_0^1(0, 1)$, we can get the ellipticity. Here we probably need the condition that $p(x), q(x) \in C^{\infty}[0, 1]$. The rest of the proof is the same as textbook
- 3. T is interval $[x_k, x_{k+1}]$. Π is the linear function space on T. Σ are two functionals which involve point evaluation of functions on x_k, x_{k+1} . (T, Π, Σ)
- 4. Refer to Braess book lemma 6.3
- 5. Refer to Braess book remark 6.5
- 6. By the convexity of Ω , the problem is $H^2(0,1)$ regular, and $||u||_2 \leq c||f||_0$. By the conclusion of, there exist $v_h \in V_h$, such that $||u v_h||_1 \leq ch|u|_2$. Combining these facts with cea's lemma gives $||u u_h||_1 \leq c||f||_0$

Problem 2. (4pts) The bilinear basis for reference region $[0, 1] \times [0, 1]$ is

$$N_{0,0} = (1 - \xi)(1 - \eta)$$
$$N_{0,1} = (1 - \xi)\eta$$
$$N_{1,0} = \xi(1 - \eta)$$
$$N_{1,1} = \xi\eta$$

- 1. (2pt) Calculate the 4×4 local stiffness matrix for the reference region $[0, 1] \times [0, 1]$.
- 2. (2pt) To solve the Poisson equation

$$\begin{cases} -\Delta u = f \text{ in } \Omega\\ u = 0 \text{ on } \partial \Omega \end{cases}$$
(2)

using bilinear basis on $\Omega = [0, 1] \times [0, 1]$. Suppose the discretization is a regular lattice with $h = \frac{1}{n+1}$. Assemble the global stiffness matrix A using natural order.

Proof. 1. $a(u,v) = \int_0^1 \int_0^1 \nabla u \nabla v \, dx \, dy$. For the nodal basis given in the problem, we have

$$a(N_{0,0}, N_{0,0}) = \int_0^1 \int_0^1 (-1+x, -1+y)' \cdot (-1+x, -1+y) \, dx \, dy = 2/3.$$

$$a(N_{0,0}, N_{0,1}) = \int_0^1 \int_0^1 (-1+x, -1+y)' \cdot (-x, 1-y) \, dx \, dy = -1/6.$$

$$a(N_{0,0}, N_{1,1}) = \int_0^1 \int_0^1 (-1+x, -1+y)' \cdot (x, y) \, dx \, dy = -1/3$$

By the symmetry property, we have all the other items in local stiffness matrix.

$$\begin{pmatrix} 2/3 & -1/6 & -1/6 & -1/3 \\ -1/6 & 2/3 & -1/3 & -1/6 \\ -1/6 & -1/3 & 2/3 & -1/6 \\ -1/3 & -1/6 & -1/6 & 2/3 \end{pmatrix}$$

2. Let

$$A = \begin{pmatrix} 8/3 & -1/3 & & \\ -1/3 & 8/3 & -1/3 & & \\ & \ddots & \ddots & \ddots & \\ & & -1/3 & 8/3 & -1/3 \\ & & & -1/3 & 8/3 \end{pmatrix}, B = \begin{pmatrix} -1/6 & -1/3 & & \\ -1/3 & -1/3 & -1/3 & & \\ & \ddots & \ddots & \ddots & \\ & & & -1/3 & -1/3 \\ & & & & -1/3 & -1/3 \\ & & & & -1/3 & -1/3 \end{pmatrix}$$

Let

$$C = \begin{pmatrix} A & B & & \\ B & A & B & & \\ & \ddots & \ddots & \ddots & \\ & & B & A & B \\ & & & & B & A \end{pmatrix}$$

Then, h^2C is the global stiffness matrix