Homework 5

May 25, 2017

Problem 1. Braess book, Chapter 1, 4.8, 4.9
4.8

Proof. Consider the function $W(x)$ on Ω_{h}.

$$
W(x):=\left\{\begin{array}{l}
h^{2}, x \in \Omega_{h} \tag{1}\\
0, x \text { on } \partial \Omega_{h}
\end{array}\right.
$$

It can be verified that

$$
L_{h} W(x):=\left\{\begin{array}{l}
\geq 1, x \in \Omega_{h} \backslash \Omega_{h, 0} \tag{2}\\
0, \text { x on } \Omega_{h, 0}
\end{array}\right.
$$

Hence, $L_{h}(V-W) \leq 0$ in Ω_{h}, and $V \leq W$ on $\partial \Omega_{h}$. The discrete comparision principle implys that $V \leq W$ on Ω_{h}.
4.9

Proof. To verify: $L_{h} v=\lambda v$

$$
\begin{align*}
& \frac{1}{h^{2}} 4 v_{k, l}-v_{k, l+1}-v_{k, l-1}-v_{k+1, l}-v_{k-1, l}=\lambda_{\alpha, \beta} \\
& \frac{1}{h^{2}} 4 \sin (\alpha \pi k h) \sin (\beta \pi l h)-\sin (\alpha \pi(k+1) h) \sin (\beta \pi l h) \sin (\alpha \pi(k-1) h) \sin (\beta \pi l h) \\
& -\sin (\alpha \pi k h) \sin (\beta \pi(l+1) h)-\sin (\alpha \pi k h) \sin (\beta \pi(l-1) h) \\
& =\frac{1}{h^{2}} \sin (\alpha \pi k h) \sin (\beta \pi l h) 4\left(\sin ^{2}\left(\frac{\alpha \pi h}{2}\right)+\sin ^{2}\left(\frac{\beta \pi h}{2}\right)\right. \tag{3}
\end{align*}
$$

Hence, $\lambda_{\alpha, \beta}=\frac{4}{h^{2}}\left(\sin ^{2}\left(\frac{\alpha \pi h}{2}\right)+\sin ^{2}\left(\frac{\beta \pi h}{2}\right)\right)$.
Compared with the eigenvalues of $-\nabla\left(\alpha^{2}+\beta^{2}\right) \pi^{2}$, It's obvious that the small ones are better approximated for the property of \sin around $x=0$.

Problem 2. To solve the boundary value problem

$$
\begin{equation*}
-u_{x x}(x)=f(x), \quad x \in(0,1) . \tag{4}
\end{equation*}
$$

with boundary condition $u(0)=u(1)=0, f \in C^{0}$, we subdivide interval $[0,1]$ into n equal subintervals with $h=1 / n$. Let $x_{j}=j h, j=0, \ldots, n$, we are looking for u_{j}, the approximations to the exact solution $u\left(x_{j}\right)$ at x_{j}.
(a) (Formulation) If we use central differences to approximate $u_{x x}$,

$$
\begin{equation*}
u_{x x}\left(x_{i}\right) \simeq \frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}} \tag{5}
\end{equation*}
$$

write down the resulting finite difference scheme (including boundary condition), and the associated linear system $A u=F$ for the unknowns, specify A, u and F.
(b) (Existence and Uniqueness) Prove that A is nonsingular, therefore the finite difference scheme has a unique solution. hint: there are many ways to do this, one way is to show that $v^{T} A v>0$ for any $v \neq 0$, namely, A is symmetrically positive definite.
(c) (Numerics) A is a tri-diagonal matrix, $A u=F$ can be efficiently solved by Gaussian elimination method which will be introduced later. In this homework, suppose that $f=\left(3 x+x^{2}\right) e^{x}$, implement the numerical scheme. Take $n=4$, plot the solution you obtain.
(d) (Maximum Principle) For $v \in \mathbb{R}^{m}$, we say that $v \geq 0$ if $v_{i} \geq 0$ for $1 \leq i \leq m$. Show that if $A w=v$ and $v \geq 0$, then $w \geq 0$. Furthermore, this implies that $\alpha_{i j} \geq 0$, where $\alpha_{i j}$ are the entries of A^{-1}. Use this property to show that if $f \geq 0$, then $u_{j} \geq 0$, for $j=0, \ldots, n$.
(e) (Discrete Stability) The function $v(x)=\frac{x(1-x)}{2}$ satisfies

$$
\begin{equation*}
-\frac{v\left(x_{j+1}\right)-2 v\left(x_{j}\right)+v\left(x_{j-1}\right)}{h^{2}}=1 \tag{6}
\end{equation*}
$$

Use this to show that the entries $\alpha_{i j}$ of A^{-1} satisfies

$$
\begin{equation*}
0 \leq \sum_{j=1}^{n-1} \alpha_{i j} \leq \frac{1}{8} \tag{7}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\max _{1 \leq i \leq n-1}\left|u_{i}\right| \leq \frac{1}{8} \max _{1 \leq i \leq n-1}\left|f\left(x_{i}\right)\right| \tag{8}
\end{equation*}
$$

(f) (Truncation Error) Like ODE, we can define truncation error,

$$
\begin{equation*}
T_{j}=-\frac{u\left(x_{j+1}\right)-2 u\left(x_{j}\right)+u\left(x_{j-1}\right)}{h^{2}}-f\left(x_{j}\right) \tag{9}
\end{equation*}
$$

Calculate the leading order term of T_{j}.
(g) (Error Equation) Let $e_{j}=u\left(x_{j}\right)-u_{j}$ be the discretization error. Show that e_{j} satisfies the equation $A e=T$, where $e=\left(e_{1}, \ldots, e_{n-1}\right)^{T}$ and $T=\left(T_{1}, \ldots, T_{n-1}\right)^{T}$. Using (8) to prove the convergence result

$$
\begin{equation*}
\max _{1 \leq i \leq n-1}\left|u\left(x_{i}\right)-u_{i}\right| \leq \frac{h^{2}}{96} \max _{0 \leq x \leq 1}\left|u^{(4)}(x)\right| \tag{10}
\end{equation*}
$$

(h) (Justification) When $f=\left(3 x+x^{2}\right) e^{x}$, the exact solution is $u(x)=x(1-x) e^{x}$. Take $n=4,8,16,32,64,128,256$, and compute numerical solutions u^{n}. Calculate $\left\|u-u^{n}\right\|_{\infty}:=\max _{1 \leq i \leq n-1}\left|u\left(x_{i}\right)-u_{i}^{n}\right|$, plot (log-log) the convergence with resepct to n. Numeically estimate the prefactor in the estimate $\left\|u-u^{n}\right\|_{\infty} \simeq C h^{\alpha}$, compare it with the result in (10)

Solution (a):

$$
A=\left(\begin{array}{cccc}
\frac{2}{h^{2}} & -\frac{1}{h^{2}} & & \tag{11}\\
-\frac{1}{h^{2}} & \frac{h^{2}}{h^{2}} & -\frac{1}{h^{2}} & \\
& \ddots & \ddots & \ddots \\
& -\frac{1}{h^{2}} & \frac{2}{h^{2}} & -\frac{1}{h^{2}} \\
& & -\frac{1}{h^{2}} & \frac{\frac{h^{2}}{h^{2}}}{}
\end{array}\right), u=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n-1}
\end{array}\right), F=\left(\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{n-1}
\end{array}\right)
$$

Solution (b):
Matrix that satisfies 1 weakly diagonally dominant, 2 symmetric, 3 positive diagonal elements are positive definite.

Solution (d): Analogy with Discrete Maximum Principle.
Solution (e):
Proof. $v(x)$ attains its maximum $\frac{1}{8}$ at $x=\frac{1}{2}$. Hence $v\left(x_{j}\right) \leq \frac{1}{8}$ for $j=1, \ldots, n$. Moreover, $v=A^{-1} 1$. (7) is proved then. And noticing that $a_{i, j} \geq 0$, it implies $\left\|A^{-1}\right\|_{\infty} \leq \frac{1}{8}$. is proved then.

Solution (f): omitted
Solution (g): It can be proved based on truncation error (f) combined with discrete stability (e)

