
Homework 5

May 25, 2017

Problem 1. Braess book, Chapter 1, 4.8, 4.9

4.8

Proof. Consider the function W (x) on Ωh.

W (x) :=

{
h2, x ∈ Ωh

0, x on ∂Ωh

(1)

It can be verified that

LhW (x) :=

{
≥ 1, x ∈ Ωh\Ωh,0

0, x on Ωh,0

(2)

Hence, Lh(V −W ) ≤ 0 in Ωh, and V ≤ W on ∂Ωh. The discrete comparision principle
implys that V ≤W on Ωh .

4.9

Proof. To verify: Lhv = λv

1

h2
4vk,l − vk,l+1 − vk,l−1 − vk+1,l − vk−1,l = λα,β

1

h2
4 sin(απkh) sin(βπlh)− sin(απ(k + 1)h) sin(βπlh) sin(απ(k − 1)h) sin(βπlh)

− sin(απkh) sin(βπ(l + 1)h)− sin(απkh) sin(βπ(l − 1)h)

=
1

h2
sin(απkh) sin(βπlh)4(sin2(

απh

2
) + sin2(

βπh

2
) (3)

Hence, λα,β = 4
h2

(sin2(απh2 ) + sin2(βπh2 )).
Compared with the eigenvalues of −∇ (α2 + β2)π2 , It’s obvious that the small ones

are better approximated for the property of sin around x = 0.

Problem 2. To solve the boundary value problem

− uxx(x) = f(x), x ∈ (0, 1). (4)

with boundary condition u(0) = u(1) = 0, f ∈ C0, we subdivide interval [0, 1] into n
equal subintervals with h = 1/n. Let xj = jh, j = 0, . . . , n, we are looking for uj , the
approximations to the exact solution u(xj) at xj .
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(a) (Formulation) If we use central differences to approximate uxx,

uxx(xi) '
ui+1 − 2ui + ui−1

h2
. (5)

write down the resulting finite difference scheme (including boundary condition),
and the associated linear system Au = F for the unknowns, specify A, u and F .

(b) (Existence and Uniqueness) Prove that A is nonsingular, therefore the finite differ-
ence scheme has a unique solution. hint: there are many ways to do this, one way is
to show that vTAv > 0 for any v 6= 0, namely, A is symmetrically positive definite.

(c) (Numerics) A is a tri-diagonal matrix, Au = F can be efficiently solved by Gaussian
elimination method which will be introduced later. In this homework, suppose that
f = (3x + x2)ex, implement the numerical scheme. Take n = 4, plot the solution
you obtain.

(d) (Maximum Principle) For v ∈ Rm, we say that v ≥ 0 if vi ≥ 0 for 1 ≤ i ≤ m. Show
that if Aw = v and v ≥ 0, then w ≥ 0. Furthermore, this implies that αij ≥ 0,
where αij are the entries of A−1. Use this property to show that if f ≥ 0, then
uj ≥ 0, for j = 0, . . . , n.

(e) (Discrete Stability) The function v(x) = x(1−x)
2 satisfies

− v(xj+1)− 2v(xj) + v(xj−1)

h2
= 1. (6)

Use this to show that the entries αij of A−1 satisfies

0 ≤
n−1∑
j=1

αij ≤
1

8
. (7)

Prove that

max
1≤i≤n−1

|ui| ≤
1

8
max

1≤i≤n−1
|f(xi)| (8)

(f) (Truncation Error) Like ODE, we can define truncation error,

Tj = −u(xj+1)− 2u(xj) + u(xj−1)

h2
− f(xj) (9)

Calculate the leading order term of Tj .

(g) (Error Equation) Let ej = u(xj) − uj be the discretization error. Show that ej
satisfies the equation Ae = T , where e = (e1, . . . , en−1)

T and T = (T1, . . . , Tn−1)
T .

Using (8) to prove the convergence result

max
1≤i≤n−1

|u(xi)− ui| ≤
h2

96
max
0≤x≤1

|u(4)(x)|. (10)
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(h) (Justification) When f = (3x + x2)ex, the exact solution is u(x) = x(1 − x)ex.
Take n = 4, 8, 16, 32, 64, 128, 256, and compute numerical solutions un. Calculate
‖u − un‖∞ := max1≤i≤n−1 |u(xi) − uni |, plot (log-log) the convergence with resepct
to n. Numeically estimate the prefactor in the estimate ‖u−un‖∞ ' Chα, compare
it with the result in (10)

Solution (a):

A =


2
h2

− 1
h2

− 1
h2

2
h2

− 1
h2

. . .
. . .

. . .

− 1
h2

2
h2

− 1
h2

− 1
h2

2
h2

 , u =


u1
u2
...

un−1

 , F =


f1
f2
...

fn−1

 (11)

Solution (b):
Matrix that satisfies 1 weakly diagonally dominant, 2 symmetric, 3 positive diagonal

elements are positive definite.
Solution (d): Analogy with Discrete Maximum Principle.
Solution (e):

Proof. v(x) attains its maximum 1
8 at x = 1

2 . Hence v(xj) ≤ 1
8 for j = 1, ..., n. Moreover,

v = A−11. (7) is proved then. And noticing that ai,j ≥ 0, it implies ‖A−1‖∞ ≤ 1
8 . (8)

is proved then.
Solution (f): omitted
Solution (g): It can be proved based on truncation error (f) combined with discrete

stability (e)
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