Homework 3 solution

March 30, 2017

Problem 1. Problem 1.12 at page 33
1.12 A variant of Friedrichs’ inequality. Let (2 be a domain which satisfies the
hypothesis of Theorem 1.9. Then there is a constant ¢ = ¢(£2) such that

[vllo < e([o] + [vl1) for all v e H'(Q)

with v = ﬁ Jo v(z)de.

Hint: This variant of Friedrichs’ inequality can be established using the technique from
the proof the inequalty 1.5 only under restrictive conditions on the domain. Use the
compactness of H(2) — L2(Q) in the same way as in the proof of Lemma 6.2 below.
Proof 1.

For one dimension case.

Based on mean value theorem, there exists zg € €2, such that

v(zp) = 0.
Now, we have

v(z) = v(ao) + /Q o (y)dy =7+ /Q o (y)dy

and by Cauchy-Schwartz inequality and Poincare Friedrichs’ inequality we get
o)l = o+ [ i
<fol+ [ 1y

<[]+ /Q 1)} ( /Q o () Py ¢
< (o] + () ol

Now we can take L? norm on both sides, note the term on the right is a constant, and
we also recall [|[Aul|z2 = Al|u||zz2,
So, we have

Ioll < (71-+ (@ llo)( | 1d0)}

= |u()|[o] + (@) *|v]x
< C(Jo] + [vf1)



where C = maz(|p()],|1(22)]?) which is bounded and positive. O
Proof 2.
Suppose that the inequality

lvllo < c([] + |v]1) for all v e HY(Q)

fails for every positive c. Then there exits a sequence (vy) in H'(Q) with
1
losllo =1, o] +[vh < = k=1,2,3...

By the compactness of H'(Q) < L?(Q), a subsequence of v;, converges in L?(Q).
Without loss of generality, we can assume the sequence v converges. Then vy is a
Cauchy sequence in L?. From |v|; — 0, we conclude that vy, is also a Cauchy sequence
in H'(2). Because of the completness of H'(f2), vj, converges to a element v* in the
sense of H'. By continuity, we have

lv*lo=1, [*1 =0, =0

This implys that v* equals some constant ¢ in the sense of H!. And ¢ # 0 because that
lo*]lo = 1 = ¢ u(Q2), which is a contradiction, since v = 0

Problem 2. Problem 2.12 at page 42

2.12. Consider the elliptic, but not uniformly elliptic, bilinear form

1
a(u,v) == / /v dx
0
on the interval [0, 1]. Show that the problem %a(u, v) — fol udx — min! does not have a
solution in H{(0,1). What is the associated (ordinary) differential equation?

Proof.

Firstly, we find the associated ordinary differential equation. By bilinear form, we
have

1
a(u,v):/o 22V dx (1)

1 1
Ea(u,v) / vdx — min ! (2)
0
1 1
& Ea(u,v) - / v-ldx — min ! (3)
0

We have the associated ordinary differential equation form: Lu = f
So, we have Lu =1,
For the solution in H}, z?u/v|} =0

1 1
(Lu,v) = a(u,v) = / 2V dx = / %(:ﬁu’)vda}
0 0

2



Correspondingly, Lu = —& (2%/) = 1 = -2z’ — 2

differential equation.

Secondly, we prove this problem does not have a solution in H&(O,l). By Lu =
—%(:ﬁu’) = 1, we integral this equation in HZ(0,1), we get z%u’ = —x. By ODE,

we can solve it, u = —Inx, but u is not in Hol((), 1), so the solution is not existence. [J

2" =1 is the associated ordinary

Problem 3. Problem 2.15 at page 43
2.15. Show that

/ qﬁdivvd:nz—/ grad ¢ - vdx + v - vds
Q Q o0

for all sufficiently smooth functions v and ¢ with values in R™ and R, respectively.
Here

Proof.
Obviously, we have
V- (¢v)
=o(V-v)+ (Vo) -v
=¢-divv+grad ¢-v

We integral the both sides on 2 and get

/V-qbvda,‘:/¢divvdm+/grad¢-vd:c
Q Q Q

/gzﬁdz'vfudx:/V‘qﬁvdx—/grad(ﬁ-vdx
Q Q Q
by [V - pvde = [,, v - vds we get

/qﬁdivvd:):——/ gra,dqb-vdx—i—/ v - vds
Q Q o0
O

Problem 4. Problem on the pdf. For the following equation with Robin boundary

condition
—u"=f, x€(0,1)

u'(0) + y0u(0) = ag (4)
W' (1) + yu(l) = aq
show that the Galerkin form is:
determine u € H! satisfying

a(u,v) = (f,v) + (a1 = nu(1))v(1) = (a0 = 70u(0))v(0), Vv e H' (5)



also show that the function w € H! that minimizes

Jlw] = a(w,w) = 2(f,w) = 201w(1) + 11w(1)* + 200w(0) — ~0w(0)” (6)

is u, the solution of the Galerkin problem.

Proof.

Firstly, By bilinear form,

Let a(u,v) = 01 uv'de  (f,v) = [0!fudx

Mutiply the test function v on both sides of —u” = f and integral on (0, 1), we get

—U” — f

1 1
:>/ —u"vda::/ fudx
0 0
1

1
= —uv](1]+/0 uvda::/o fvdx
= —u/(1)v(1) + 4/ (0)v(0) + a(u,v) = (f,v)

Plug the Robin boundary condition in the fomulation above

u'(0) +~0u(0)
/(1) + yu(l)

:ao
:al

a(u,v) = (f,v) + (a1 —y1u(1))v(1) — (ag — u(0))v(0), Vv e H!

The second equation is to testify that for all v, J[w + Av] attains its minmum at A = 0
if and only if B is ture. O



