
Homework 3 solution

March 30, 2017

Problem 1. Problem 1.12 at page 33
1.12 A variant of Friedrichs’ inequality. Let Ω be a domain which satisfies the
hypothesis of Theorem 1.9. Then there is a constant c = c(Ω) such that

∥v∥0 ≤ c(|v|+ |v|1) for all v ∈ H1(Ω)

with v = 1
µ(Ω)

∫
Ω v(x)dx.

Hint: This variant of Friedrichs’ inequality can be established using the technique from
the proof the inequalty 1.5 only under restrictive conditions on the domain. Use the
compactness of H1(Ω) → L2(Ω) in the same way as in the proof of Lemma 6.2 below.
Proof 1.
For one dimension case.
Based on mean value theorem, there exists x0 ∈ Ω, such that

v(x0) = v.

Now, we have

v(x) = v(x0) +

∫
Ω
v′(y)dy = v +

∫
Ω
v′(y)dy

and by Cauchy-Schwartz inequality and Poincare Friedrichs’ inequality we get

|v(x)| = |v +
∫
Ω
v′(y)dy|

≤ |v|+
∫
Ω
|v′(y)|dy

≤ |v|+ (

∫
Ω
1dy)

1
2 (

∫
Ω
|v′(y)|2dy)

1
2

≤ |v|+ |µ(Ω)||v|H1

Now we can take L2 norm on both sides, note the term on the right is a constant, and
we also recall ∥λu∥L2 = λ∥u∥L2 ,
So, we have

∥v∥0 ≤ (|v|+ |µ(Ω)||v|1)(
∫
Ω
1dx)

1
2

= |µ(Ω)||v|+ |µ(Ω)|2|v|1
≤ C(|v|+ |v|1)
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where C = max(|µ(Ω)|, |µ(Ω)|2) which is bounded and positive.
Proof 2.
Suppose that the inequality

∥v∥0 ≤ c(|v|+ |v|1) for all v ∈ H1(Ω)

fails for every positive c. Then there exits a sequence (vk) in H1(Ω) with

∥vk∥0 = 1, |v|+ |v|1 ≤
1

k
, k = 1, 2, 3...

By the compactness of H1(Ω) ↪→ L2(Ω), a subsequence of vk converges in L2(Ω).
Without loss of generality, we can assume the sequence vk converges. Then vk is a
Cauchy sequence in L2. From |v|1 → 0, we conclude that vk is also a Cauchy sequence
in H1(Ω). Because of the completness of H1(Ω), vk converges to a element v⋆ in the
sense of H1. By continuity, we have

∥v⋆∥0 = 1, |v⋆|1 = 0, v = 0

This implys that v⋆ equals some constant c in the sense of H1. And c ̸= 0 because that
∥v⋆∥0 = 1 = c2 µ(Ω), which is a contradiction, since v = 0
Problem 2. Problem 2.12 at page 42
2.12. Consider the elliptic, but not uniformly elliptic, bilinear form

a(u, v) :=

∫ 1

0
x2u′v′dx

on the interval [0, 1]. Show that the problem 1
2a(u, v)−

∫ 1
0 udx → min! does not have a

solution in H1
0 (0, 1). What is the associated (ordinary) differential equation?

Proof.

Firstly, we find the associated ordinary differential equation. By bilinear form, we
have

a(u, v) =

∫ 1

0
x2u′v′dx (1)

1

2
a(u, v)−

∫ 1

0
vdx → min ! (2)

⇔ 1

2
a(u, v)−

∫ 1

0
v · 1dx → min ! (3)

We have the associated ordinary differential equation form: Lu = f
So, we have Lu = 1,
For the solution in H1

0 , x
2u′v|10 = 0

(Lu, v) = a(u, v) =

∫ 1

0
x2u′v′dx =

∫ 1

0

d

dx
(x2u′)vdx
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Correspondingly, Lu = − d
dx(x

2u′) = 1 ⇒ −2xu′ − x2u′′ = 1 is the associated ordinary
differential equation.
Secondly, we prove this problem does not have a solution in H1

0 (0, 1). By Lu =
− d

dx(x
2u′) = 1, we integral this equation in H1

0 (0, 1), we get x2u′ = −x. By ODE,
we can solve it, u = −lnx, but u is not in H1

0 (0, 1), so the solution is not existence.

Problem 3. Problem 2.15 at page 43
2.15. Show that ∫

Ω
ϕ div v dx = −

∫
Ω

grad ϕ · vdx+

∫
∂Ω

ϕv · vds

for all sufficiently smooth functions v and ϕ with values in Rn and R, respectively.
Here

div v :=

n∑
i=1

∂v

∂xi
.

Proof.
Obviously, we have

∇ · (ϕv)
=ϕ(∇ · v) + (∇ϕ) · v
=ϕ · div v + grad ϕ · v

We integral the both sides on Ω and get∫
Ω
∇ · ϕvdx =

∫
Ω
ϕ div vdx+

∫
Ω
grad ϕ · vdx∫

Ω
ϕ div vdx =

∫
Ω
∇ · ϕvdx−

∫
Ω
grad ϕ · vdx

by
∫
Ω∇ · ϕvdx =

∫
∂Ω ϕv · vds we get∫
Ω

ϕ div v dx = −
∫
Ω

grad ϕ · vdx+

∫
∂Ω

ϕv · vds

Problem 4. Problem on the pdf. For the following equation with Robin boundary
condition 

−u′′ = f, x ∈ (0, 1)

u′(0) + γ0u(0) = α0

u′(1) + γ1u(1) = α1

(4)

show that the Galerkin form is:
determine u ∈ H1 satisfying

a(u, v) = (f, v) + (α1 − γ1u(1))v(1)− (α0 − γ0u(0))v(0), ∀v ∈ H1 (5)
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also show that the function ω ∈ H1 that minimizes

J [ω] = a(ω, ω)− 2(f, ω)− 2α1ω(1) + γ1ω(1)
2 + 2α0ω(0)− γ0ω(0)

2 (6)

is u, the solution of the Galerkin problem.
Proof.
Firstly, By bilinear form,
Let a(u, v) =

∫ 1
0 u′v′dx (f, v) =

∫
01fvdx

Mutiply the test function v on both sides of −u′′ = f and integral on (0, 1), we get

−u′′ = f

⇒
∫ 1

0
−u′′vdx =

∫ 1

0
fvdx

⇒ −u′v|10 +
∫ 1

0
u′v′dx =

∫ 1

0
fvdx

⇒ −u′(1)v(1) + u′(0)v(0) + a(u, v) = (f, v)

Plug the Robin boundary condition in the fomulation above{
u′(0) + γ0u(0) = α0

u′(1) + γ1u(1) = α1

a(u, v) = (f, v) + (α1 − γ1u(1))v(1)− (α0 − γ0u(0))v(0), ∀v ∈ H1

The second equation is to testify that for all v, J [ω + λv] attains its minmum at λ = 0
if and only if 6 is ture.
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