Homework 3 solution

March 30, 2017

Problem 1. Problem 1.12 at page 33
1.12 A variant of Friedrichs' inequality. Let Ω be a domain which satisfies the hypothesis of Theorem 1.9. Then there is a constant $c=c(\Omega)$ such that

$$
\|v\|_{0} \leq c\left(|\bar{v}|+|v|_{1}\right) \quad \text { for all } v \in H^{1}(\Omega)
$$

with $\bar{v}=\frac{1}{\mu(\Omega)} \int_{\Omega} v(x) d x$.
Hint: This variant of Friedrichs' inequality can be established using the technique from the proof the inequalty 1.5 only under restrictive conditions on the domain. Use the compactness of $H^{1}(\Omega) \rightarrow L_{2}(\Omega)$ in the same way as in the proof of Lemma 6.2 below.

Proof 1.

For one dimension case.
Based on mean value theorem, there exists $x_{0} \in \Omega$, such that

$$
v\left(x_{0}\right)=\bar{v} .
$$

Now, we have

$$
v(x)=v\left(x_{0}\right)+\int_{\Omega} v^{\prime}(y) d y=\bar{v}+\int_{\Omega} v^{\prime}(y) d y
$$

and by Cauchy-Schwartz inequality and Poincare Friedrichs' inequality we get

$$
\begin{aligned}
|v(x)| & =\left|\bar{v}+\int_{\Omega} v^{\prime}(y) d y\right| \\
& \leq|\bar{v}|+\int_{\Omega}\left|v^{\prime}(y)\right| d y \\
& \leq|\bar{v}|+\left(\int_{\Omega} 1 d y\right)^{\frac{1}{2}}\left(\int_{\Omega}\left|v^{\prime}(y)\right|^{2} d y\right)^{\frac{1}{2}} \\
& \leq|\bar{v}|+|\mu(\Omega)||v|_{H^{1}}
\end{aligned}
$$

Now we can take L^{2} norm on both sides, note the term on the right is a constant, and we also recall $\|\lambda u\|_{L^{2}}=\lambda\|u\|_{L^{2}}$,
So, we have

$$
\begin{aligned}
\|v\|_{0} & \leq\left(|\bar{v}|+|\mu(\Omega) \| v|_{1}\right)\left(\int_{\Omega} 1 d x\right)^{\frac{1}{2}} \\
& =|\mu(\Omega) \| \bar{v}|+|\mu(\Omega)|^{2}|v|_{1} \\
& \leq C\left(|\bar{v}|+|v|_{1}\right)
\end{aligned}
$$

where $C=\max \left(|\mu(\Omega)|,|\mu(\Omega)|^{2}\right)$ which is bounded and positive.

Proof 2.

Suppose that the inequality

$$
\|v\|_{0} \leq c\left(|\bar{v}|+|v|_{1}\right) \quad \text { for all } v \in H^{1}(\Omega)
$$

fails for every positive c . Then there exits a sequence $\left(v_{k}\right)$ in $H^{1}(\Omega)$ with

$$
\left\|v_{k}\right\|_{0}=1, \quad|\bar{v}|+|v|_{1} \leq \frac{1}{k}, \quad k=1,2,3 \ldots
$$

By the compactness of $H^{1}(\Omega) \hookrightarrow L^{2}(\Omega)$, a subsequence of v_{k} converges in $L^{2}(\Omega)$. Without loss of generality, we can assume the sequence v_{k} converges. Then v_{k} is a Cauchy sequence in L^{2}. From $|v|_{1} \rightarrow 0$, we conclude that v_{k} is also a Cauchy sequence in $H^{1}(\Omega)$. Because of the completness of $H^{1}(\Omega), v_{k}$ converges to a element v^{\star} in the sense of H^{1}. By continuity, we have

$$
\left\|v^{\star}\right\|_{0}=1, \quad\left|v^{\star}\right|_{1}=0, \quad \bar{v}=0
$$

This implys that v^{\star} equals some constant c in the sense of H^{1}. And $c \neq 0$ because that $\left\|v^{\star}\right\|_{0}=1=c^{2} \mu(\Omega)$, which is a contradiction, since $\bar{v}=0$
Problem 2. Problem 2.12 at page 42
2.12. Consider the elliptic, but not uniformly elliptic, bilinear form

$$
a(u, v):=\int_{0}^{1} x^{2} u^{\prime} v^{\prime} d x
$$

on the interval $[0,1]$. Show that the problem $\frac{1}{2} a(u, v)-\int_{0}^{1} u d x \rightarrow \min !$ does not have a solution in $H_{0}^{1}(0,1)$. What is the associated (ordinary) differential equation?

Proof.

Firstly, we find the associated ordinary differential equation. By bilinear form, we have

$$
\begin{align*}
& a(u, v)=\int_{0}^{1} x^{2} u^{\prime} v^{\prime} d x \tag{1}\\
& \frac{1}{2} a(u, v)-\int_{0}^{1} v d x \rightarrow \min ! \tag{2}\\
\Leftrightarrow & \frac{1}{2} a(u, v)-\int_{0}^{1} v \cdot 1 d x \rightarrow \min ! \tag{3}
\end{align*}
$$

We have the associated ordinary differential equation form: $L u=f$
So, we have $L u=1$,
For the solution in $H_{0}^{1},\left.x^{2} u^{\prime} v\right|_{0} ^{1}=0$

$$
(L u, v)=a(u, v)=\int_{0}^{1} x^{2} u^{\prime} v^{\prime} d x=\int_{0}^{1} \frac{d}{d x}\left(x^{2} u^{\prime}\right) v d x
$$

Correspondingly, $L u=-\frac{d}{d x}\left(x^{2} u^{\prime}\right)=1 \Rightarrow-2 x u^{\prime}-x^{2} u^{\prime \prime}=1$ is the associated ordinary differential equation.
Secondly, we prove this problem does not have a solution in $H_{0}^{1}(0,1)$. By $L u=$ $-\frac{d}{d x}\left(x^{2} u^{\prime}\right)=1$, we integral this equation in $H_{0}^{1}(0,1)$, we get $x^{2} u^{\prime}=-x$. By ODE, we can solve it, $u=-\ln x$, but u is not in $H_{0}^{1}(0,1)$, so the solution is not existence.

Problem 3. Problem 2.15 at page 43
2.15. Show that

$$
\int_{\Omega} \phi d i v v d x=-\int_{\Omega} \operatorname{grad} \phi \cdot v d x+\int_{\partial \Omega} \phi v \cdot v d s
$$

for all sufficiently smooth functions v and ϕ with values in R^{n} and R, respectively. Here

$$
\operatorname{div} v:=\sum_{i=1}^{n} \frac{\partial v}{\partial x_{i}} .
$$

Proof.

Obviously, we have

$$
\begin{aligned}
& \nabla \cdot(\phi v) \\
= & \phi(\nabla \cdot v)+(\nabla \phi) \cdot v \\
= & \phi \cdot \operatorname{div} v+\operatorname{grad} \phi \cdot v
\end{aligned}
$$

We integral the both sides on Ω and get

$$
\begin{aligned}
\int_{\Omega} \nabla \cdot \phi v d x & =\int_{\Omega} \phi d i v v d x+\int_{\Omega} g r a d \phi \cdot v d x \\
\int_{\Omega} \phi d i v v d x & =\int_{\Omega} \nabla \cdot \phi v d x-\int_{\Omega} g r a d \phi \cdot v d x
\end{aligned}
$$

by $\int_{\Omega} \nabla \cdot \phi v d x=\int_{\partial \Omega} \phi v \cdot v d s$ we get

$$
\int_{\Omega} \phi d i v v d x=-\int_{\Omega} g r a d \phi \cdot v d x+\int_{\partial \Omega} \phi v \cdot v d s
$$

Problem 4. Problem on the pdf. For the following equation with Robin boundary condition

$$
\left\{\begin{array}{c}
-u^{\prime \prime}=f, \quad x \in(0,1) \tag{4}\\
u^{\prime}(0)+\gamma_{0} u(0)=\alpha_{0} \\
u^{\prime}(1)+\gamma_{1} u(1)=\alpha_{1}
\end{array}\right.
$$

show that the Galerkin form is:
determine $u \in H^{1}$ satisfying

$$
\begin{equation*}
a(u, v)=(f, v)+\left(\alpha_{1}-\gamma_{1} u(1)\right) v(1)-\left(\alpha_{0}-\gamma_{0} u(0)\right) v(0), \quad \forall v \in H^{1} \tag{5}
\end{equation*}
$$

also show that the function $\omega \in H^{1}$ that minimizes

$$
\begin{equation*}
J[\omega]=a(\omega, \omega)-2(f, \omega)-2 \alpha_{1} \omega(1)+\gamma_{1} \omega(1)^{2}+2 \alpha_{0} \omega(0)-\gamma_{0} \omega(0)^{2} \tag{6}
\end{equation*}
$$

is u, the solution of the Galerkin problem.

Proof.

Firstly, By bilinear form,
Let $a(u, v)=\int_{0}^{1} u^{\prime} v^{\prime} d x \quad(f, v)=\int 0^{1} f v d x$
Mutiply the test function v on both sides of $-u^{\prime \prime}=f$ and integral on $(0,1)$, we get

$$
\begin{aligned}
-u^{\prime \prime} & =f \\
\Rightarrow \int_{0}^{1}-u^{\prime \prime} v d x & =\int_{0}^{1} f v d x \\
\Rightarrow-\left.u^{\prime} v\right|_{0} ^{1}+\int_{0}^{1} u^{\prime} v^{\prime} d x & =\int_{0}^{1} f v d x \\
\Rightarrow-u^{\prime}(1) v(1)+u^{\prime}(0) v(0)+a(u, v) & =(f, v)
\end{aligned}
$$

Plug the Robin boundary condition in the fomulation above

$$
\begin{gathered}
\left\{\begin{array}{l}
u^{\prime}(0)+\gamma_{0} u(0)=\alpha_{0} \\
u^{\prime}(1)+\gamma_{1} u(1)=\alpha_{1}
\end{array}\right. \\
a(u, v)=(f, v)+\left(\alpha_{1}-\gamma_{1} u(1)\right) v(1)-\left(\alpha_{0}-\gamma_{0} u(0)\right) v(0), \quad \forall v \in H^{1}
\end{gathered}
$$

The second equation is to testify that for all $\mathrm{v}, J[\omega+\lambda v]$ attains its minmum at $\lambda=0$ if and only if ${ }^{6}$ is ture.

