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Recent experiments have shown that mouse primary visual cor-
tex (V1) is very different from that of cat or monkey, including
response properties—one of which is that contrast invariance
in the orientation selectivity (OS) of the neurons’ firing rates is
replaced in mouse with contrast-dependent sharpening (broad-
ening) of OS in excitatory (inhibitory) neurons. These differences
indicate a different circuit design for mouse V1 than that of
cat or monkey. Here we develop a large-scale computational
model of an effective input layer of mouse V1. Constrained by
experiment data, the model successfully reproduces experimen-
tally observed response properties—for example, distributions
of firing rates, orientation tuning widths, and response modu-
lations of simple and complex neurons, including the contrast
dependence of orientation tuning curves. Analysis of the model
shows that strong feedback inhibition and strong orientation-
preferential cortical excitation to the excitatory population are
the predominant mechanisms underlying the contrast-sharpening
of OS in excitatory neurons, while the contrast-broadening of OS
in inhibitory neurons results from a strong but nonpreferential
cortical excitation to these inhibitory neurons, with the resulting
contrast-broadened inhibition producing a secondary enhance-
ment on the contrast-sharpened OS of excitatory neurons. Finally,
based on these mechanisms, we show that adjusting the detailed
balances between the predominant mechanisms can lead to con-
trast invariance—providing insights for future studies on contrast
dependence (invariance).

orientation selectivity | contrast invariance | contrast dependence

The front end of the visual system in the cortex, the primary
visual cortex (V1), has proven for cat and monkey to be

appropriate for large-scale computational modeling—primarily
because of the rich collection of experimental measurements on
V1 that biologically constrain these models. These large-scale
models have then been used to suggest potential mechanisms
for various response properties in cat (or monkey) V1, such
as orientation selectivity (OS) (1, 2). Individual neurons in V1
respond preferentially to the orientations of edges in the visual
scene. This orientation preference is measured by the neuron’s
orientation tuning curve, a graph of the neuron’s firing rate
versus the orientation of the visual stimulus. The tuning curve
is (usually) uni-modal, with a peak at “preferred orientation”
(PO) and troughs at the “orthogonal orientation” (OO). Its half-
width at half-maximum, the tuning width, is one measure of
the neuron’s OS. Although neurons’ firing rates often increase
with the contrast of the visual stimuli, surprisingly, the OS in
cat (or monkey) is found to be approximately contrast-invariant
(3, 4). Many theoretical (5–8) and experimental (9–11) works
have addressed the source of this contrast invariance. In mouse,
despite its poor visual acuity, neurons in V1 are surprisingly
well-tuned for orientation (12–14), with tuning widths similar to
those of cat or monkey. A series of experiments (13, 15, 16),
as well as a behavioral vs. neuronal discrimination experiment

(14), have shown that instead of contrast-invariant OS, excitatory
(inhibitory) neurons in mouse V1 exhibit contrast-sharpened
(broadened) OS.

Sophisticated optogenetic tools for mouse are providing even
more comprehensive experimental data than are available for
cat or monkey. Visual neuroscientists now have a detailed cir-
cuit structure of mouse V1 (17–21) and rich measurements of
its response properties (12, 13, 22, 23). Thus, it is time for the-
orists to develop comprehensive large-scale models of mouse
V1, which may unravel the mechanism underlying its response
properties, such as the contrast-dependent OS.

There are significant hardwired differences between mouse V1
and cat (or monkey) V1, which we incorporate into our model.
Neurons of mouse V1 receive only weakly tuned input (19) from
the lateral geniculate nucleus (LGN); the receptive fields (RF)
of this input have strongly overlapping ON and OFF subregions
(15, 23), and the diameters of the LGN RFs are very large—
averaging more than 10◦ for excitatory neurons and 20◦ for
inhibitory neurons (23) (Fig. 1 A, Top Left), while in cat and
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Fig. 1. Simulation setup. (A, Top Left) Typical size of an LGN RF in mouse
vs. that of a monkey, a small point to the right. (Top Right) Gaussian dis-
tribution of normalized distance between subregions with a mean of 0.305
and SD of 0.1. (Bottom) Examples of inherited RF from LGN for V1 excita-
tory (Exc) and inhibtory (Inh) neurons with the ON subregion (red) and OFF
subregion (blue). (B) A patch of V1 neuron (colored dots) plotted on a grid
of LGN cells (black dots) in a visual field. Different colors indicate different
POs. (C) Histogram of EPSPs to excitatory neurons with log-normal distribu-
tion. Inset shows the same data but with log x axis, with a mean of 0.45 mV
and SD of 0.68 mV. (D) The distribution of EPSPs (dots) received by an exam-
ple excitatory neuron over the pairwise RF CC distribution of its presynaptic
excitatory neurons (background).

monkey the subregions are more segregated (24, 25), with diam-
eters mostly below 1◦. Cat and monkey V1 have ordered maps
of PO, tiled by orientation pinwheels (26); in contrast, mouse V1
has a disordered “salt and pepper” map of PO (27). Layer 2/3
(L2/3) in cat and monkey V1 is dominated by “complex” (non-
linear) neurons (28, 29). However, in mouse, “simple” (linear)
neurons make up the majority (70∼ 80%) of excitatory neurons
in L2/3 and L4, and most of the inhibitory neurons are complex
(12). An early lesion experiment on mouse has shown that LGN
axons arborize in L2/3 as well as in L4 (30). The layer-specific
data from ref. 12 also indicate that the linearity (F1/F0) distri-
bution, the OS distribution, and the RF size are similar in L2/3
and L4. Taken together, the common properties shared by
L2/3 and L4 in mouse provide certain justification for combining
L2/3 and L4 into a single “effective layer.” It is also found that the
excitatory neurons selectively receive strong excitatory postsy-
naptic potentials (EPSPs), ∼ 4.5 mV, from neurons with similar
RFs (21), while an amplitude of 1∼ 2 mV is considered large
in cat V1 (31). The inhibitory population in mouse V1 receives
strong input from the LGN as shown in refs. 32 and 33, while such
data are rather scarce for cat and monkey. Inhibitory neurons in
mouse V1 receive strong input from cortical excitatory neurons
regardless of their PO (17), and they show much poorer OS (22,
34) than the inhibitory neurons in cat or monkey V1 [but see a
sharply tuned subtype (35)]. These hardwired differences suggest
that different mechanisms may underlie the response properties
of mouse V1 from those of cat or monkey.

Here we construct a comprehensive large-scale, biologically
constrained by experimental data, model of an effective input
layer of mouse V1 from which many experimentally observed
response properties emerge; then we analyze in detail the
contrast-sharpening (contrast-broadening) of the OS of excita-
tory (inhibitory) neurons and extract the underlying mechanisms
from the model by probing the excitation–inhibition (E–I) bal-
ances; based on the extracted mechanisms, we further identify
the adjustments to the E–I balance and the selectivity of connec-
tivity that result in contrast invariance. Thus, with the experimen-

tally constrained nature of the model, our result bears insights for
future studies on contrast invariance and contrast dependence.

Methods
Our model consists of a grid of 16× 16 LGN cells covering a visual field of
75◦× 75◦ and a patch of 10,800 V1 neurons in a single layer compressed
from L2/3 and L4, with an effective neuronal density of 2.9× 104/mm2 (36).
The V1 patch is a uniform mixture of a 120× 72 grid of excitatory neu-
rons and a 60× 36 grid of inhibitory neurons, such that the E-I ratio is
kept at 4 : 1. The model is described with sufficient details in SI Appendix to
enable the reproduction of simulation results; the source code can be found
at https://github.com/g13/mouseV1. Here we only present an overview of
the model setup, emphasizing its salient features including each that dis-
tinguishes mouse V1 from that of cat or monkey, as summarized in the
Introduction.

LGN Layer, Mapping to V1. The LGN input to V1 is modeled with a linear–
nonlinear Poisson paradigm. Drifting sinusoidal waves with a temporal
frequency of 4 Hz, a spatial frequency of 0.04 cycle per degree, and con-
trasts of 12.5%, 25%, 50%, and 100% are used as the external inputs to
LGN. We adopt the parameters and a typical gain curve from the experi-
ment on mouse dorsal LGN cells (37) to construct a spatiotemporal separable
center-surround RF kernel and a static nonlinearity, respectively. We apply
the nonlinearity on the result of the convolution of the RF kernel with the
input. Its output is then used as the rate of a Poisson process from which we
form the spike train inputs to V1 neurons.

Each V1 neuron is connected postsynaptically to a collection of LGN cells
with two largely overlapping subregions, one of ON LGN cells and the other
of OFF LGN cells. Taken together, these two subregions form the RF of
the V1 neuron inherited from LGN. The extent of overlap is described by
a normalized distance between the two subregions’ tentative centers (see
SI Appendix). The normalized distance has a Gaussian distribution across
the population (Fig. 1 A, Top Right), whose mean and SD are derived from
the experiments in refs. 19, 23. Examples of V1 neurons’ RFs resulting from
such connections are shown in Fig. 1 A, Lower. Notice the size difference
between excitatory and inhibitory RFs, as multiple experiments have shown
for mouse V1 that inhibitory neurons receive about twice the LGN input
received by excitatory neurons (32, 33). To implement this experimental
result, we assume the following: (i) an increase in LGN input to inhibitory
neurons through an increase in the number of presynaptic LGN cells project-
ing to the inhibitory neuron (∼ 30 to each inhibitory neuron, ∼ 15 to each
excitatory neuron), and (ii) the increase in LGN cells extends along the major
axes of the ON and OFF subregions. We make these two detailed assump-
tions in the model to show a more prominent contrast-broadening effect
in inhibitory neurons; however, they are not essential (see SI Appendix,
Fig. S2).

Cortical Layer. The salt and pepper distribution of POs in mouse V1 (Fig.
1B) is modeled by presetting each V1 neuron’s RF with a uniform distribu-
tion of POs. The probability of intracortical connections decays over distance
through an isotropic Gaussian distribution for both excitatory and inhibitory
neurons. Periodic boundary conditions are applied when the connection dis-
tance exceeds the boundary of the V1 patch, and all of the neurons are
used in analysis. The total connection probability to an excitatory neuron
is sparse—15% (20) (∼ 400 E and ∼ 100 I neurons). Excitatory neurons in
L2/3 of mouse V1 are known to have larger probabilities to connect with
excitatory neurons that share similar RFs and POs (20, 21), and a similar pref-
erential connectivity between excitatory neurons (E→ E) is likely to exist
in L4 as well (19). Likewise, the same connection preference has also been
implied for the I→ E connections by Tan et al. (38). Thus, we introduce
another Gaussian distribution to capture these orientation preferential cou-
plings to excitatory neurons (details available in SI Appendix). In addition to
the orientation preferential connection probability, Cossell et al. (21) found
the E→ E connection strengths to be dependent on the pairwise correlation
coefficient (CC; see SI Appendix for its definition) of RFs, and the EPSPs have
a highly skewed distribution toward a larger amplitude (21). In this model,
we implement this dependency with a log-normal distribution (Fig. 1C, com-
parable with the experiment in ref. 21; the Inset figure shows the same data
in log-scale). One example of an excitatory neuron’s presynaptic EPSP distri-
bution for such a setup is shown in Fig. 1D, where the background histogram
gives the distribution of RF CC with its presynaptic neurons (higher value
indicates a more similar RF). Note that, although few in number, those with
larger RF CC produce much larger EPSP amplitudes such that, on average,
50% of the cortical excitation is contributed by those 18% of presynaptic
neurons with larger RF CC, comparable with the experiment in ref. 21.
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On the other hand, the E→ I connections are found experimentally to
be much stronger, more numerous, and with no selectivity over orientation,
as shown by Bock et al. (17). Consistently, in our model, the corresponding
connection probability is set at 60% (∼ 1000 E and ∼ 300 I neurons) and
only depends on distance, with connection strength on par with the largest
excitatory-to-excitatory connection strength.

Each V1 neuron is represented as a conductance-based exponential
integrate-and-fire point neuron model (39) with frequency adaptation. The
adaptation is modeled by a self-inhibitory conductance gadap that only
increases when the neuron itself fires. The voltage dynamics of the ith
neuron in the kth population is thus governed by

dV i
k

dt
=−gL,k

(
V i

k −VL

)
+ gL,k∆T exp

(
V i

k −VT

∆T

)

+Iisyn,k(t)− gi
adap(t)

(
V i

k −VI

)
,

Iisyn,k(t) =−
(

gi
E→k(t) + gi

LGN→k(t)
)(

V i
k −VE

)
−gi

I→k(t)
(

V i
k −VI

)
, [1]

where k = E or I. gL,E = 50 s−1 and gL,I = 70 s−1 are the leak conductance
of excitatory and inhibitory neurons, respectively. VL = 0, VE = 2.8, and VI =

−0.4 are the dimensionless reversal potentials. ∆T = 0.4375 concerns the
voltage slope of spike initiation, and VT = 1 is the soft threshold; the hard
threshold where V i

k is reset to VL is set to 4.375. Iisyn,k is the total synaptic

current, where the excitatory (gi
E→k), LGN (gi

LGN→k), and inhibitory (gi
I→k)

conductances are summed over all spikes of the corresponding presynaptic
neurons. The temporal profiles of all of the conductances are modeled by
alpha functions (see SI Appendix). A modified Runge–Kutta scheme in ref.
40 is used in the simulation.

We use 1− CV =
∣∣∣Σjrje

2iθj
∣∣∣ /Σjrj , where CV is circular variance and rj is

the firing rate with input orientation θj , to describe the overall sharpness of
a tuning curve (12, 13); a larger 1− CV indicates a sharper OS.

Results
Our effective input-layer model largely reproduces the response
properties of the V1 network, including the distributions of fir-
ing rates, tuning widths, response modulation F1/F0 (simple
and complex neurons), and interspike intervals. These are pre-
sented, discussed, and compared with experimental observations
in SI Appendix. In the main text, we focus on the results of
contrast-related OS properties.

Contrast Dependency. The contrast-sharpening (contrast-broad-
ening) of OS in excitatory (inhibitory) neurons is captured by
the model, as shown in Fig. 2. Fig. 2 A and B show two sets of
tuning curves with various firing rate levels, for excitatory and
inhibitory neurons, respectively. Both contrast-sharpening and
contrast-broadening phenomena are present saliently in Fig. 2
C and D, where population-averaged tuning curves at different
contrasts are normalized and aligned to the optimal input ori-
entation for excitatory and inhibitory populations, respectively.
The phenomena of contrast dependencies are also apparent in
terms of 1−CV in Fig. 2 E and F, as the 1−CV distribution of
excitatory and inhibitory populations are separated by the dotted
contrast-invariant line.

The tuning curves of the conductances impinging on excitatory
and inhibitory neurons are shown in Fig. 2 G and H, respectively,
where all tuning curves are normalized to their own maxima,
except the first temporal harmonic of the LGN conductance, F1
(magenta), which is normalized by its mean value, F0. The F1
part of the LGN conductance shows negligible signs of contrast
dependency and is only weakly tuned for orientation. However,
as shown in Fig. 2G, the tuning curves of cortical excitatory
conductance (red, gE→E ) are clearly contrast-sharpened, while
the inhibitory conductance (blue, gI→E ) is contrast-broadened,
comparable with the experiment in ref. 13. Other input conduc-
tances, such as gE→I , are orientation-unspecific (Fig. 2H), which
is consistent with the experiment in ref. 17 (see SI Appendix,

A

B

E F I

HD

C G

Fig. 2. Simulation results. Tuning curves of 12.5%, 25%, 50%, and 100%
contrasts are in dotted, dot-dashed, dashed, and solid lines, respectively. (A
and B) Examples of firing rate tuning curves of excitatory and inhibitory neu-
rons, respectively. (C and D) Population averages of excitatory and inhibitory
neurons’ firing rate tuning curves, respectively. Every tuning curve is nor-
malized by its maximum firing rate. (E and F) Heatmaps for the density
distribution of 1− CV with contrast at 25% vs. 100% for the firing rate
tuning curves of excitatory and inhibitory populations, respectively. The dot-
dashed line indicates contrast-invariant OS. (G and H) Population averaged,
normalized tuning curves of conductances in excitatory and inhibitory neu-
rons, respectively. The legend follows I. The total LGN conductance is not
shown here, since it is flat and overlapped at y = 1. Instead, we plot the
F1 component of the LGN conductance (magenta) normalized to the F0
component. (I) Absolute levels of different conductances in the inhibitory
population across contrasts corresponding to H, with averaged total LGN
conductance in green.

Fig. S6). The magnitude of the excitatory conductance gE→I

(Fig. 2I) increases substantially with contrast, surpassing and
then overwhelming the LGN conductance. This strong and
orientation-unspecific cortical excitation to the inhibitory pop-
ulation is crucial in the model for the contrast-broadening of OS
in inhibitory neurons, which then give rises to the broadening of
gE→I with increasing contrast.

Underlying Mechanisms. Next, we describe and analyze the mech-
anisms underlying the contrast dependencies in our model, as
illustrated in Fig. 3A, where input orientations are indicated by
different colors. At low contrasts, since the excitatory firing rates
are low, feed-forward input (from LGN) makes up the majority
of the excitation (Fig. 2I). Thus, the tuning curves are largely
shaped by the LGN inputs, which themselves are only weakly
tuned due to the strong overlap between the ON and OFF sub-
regions. In addition, the orientation-specific I →E inhibitory
connections result in weakly tuned gI→E that helps to lift the cap
on the excitatory firing rates at OO, while limiting the firing rate
at the PO. Thus, at low contrasts, the excitatory neurons’ tuning
curves are relatively broad.

At higher contrasts, increased cortical firing rates cause the
cortical drive to become stronger. Therefore, excitatory neurons
experience enhanced cortical excitation at PO but only small
increases at OO—since excitatory neurons of similar RF and PO
are more likely to be connected and connected with stronger
EPSPs. This orientation-specific cortical excitation raises the
excitatory neurons’ responses, especially at PO. Meanwhile,
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Fig. 3. Underlying mechanisms. (A) Diagram of the mechanism for the
contrast-dependent phenomena, with excitatory sharpening on Lower and
inhibitory broadening on Upper. The arrow along the x axis marks the
direction of increasing contrast. Tuning curves at low contrast are indi-
cated by the dotted lines, while the tuning curves at high contrast are
in solid lines, and the input orientations are indicated by bars of differ-
ent colors. Schematic illustrations of excitatory presynaptic connections are
shown in between the tuning curves of low and high contrasts. The col-
ored filled circle at each center is an excitatory (inhibitory) neuron of
interest, and its presynaptic neurons of different POs (indicated by dif-
ferent colors) are connected with a different strength in dashed gray,
solid gray, thin solid black, and thick solid black lines (from weak to
strong). (B) 1− CV value of the firing rate tuning curves for excitatory
populations under 100% contrast vs. 25% contrast, with the same stan-
dard parameters used as in Fig. 2, except the SD of I→ E connections,
σI→E = 0.6, 0.8, 1.0,∞, as shown in the legend (0.6 is used for Fig. 2).
SDs along both axes are shown by the error bars. (C) Same as B, but
with 70% cortical inhibition in excitatory neurons. Connection strengths
are adjusted correspondingly. (D) Same as B but with single-valued EPSP
instead of log-normal distributed EPSP.

inhibitory neurons receive much stronger cortical excitation at
all orientations, which dominates the LGN input (Fig. 2I) and
produces high inhibitory firing rates that inflict strong feedback
inhibition onto excitatory neurons. This orientation-unspecific
cortical excitation results in the broadened OS of inhibitory neu-
rons, which in turn broadens the tuning curves of gI→E . In the
meantime, this broadened feedback inhibition pulls down the
excitatory neurons’ responses at all orientations (more so at OO
than that of low contrast). Thus, the OS of excitatory neurons is
significantly sharpened.

Both the level of the inhibition (gI→E ) and its contrast-
broadened profile contribute to the contrast-sharpening of OS
in excitatory neurons. To show which property of gI→E con-
tributes more, we vary the SD of the connection probability of
the I →E connections, σI→E , from 0.6 to∞ with other parame-
ters unchanged. σI→E sets the sharpness of the tuning curves of
gI→E at low contrast (illustrated by the legend in Fig. 3B), when
the inhibitory firing rate is relatively selective (Fig. 2D). Since
at higher contrast, gI→E is always flat following the contrast-
broadened inhibitory firing rate, the effect of the contrast-
broadening of gI→E is largely determined by σI→E at low
contrast—the smaller σI→E , the larger the effect of the contrast-
broadening of gI→E . Thus, the case with σI→E =∞ represents
the complete absence of contrast-broadening in gI→E , since it is
flat across all contrasts. The simulation results in Fig. 3B show
that all of these cases reside above the contrast-invariant line,
indicating that the contrast-sharpening phenomenon exists with
or without the contrast-broadening of gI→E . On the other hand,
if we reduce the overall level of inhibition to 70% by decreas-
ing connection strengths, while keeping the firing level relatively
unchanged, none of the cases retains contrast-sharpening (Fig.

3C). This indicates that the level of inhibition is more relevant
than the contrast-broadening of gI→E . However, the broad-
ened profile of gI→E does make a (secondary) contribution
to the contrast-sharpening of OS in excitatory neurons, for if
we quantify the contrast-sharpening effect by the distance to
the contrast-invariant line, then stronger contrast-broadening
of gI→E does shift the OS of excitatory neurons toward the
stronger contrast-sharpening effect (Fig. 3B). Nonetheless, this
sharpening effect is not sufficient to overcome the broadening
caused by a 30% decrease in the magnitude of inhibition. These
results demonstrate that the level of inhibition plays a more
important role than the contrast-broadening of gI→E as mech-
anisms that underlie the contrast-sharpening of OS in excitatory
neurons.

To assess the contribution of the log-normal EPSP distribution
to the contrast-sharpening of OS, we set all E→E connections
to have the same strength value as the mean in the original
log-normal distribution. As shown in Fig. 3D, without the log-
normal EPSP distribution, only a very weak contrast-sharpening
effect exists, as the values are fairly close to the contrast-invariant
line, with the error bars crossing it. Thus, the heterogeneity
from the log-normal EPSP distribution is also important for
the contrast-sharpening of OS in excitatory neurons, as they
compensate an otherwise lower and less tuned cortical excita-
tion. Notice that the populations with smaller σI→E (stronger
contrast-broadening of gI→E ) maintain their close distance to
the contrast-invariant line, showing that the contrast-broadening
of gI→E has a much less effective role in the contrast-sharpening
of OS in excitatory neurons than the standard case shown in
Fig. 3B. Its actual cause can be attributed to both the weak-
ened preferential excitation due to the single-valued EPSP and a
major decrease in the otherwise strong feedback inhibition that is
driven by the now less active excitatory neurons (see SI Appendix
for details).

To summarize, the preferential E→E connections and their
stronger connection strengths, together with strong feedback
inhibition, are the primary mechanisms by which the model
achieves contrast-sharpening of OS in the excitatory popu-
lation, while the nonpreferential E→ I connections lead to
contrast-broadening of OS in inhibitory neurons.

Discussion
In this work, we construct a large-scale effective input-layer
model for mouse V1 under the constraints from experimen-
tal data. The model successfully reproduces response properties

A B

Fig. 4. Contrast-invariant excitatory OS. 1− CV value under 100% con-
trast vs. under 25% contrast for the excitatory firing rates. The dotted
lines indicate contrast-invariant OS. (A) The log-normal EPSP distribution is
replaced with a single-valued EPSP, the same as in Fig. 3D; σE→E = 0.65 (0.5
in standard case) and σI→E = 1.0 are used, and the connection strengths are
not changed. (B) Eighty percent inhibition also achieves contrast-invariant
OS without changes in the connection profile but only with changes in
connection strengths (σI→E = 1.0).
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experimentally observed for mouse V1, including contrast-sharp-
ening (contrast-broadening) of OS in excitatory (inhibitory)
populations. We show that strong, highly preferential (E→
E ) excitation, strong feedback (I →E ) inhibition, and strong
orientation-unspecific cortical (E→ I ) excitation are the pri-
mary mechanisms underlying the contrast-dependent phenom-
ena in the model and that the effects of the contrast-broadening
of gI→E are secondary for the contrast-sharpening of OS in
excitatory neurons.

Previously, theoretical modeling works on mouse V1 of Hansel
and Van Vreeswijk (41) and Sadeh and Rotter (42) have
throughly discussed the mechanisms of emergent OS from a ran-
domly connected network without an orientation map. These
studies focused on contrast invariance and revealed how a small
input bias in orientation can be amplified in a balanced network
or an inhibition-dominated network, respectively. Another study
by Roy et al. (43) explores the parameter space to reproduce
experimentally observed OS distributions in mouse V1 at a fixed
contrast, and they find it necessary to have orientation prefer-
ential E→E connections. In contrast, we constrain our model
by experimental observations of mouse V1 on various input
properties (17, 19, 23, 32, 33)—for example, a highly skewed dis-
tribution of E→E connection strengths (21), which depend on
pairwise correlation of RFs—and investigate contrast-dependent
OS (13) and its possible underlying mechanisms. A simulation-
assisted analysis, as discussed in SI Appendix, provides addi-
tional intuition about the mechanisms underlying the model’s
performance.

There is an informative analogy between our mouse V1 model
and models of monkey V1 (1, 44) where neurons closer to pin-
wheel centers are more sharply tuned than neurons farther from
the centers—because neurons near the centers receive inhibition
from the nearby inhibitory neurons with all POs, while those far
from the center are inhibited by nearby neurons with similar POs.
This process of the distance-dependent “center-broadening” of
inhibition (mediated by the inhibitory conductances) resulting in
the “center-sharpening” of OS is very similar to the process of the
contrast-broadening of gI→E helping to enhance the contrast-
sharpening of OS in excitatory neurons in our mouse model.
Consistently, when inhibition is less dominant in the monkey
V1 models, center-sharpening of OS is also lessened (44), just
as shown by our analysis on the effects of contrast-broadening
of gI→E .

Limitations. First, the gain curves of the excitatory neurons are
relatively too low at low contrast compared with experimen-
tal observations. Second, our model’s 1−CV distribution for
excitatory neurons represents only a sharply tuned subset of
the neurons in the experiments (12, 13) rather than the entire
distribution; moreover, in our model, the OS of the excitatory
population is substantially sharper than the experimental mea-
surements (19, 45). In an effort to address these two limitations,
we have incorporated synaptic depression into the LGN input of
the model. We show in SI Appendix that this modified model has
very similar contrast-dependent phenomena and the same major
underlying mechanisms as in our original model but with more
realistic gain curves and OS. However, in this modified model,
the contrast-broadening of gI→E conductance is significantly
reduced.

Contrast Invariance, With or Without Ordered Maps of PO. The
pinwheel-like ordered map of PO in cat (or monkey) V1 versus

the random salt and pepper map of PO in mouse V1 is one of the
most striking differences between the two anatomically. How-
ever, topographically, they have similar selective connectivities
based on PO. In monkey, the ordered map of PO implicitly cre-
ates selective connectivity since nearby neurons are more likely
to be connected than distant neurons and nearby neurons natu-
rally have similar POs in the map. In mouse, an explicit selective
E→E connectivity based on similar POs replaces the implicit
selectivity for monkey.

It seems that the explicit connectivity in mouse V1, con-
tributing substantially in producing contrast-sharpening, may
be stronger than the implicit connectivity in an ordered map
of PO, even though the neuronal density of macaque V1 is
about 2.5 times that of a rodent (46), which together with
the pooling of neurons (with similar POs) in the ordered
map of PO provides a larger reservoir of potential prefer-
ential connections than is available to excitatory neurons in
mouse V1, which have to search through the uniformly dis-
tributed PO. Thus, it is very likely that the much stronger
bias in the E→E connection strengths (21) in mouse V1
overcompensates for the low availability of preferential connec-
tions to help achieve contrast-sharpening of OS in excitatory
neurons.

Thus, one may wonder whether contrast invariance can be
observed if one were to correct the overcompensation of E→E
orientation preference. Indeed, if we moderately weaken the
preference of E→E connections by increasing σE→E from
0.5 to 0.65 and reduce the strength of their EPSPs (through a
single-valued EPSP distribution), contrast invariance in the exci-
tatory population is obtained, as shown in Fig. 4A. A major
consequence of this relative decrease in excitation is a result-
ing decrease in feedback inhibition to the excitatory neurons,
which decreases sharpening. Therefore, an alternative way to
achieve contrast-invariant OS in the model (without explicitly
modifying the preferential excitatory connections) is to directly
decrease the overall level of inhibition as hinted by Fig. 3C.
To do this, we follow the scheme used for Fig. 3C, keep-
ing the I → I connection strength constant and decreasing the
other connection strengths. Note that we only decrease them
moderately so that the overall inhibition is weakened only
by ∼ 20%, in contrast to the 30% used for Fig. 3C. Again,
contrast-invariant OS of excitatory neurons is obtained, as shown
in Fig. 4B.

With these two examples, we demonstrate two ways to pro-
duce contrast-invariant OS in the excitatory neurons. Impor-
tantly, both methods adjust the E-I balance, by decreasing either
the preferential cortical excitation or the feedback inhibition—
the two primary and interrelated mechanisms that underlie the
contrast-sharpening of OS in excitatory neurons. Thus, with
reasonable variability of E-I balances, it is possible that both
contrast-invariant and contrast-sharpening of excitatory neurons
are actually present in mouse V1, which suggests further experi-
mental studies on contrast dependence of OS in mouse and bears
an implication for the understanding of contrast invariance of
other species in general.

ACKNOWLEDGMENTS. We thank Louis Tao for initial discussions of this
work, and the two referees for their helpful reviews. This research was
carried out on the High Performance Computing resources at New York
University Abu Dhabi. This work was supported by National Science Foun-
dation in China Grants 11671259, 11722107, 91630208, and 31571071 (to
D.Z. and D.C.) and by NYU Abu Dhabi Institute Grant G1301 (to W.P.D., D.Z.,
and D.C.).

1. McLaughlin D, Shapley R, Shelley M, Wielaard DJ (2000) A neuronal network model
of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the
input layer 4Cα. Proc Natl Acad Sci USA 97:8087–8092.

2. Chariker L, Shapley R, Young LS (2016) Orientation selectivity from very sparse lgn
inputs in a comprehensive model of macaque V1 cortex. J Neurosci 36:12368–12384.

3. Sclar G, Freeman RD (1982) Orientation selectivity in the cat’s striate cortex is invariant
with stimulus contrast. Exp Brain Res 46:457–461.

4. Skottun BC, Bradley A, Sclar G, Ohzawa I, Freeman RD (1987) The effects of contrast
on visual orientation and spatial frequency discrimination: A comparison of single
cells and behavior. J Neurophysiol 57:773–786.

Dai et al. PNAS | November 6, 2018 | vol. 115 | no. 45 | 11623

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719044115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1719044115/-/DCSupplemental


5. Ben-Yishai R, Bar-Or RL, Sompolinsky H (1995) Theory of orientation tuning in visual
cortex. Proc Natl Acad Sci USA 92:3844–3848.

6. Troyer TW, Krukowski AE, Miller KD (2002) Lgn input to simple cells and contrast-
invariant orientation tuning: An analysis. J Neurophysiol 87:2741–2752.

7. Lauritzen TZ, Miller KD (2003) Different roles for simple-cell and complex-cell
inhibition in V1. J Neurosci 23:10201–10213.

8. Finn IM, Priebe NJ, Ferster D (2007) The emergence of contrast-invariant orientation
tuning in simple cells of cat visual cortex. Neuron 54:137–152.

9. Nelson S, Toth L, Sheth B, Sur M (1994) Orientation selectivity of cortical neurons
during intracellular blockade of inhibition. Science 265:774–777.

10. Ferster D, Chung S, Wheat H (1996) Orientation selectivity of thalamic input to simple
cells of cat visual cortex. Nature 380:249–252.

11. Chung S, Ferster D (1998) Strength and orientation tuning of the thalamic
input to simple cells revealed by electrically evoked cortical suppression. Neuron
20:1177–1189.

12. Niell CM, Stryker MP (2008) Highly selective receptive fields in mouse visual cortex. J
Neurosci 28:7520–7536.

13. Li Yt, et al. (2012) Broadening of inhibitory tuning underlies contrast-dependent
sharpening of orientation selectivity in mouse visual cortex. J Neurosci 32:16466–
16477.

14. Long M, Jiang W, Liu D, Yao H (2015) Contrast-dependent orientation discrimination
in the mouse. Sci Rep 5:15830.

15. Liu Bh, et al. (2010) Intervening inhibition underlies simple-cell receptive field
structure in visual cortex. Nat Neurosci 13:89–96.

16. Liu Bh, et al. (2011) Broad inhibition sharpens orientation selectivity by expanding
input dynamic range in mouse simple cells. Neuron 71:542–54.

17. Bock DD, et al. (2011) Network anatomy and in vivo physiology of visual cortical
neurons. Nature 471:177–182.

18. Ko H, et al. (2011) Functional specificity of local synaptic connections in neocortical
networks. Nature 473:87–91.

19. Lien AD, Scanziani M (2013) Tuned thalamic excitation is amplified by visual cortical
circuits. Nat Neurosci 16:1315–1323.

20. Ko H, et al. (2013) The emergence of functional microcircuits in visual cortex. Nature
496:96–100.

21. Cossell L, et al. (2015) Functional organization of excitatory synaptic strength in
primary visual cortex. Nature 518:399–403.

22. Kerlin AM, Andermann ML, Berezovskii VK, Reid RC (2010) Broadly tuned response
properties of diverse inhibitory neuron subtypes in mouse visual cortex. Neuron
67:858–871.

23. Liu Bh, et al. (2009) Visual receptive field structure of cortical inhibitory neurons
revealed by two-photon imaging guided recording. J Neurosci 29:10520–10532.

24. Jin J, Wang Y, Swadlow HA, Alonso JM (2011) Population receptive fields of on and
off thalamic inputs to an orientation column in visual cortex. Nat Neurosci 14:232–
238.

25. Mata ML, Ringach DL (2005) Spatial overlap of on and off subregions and its rela-
tion to response modulation ratio in macaque primary visual cortex. J Neurophysiol
93:919–928.

26. Ohki K, et al. (2006) Highly ordered arrangement of single neurons in orientation
pinwheels. Nature 442:925–928.

27. Bonin V, Histed MH, Yurgenson S, Reid RC (2011) Local diversity and fine-scale
organization of receptive fields in mouse visual cortex. J Neurosci 31:18506–18521.

28. Gilbert CD (1977) Laminar differences in receptive field properties of cells in cat
primary visual cortex. J Physiol 268:391–421.

29. Ringach DL, Shapley RM, Hawken MJ (2002) Orientation selectivity in macaque V1:
Diversity and laminar dependence. J Neurosci 22:5639–5651.

30. Frost DO, Caviness VS (1980) Radial organization of thalamic projections to the
neocortex in the mouse. J Comp Neurol 194:369–393.

31. Stratford K, Tarczy-Hornoch K, Martin K, Bannister N, Jack J (1996) Excitatory synaptic
inputs to spiny stellate cells in cat visual cortex. Nature 382:258–261.

32. Cruikshank SJ, Urabe H, Nurmikko AV, Connors BW (2010) Supplemental figures from
“Pathway-Specific feedforward circuits between Thalamus and neocortex revealed by
selective optical stimulation of axons”. Neuron 65:230–245.

33. Kloc M, Maffei A (2014) Target-specific properties of Thalamocortical synapses onto
layer 4 of mouse primary visual cortex. J Neurosci 34:15455–15465.

34. Sohya K, Kameyama K, Yanagawa Y, Obata K, Tsumoto T (2007) GABAergic neurons
are less selective to stimulus orientation than excitatory neurons in layer II/III of visual
cortex, as revealed by in vivo functional Ca2+ imaging in transgenic mice. J Neurosci
27:2145–2149.

35. Runyan CA, et al. (2010) Response features of parvalbumin-expressing interneurons
suggest precise roles for subtypes of inhibition in visual cortex. Neuron 67:847–
857.

36. Herculano-Houzel S, Watson C, Paxinos G (2013) Distribution of neurons in functional
areas of the mouse cerebral cortex reveals quantitatively different cortical zones.
Front Neuroanat 7:35.

37. Grubb MS, Thompson ID (2003) Quantitative characterization of visual response prop-
erties in the mouse dorsal lateral geniculate nucleus. J Neurophysiol 90:3594–3607.

38. Tan AYY, Brown BD, Scholl B, Mohanty D, Priebe NJ (2011) Orientation selectivity of
synaptic input to neurons in mouse and cat primary visual cortex. J Neurosci 31:12339–
12350.

39. Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an
effective description of neuronal activity. J Neurophysiol 94:3637–3642.

40. Shelley MJ, Tao L (2001) Efficient and accurate time-stepping schemes for integrate-
and-fire neuronal networks. J Comp Neuro 11:111–119.

41. Hansel D, van Vreeswijk C (2012) The mechanism of orientation selectivity in primary
visual cortex without a functional map. J Neurosci 32:4049–4064.

42. Sadeh S, Rotter S (2015) Orientation selectivity in inhibition-dominated networks
of spiking neurons: Effect of single neuron properties and network dynamics. Plos
Comput Biol 11:e1004045.

43. Roy D, et al. (2013) Afferent specificity, feature specific connectivity influence
orientation selectivity: A computational study in mouse primary visual cortex.
arXiv:1301.0996. Preprint, posted January 6, 2013.

44. Kang K, Shelley M, Sompolinsky H (2003) Mexican hats and pinwheels in visual cortex.
Proc Natl Acad Sci USA 100:2848–2853.

45. Pattadkal JJ, Mato G, van Vreeswijk C, Priebe NJ, Hansel D (2018) Emergent
orientation selectivity from random networks in mouse visual cortex. Cell Rep
24:2042–2050.e6.

46. Srinivasan S, Carlo CN, Stevens CF (2015) Predicting visual acuity from the structure of
visual cortex. Proc Natl Acad Sci USA 112:7815–7820.

11624 | www.pnas.org/cgi/doi/10.1073/pnas.1719044115 Dai et al.

http://www.pnas.org/cgi/doi/10.1073/pnas.1719044115


www.pnas.org/cgi/doi/10.1073/pnas.1719044115

1

Supplementary Information for2

Mechanisms Underlying Contrast-dependent Orientation Selectivity in Mouse V13

Wei P. Dai, Douglas Zhou, David W. McLaughlin and David Cai4

Douglas Zhou.5

E-mail: zdz@sjtu.edu.cn6

David W. McLauglin.7

E-mail: david.mclaughlin@nyu.edu8

This PDF file includes:9

Supplementary text10

Figs. S1 to S1011

References for SI reference citations12

Wei P. Dai, Douglas Zhou, David W. McLaughlin and David Cai 1 of 19



Supporting Information Text13

Model Setup14

The model is made up of two layers. The first layer consists of LGN cells modeled with a linear-nonlinear-Poisson paradigm,15

and the second layer is populated by V1 neurons that are postsynaptic to the LGN cells in the first layer. The following16

subsections describe in detail the model setup, external input properties, LGN kernel convolution, LGN to V1 mapping, and17

intra-cortical connectivity. The source code may be found at https://github.com/g13/mouseV1.18

LGN layer. The LGN layer in the model is made up of a grid of 16× 16 LGN cells, with a uniform spacing of 4.8 degree, covering19

a visual field of approximately 75× 75 degrees square. The input is a drifting sinusoidal wave20

I(~r, t) = I0

(
1 + ε sin

(
ω

2π t−
~k · ~r

))
, [1]21

where the temporal frequency ω = 4 Hz, spatial frequency ~k has an amplitude of 0.04 cycle per degree and points to the22

direction of drift, I0 is the luminance of the wave, and ε is the contrast. The following detailed parameters for each LGN cell23

are either fitted or directly selected from Grubb and Thompson (1).24

1. The center-surround spatial kernel:25

A (~r) = kc
πσ2

c
exp

[
−
(
~r

σc

)2
]
− ks
πσ2

s
exp

[
−
(
~r

σs

)2
]

[2]26

where kc = 14.8800 degree2, ks = 14.4340 degree2 and σc = 5.6100 degree, σs = 16.9800 degree are the amplitudes and standard27

deviations (SDs) of the two Gaussian profiles, respectively. The center-surround structure is concentric.28

2. The temporal kernel:29

G (t) = t5

τ6
0

exp
(
− t

τ0

)
− t5

τ6
1

exp
(
− t

τ1

)
[3]30

where τ0 = 14 ms, τ1 = 23.33 ms, so that the optimal temporal frequency is approximately 4 Hz.31

3. The linear response of the ith LGN cell, L(~ri, t), is then calculated by convolving the spatiotemporal kernel with the32

sinusoidal stimulus,33

L(~ri, t) =
∫
dτ

∫
d~rA(~r − ~ri)G(τ)I(~r, t− τ), [4]34

where ~ri are the xy-coordinates of the ith node on the LGN grid with a random offset from a normal distribution with mean35

zero and SD 1.1460 degree.36

4. The nonlinearity has the form of a piecewise function:37

f (x) =
{
c1x

2 + c2x
3 x ≤ 41

d1 arctanh(d2x+ d3) + d4 otherwise
[5]38

where c1 = 0.0983, c2 = −0.0016, d1 = 40, d2 = 0.4692, d3 = −9.8598 and d4 = −2.8319. In addition, the input and output are39

scaled with 0.0592 and 0.8750, respectively. With I0 = 1, the gain curve has a spontaneous firing rate of 3.24 Hz, a maximum40

firing rate around 50 Hz, and a half-maximum at 32% contrast (1).41

Finally, we use the nonlinear response f(L) as the modulated rate of a Poisson process to generate the spike train of the ith42

LGN cell projecting to the corresponding V1 neuron. Note that each node on the LGN grid represents one ON and one OFF43

LGN cells simultaneously. An ON cell has a positive center and negative surround for its spatial kernel, while an OFF cell has44

the opposite.45

LGN to V1 mapping. A patch of 120 × 72 excitatory neurons and 60 × 36 inhibitory neurons is located at the center of the46

simulated visual field covering 35× 35 degree2. The magnification factors are 25 µm per degree vertically and 15 µm per degree47

horizontally (2).48

To connect the V1 neurons with LGN cells, we first define the vertices of the grid as the tentative centers of the V1 neurons’49

receptive fields (RFs) from LGN input. Then, the sub-centers of ON and OFF subregions (Pon and Poff ) of the RF can50

be determined by the distance between them, along with the preferred orientation (PO) of the RF. To obtain the distance51

between the two sub-centers (tentative), we define the normalized distance, Dnorm as |Pon − Poff |/(ron + roff ) (3), whose52

values are drawn from a Gaussian distribution with mean 0.305 (3) (0.4 for inhibitory neurons) and SD 0.1. ron and roff are53

the radii along the minor axis of each subregion, which are drawn from the Gaussian distribution with mean 10.5 degree and54

SD 0.1 degree, for both excitatory and inhibitory neurons. The orientation of the line that connect the two sub-centers is55

orthogonal to the PO of the neuron, which is drawn from a uniform distribution of orientations, producing a salt-and-pepper56

distribution. Thus, Pon and Poff can be solved. Then, we set a pair of ellipses based on the two sub-centers in the visual57

field for each neuron, as its tentative ON and OFF subregions, as shown in Fig. S1A. Each pair of ellipses share the same58

orientation along their major axes, the PO. The major radii are determined from the minor radii and the aspect ratios, which59

are drawn from another Gaussian distribution with a mean of 1.2 and SD 0.012 for the excitatory population; while the ellipses60
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of each inhibitory neuron are more elongated, with a mean aspect ratio of 1.4 and SD 0.014, in order to have a more prominent61

contrast-broadening phenomenon for the orientation selectivity (OS) of inhibitory neurons. This amount of elongation is62

one way to realize the experimental finding that inhibitory neurons receive more than twice the LGN input received by the63

excitatory neurons (4, 5). However, the assumption that the aspect ratios of inhibitory neurons’ RF induced by presynaptic64

LGN cells is larger than the ones of excitatory neurons is not essential to the model. A case where the LGN input to inhibitory65

neurons has the same aspect ratio as that of excitatory neurons but with doubled connection strength also gives similar,66

although not as prominent, contrast-dependent phenomena (Fig. S2).67

Finally, the LGN cells that sit inside the boundary of each ellipse are then connected to the corresponding V1 neuron68

(approximately 15 LGN cells project to one V1 neuron on average), with the ON/OFF nature of each LGN cell determined by69

the subregion in which it lies. The single LGN cell connection strength to a V1 neuron is 0.09, comparable with the largest70

cortical excitatory connection strength of 0.1. Note that for this framework of setup to produce complex excitatory neurons in71

the model, we need to manually preset a percentage (20%) of Dnorm to 0 (completely overlapped ON and OFF subregions),72

see details in the subsection Complex excitatory neurons in section Additional Properties of the Model.73

Cortical connections. In our model, the cortical connections are made through presynaptic connection probability density74

functions (PDFs) in the form of Gaussian functions. The PDF of presynaptic connections to the excitatory neurons is made up75

of two components: first, a Gaussian function of physical distances between the neuron and its presynaptic neurons; second, a76

Gaussian function of the similarity indices (defined in detail below) between the neuron and its presynaptic neurons. The77

PDF of presynaptic connections to the inhibitory neurons consists of only the first Gaussian component of physical distance.78

Both Gaussian have zero mean, and their SDs are model parameters used to tweak the profile of connection PDF. Once the79

Gaussian functions are determined (where the physical distance and the similarity index are the independent variables), the80

connection probabilities are the direct readout of the Gaussian functions.81

The SD of the first Gaussian function, σ(d)
ki→kj

, is determined both by the dendritic extent of postsynaptic neuron denj and82

the axonic extent of presynaptic neuron axni (these extents are approximately half of the largest radii observed in experiments83

that a typical neuron can extend), where ki and kj are the corresponding population (E or I) to which the ith neuron and the84

jth neuron belong.85

σ
(d)
ki→kj

=
√

2 log 2
√
axn2

i + den2
j , [6]86

where axni takes the value of 100 µm or 80 µm corresponding to an excitatory or inhibitory presynaptic neuron, and denj87

equals 75 µm or 50 µm, corresponding to an excitatory or inhibitory postsynaptic neuron.88

For the second Gaussian function, the similarity index between the ith neuron and the jth neuron is defined as w × Γij +89

(1− w) ∆θ, where the weight w = 0.5, Γij is the pixel-to-pixel Pearson correlation coefficient of the pairwise RF, and ∆θ is the90

pairwise PO difference normalized to [−1, 1]. To calculate the RF correlation, we make a 60× 60 mesh of the whole visual field.91

At each pixel (node on the mesh grid) P , we calculate the normalized correlation between the pairwise spatial RF amplitude92

Āi (P ) and Āj (P ), where Āp (P ) , p = i, j is an abbreviated form of ΣkA (P − ~rp,k) from Eq. 2. Here ~rp,k denotes the center93

of the kth LGN cell that connects to the pth V1 neuron. Then, we average over P :94

Γij =
〈(Āi (P )− 〈Āi〉

) (
Āj (P )− 〈Āj〉

)
σ
(
Āi
)
σ
(
Āj
) 〉

, [7]95

where 〈Āi〉 and 〈Āj〉, σ
(
Āi
)
and σ

(
Āj
)
are the means and SDs of Āi (P ) and Āj (P ), respectively.96

The SD of the second Gaussian function of similarity indices, σki→kj , takes 0.6 for σI→E and 0.5 for σE→E in Fig. 2 of the97

main text (ki and kj are the corresponding types of the neuron, E or I). For the standard configurations of the model in the98

main text (Fig. 3B), σI→E is assigned with additional values of 0.8, 1.0, and ∞ (in this case, neurons connect uniformly across99

similarity indices), and σE→E = 0.65 is used for the contrast-invariant example discussed in the main text. Note that, for the100

modified model introduced at the end of SI, the similarity index only includes the RF CC.101

This specific setup results in the distribution of presynaptic connections shown in Fig. S1B, C and D for physical distance,102

PO difference, and RF correlation coefficient, respectively. Note that V1 population’s exceptionally large RF size (∼ 40 degree)103

and fairly high neuronal density (2.9 × 104/mm2, (6)) enable RFs of different neurons to share a very large overlap region104

within a reasonable distance. Thus, there are sufficient neurons that have similar RFs. Even still, the percentage of highly RF105

correlated pairs in the entire network is very small, as shown in the background histogram of Fig. S1E, consistent with the106

experiment (7).107

The total presynaptic connection probability to excitatory neurons is around 15% (of all the neurons it can reach within the108

physical distance). In terms of number of neurons, one excitatory neuron has about 400 presynaptic excitatory neurons and109

100 presynaptic inhibitory neurons. The total presynaptic connection probability to inhibitory neurons is around 60%, that is110

about 1000 presynaptic excitatory neurons and 300 presynaptic inhibitory neurons.111

For the E → E connection strengths, we first fit the EPSP distribution from the experiment (7) by a log-normal distribution112

with a mean of 0.45 mV and an SD of 1.16 mV. We then draw a number of EPSPs from this distribution, in our case 400113

EPSPs. Next, for each excitatory neuron, the highest EPSP it receives is set to be sent from the presynaptic excitatory neuron114

with the highest similarity index, then the next highest, and so on so forth to match all the EPSPs with similarity indices115

sequentially. Finally we transform the amplitude of EPSP to the actual strength of synaptic conductance used in the simulation116

by matching them with the input-output relation of the V1 neuron model described in the next section. There is approximately117
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40-fold ratio difference between EPSP amplitudes and the corresponding strengths of synaptic conductance. In addition, we118

have the excitatory neurons that receive the maximum number of LGN inputs (∼ 16) reduce their cortical EPSP amplitudes to119

60%, while the neurons that receive the minimum number of LGN inputs (∼ 10) were given EPSP amplitudes of 100% in order120

to roughly balance the total excitation received by each excitatory neuron. With these specifications of connections, we have121

the top 18% most RF correlated pairs providing 50% of the total cortical excitation (Fig. S1E). This quantifies the level of122

connection bias that excitatory neurons have in the model, towards those that have similar RFs and POs, comparable with the123

experiment (7).124

For other types of connection strengths, only single values are applied, SE→I = 0.09, SI→E = 0.021, SI→I = 0.04. Note125

that excitatory to inhibitory connection is quite large, as suggested by Bock et al (8). For the modified model, we have126

SE→I = 0.032, SI→E = 0.022, SI→I = 0.031, and we expand the variety of cortical EPSP amplitudes such that the excitatory127

neurons that have the maximum number of LGN inputs only receive cortical EPSP with 10% of the original amplitude (the128

excitatory neurons with the least number of LGN inputs still receive 100%). However, for the model to produce complex129

excitatory neurons, single-valued E → E connection strength are to be applied as well, in addition to setting their Dnorm to130

zero.131

V1 Neuron Model132

Each V1 neuron is represented as a conductance-based exponential integrate-and-fire (EIF) point neuron model (9), with
frequency adaptation. The adaptation is modeled by a self-inhibitory conductance gadap that only increases when the neuron
itself fires. The EIF model is a balanced choice between physiological realism and simulation efficiency. The voltage dynamics
of the ith neuron in the kth population is thus governed by:

dV ik
dt

=− gL,k
(
V ik − VL

)
+ gL,k∆T exp

(
V ik − VT

∆T

)
+ Iisyn,k(t)− giadap(t)

(
V ik − VI

)
,

Iisyn,k(t) =−
(
giE→k(t) + giLGN→k(t)

) (
V ik − VE

)
− giI→k(t)

(
V ik − VI

)
, [8]

where k = E or I. gL,E = 50 s−1 and gL,I = 70 s−1 are the leak conductance of excitatory and inhibitory neurons, respectively.
VL = 0, VE = 2.8, VI = −0.4 are the dimensionless reversal potentials. ∆T = 0.4375 concerns the voltage slope of spike
initiation and VT = 1 is the soft threshold, the hard threshold where V ik is reset to VL is set to 4.375. Iisyn,k is the sum of
all synaptic currents, where the excitatory (giE→k), LGN (giLGN→k) and inhibitory (giI→k) conductances are summed over all
spikes of the corresponding presynaptic neurons, and together with the adaptation conductance giadap, they share a common
temporal profile:

g (t) = s/ (τd − τr) (exp (−t/τd)− exp (−t/τr)) , [9]

where τr and τd are the rising and decaying time constant, respectively, and s is the strength of connection. τr = 1 ms and133

τd = 3 ms are used for excitatory and LGN conductances, τr = 5/3 ms and τd = 5 ms are used for inhibitory conductances,134

whereas the adaptation conductance has larger time constants, τr = 2 ms and τd = 80 ms. The simulation is performed with135

modified second-order Runge-Kutta method (10)136

For the modified model introduced at the end of SI, we incorporate the thalamocortical depression in the dynamics of
giLGN→k, such that the dynamics of LGN input conductance further consists of two more variables, as modeled by Varela et al.
(11).

giLGN→k =gi,0LGN→kDF

τD
dD

dt
=1−D

τF
dF

dt
=1− F [10]

where gi,0LGN→k still possesses the profile from Eq. 9, D is the depressing factor and F is the facilitating factor, both recover to137

1.0 with the time constants τD = 120 ms and τF = 20 ms, respectively. At the time of an incoming LGN spike the factors138

change accordingly with D → Dd, and F → F + f , here d = 0.17 and f = 0.7 (12).139

In addition to the 1− CV =
∣∣Σjrje2iθ

∣∣ /Σjrj (CV as circular variance), which is used in the main text to measure the OS,140

two more descriptive quantities are used here: the orientation selectivity index (OSI),141

OSI = |Rp −Ro| / (Rp +Ro) , [11]142

where Rp and Ro denote the firing rate responses at preferred and orthogonal orientation (OO), respectively. The tuning width143

is the half width at the half height of the fitted tuning curve. To obtain the tuning width, the tuning curve is first fitted to a144

Von Mises function,145

f(θ) = ro + rp exp ((cos(2(θ − θp))− 1)/σθ) , [12]146
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where rp and ro are the parameters to be fitted for firing rate at PO and OO, respectively, and θp is the parameter to be fitted147

for PO, and σθ is the parameter to be fitted for the standard deviation of the Von Mises function. The tuning width so defined148

is limited by a maximum value of 45 degree. Another fitting method uses a lifted Gaussian function with cutoffs at both ends;149

this fitted tuning width can exceed 45 degree.150

Additional Properties of the Model151

In addition to the contrast-dependent OS analyzed in detail in the main text, many other response properties of our model are152

comparable with experiment, e.g., firing rate levels (Fig. S3, (13–15)), the tuning width distribution (Fig. S4, (13)) and the153

response modulation F1/F0 distribution (Fig. S5, (13)). Moreover, in different configurations, the model is also capable of154

producing complex excitatory neurons.155

Firing rate and inter-spike interval. The firing rate distribution of the excitatory neurons (Fig. S3A) with optimal input156

orientation has a much longer tail than the inhibitory firing rate distribution (Fig. S3B), which is the result of having a157

log-normal EPSP distribution and preferential connections to excitatory neurons of similar PO and RF. Because of the finite158

number of neurons, regardless of the uniformly distributed PO, there are always some neurons that may connect to more159

neurons of similar PO and RF, thus, promoting their firing rates substantially. The overall level of the firing rates in both160

populations is comparable to what is found in mouse V1 by the experiments (13–15).161

Here, we also provide the inter-spike interval (ISI) probability distributions of our simulation in Fig. S3C and D. However,162

to the best of our knowledge, experimental results on ISI distributions are lacking so far. This prevents us from performing a163

quantitative comparison with our simulation results. Nevertheless, the causes of the peak positions in the ISI distributions are164

discussed as below.165

We first consider the ISI probability distribution of excitatory neurons in Fig. S3C whose PO matches the input orientation166

of a single simulation trial (with multiple periods of drifting sinusoidal wave). The first peak is at 50 ms, which results from167

the rapid firing near the peak of the sinusoidal wave, the resulting instantaneous firing rate is around 20 Hz. As shown in Fig.168

S3A, excitatory neurons with mean firing rate at such level only constitute of a small fraction of the population. Thus, the169

excitatory neurons that only have the first peak in their own ISI distribution must be those who have the highest firing rates.170

The second peak, at 250 ms, results from the 4 Hz periodic oscillation of the drifting grating stimuli which separate pairs of171

consecutive spikes by the valley of sinusoidal waves. The remaining peaks at ∼ 500 ms and ∼ 750 ms are multiples of the period172

of the input oscillation, indicating neurons with lower firing rate, there are pairs of consecutive spikes occasionally separated by173

two or more periods of input. Actually most of the excitatory population have two or three peaks in their ISI distribution,174

since the firing rate distribution of excitatory neurons peaks around ∼ 5 Hz matching with the input (Fig. S3A). These peaks175

that have a larger ISI than 200 ms result from the neurons that lack such clusters as shared by the high firing rate neurons.176

On the other hand, the firing rate of the inhibitory neurons is higher and the lowest firing rate is around 10 Hz, therefore,177

there is nearly no multiple peaks from the influence of the input oscillation (all the ISI peaks in Fig. S3D are within 250 ms). In178

addition to the high firing rates, the inhibitory to inhibitory connections are strong enough to produce some intrinsic oscillation179

in the model. As one can observe in the ISI distribution, there are multiple peaks with a period ∼ 20 ms, indicating an180

oscillation around 50 Hz (gamma oscillation) in the inhibitory network. As the multiple peaks in the excitatory ISI distribution181

are the results of the input oscillation, similarly, the multiple peaks here are caused by this intrinsic oscillation, where there182

exist pairs of consecutive spikes separated by different multiples of the period of this oscillation. Note that the oscillation183

frequency is larger than the mean firing rate of the individual inhibitory neurons, thus, most of the inhibitory neurons must184

have multiple peaks in their own ISI distribution.185

Tuning width. In addition to the 1 − CV to describe the contrast-dependent OS shown in the main text, here we provide186

another view from the tuning width, fitted from a lifted Gaussian function with cutoffs at both ends in Fig. S4A and B. The187

contrast-sharpening effect is apparent in Fig. S4A, since most of the tuning widths are larger at 25% contrast, below the188

contrast-invariant line; while in Fig. S4B, a clear contrast-broadening effect is shown, since most of the tuning widths are189

larger at 100% contrast, above the contrast-invariant line. To compare the result of tuning width with experiment (13) and190

theoretical work (16), we provide the distribution of the tuning width fitted by the Von Mises function (Eq. 12) in Fig. S4C191

and D. Note that for the inhibitory population, most of the tuning widths cluster at 45 degrees, since that is the maximum192

allowed by fitting with the Von Mises function. The excitatory neurons’ tuning width distribution peaks around 20 degree and193

agrees well with the previous experimental result (13). Most of the inhibitory neurons in the model lack orientation preferences,194

thus, a complete comparison of tuning width distribution cannot be made with the previous experiments (13, 17), as they only195

provided tuning width of the few orientation-selective inhibitory neurons.196

F1/F0 distribution. The reproduction of the F1/F0 distribution in Fig. S5, especially the peak positions (comparable with197

the experiment (13)), demonstrates that the model performance is consistent with the the experiment. The model setup is198

based on the following separate experiments: i) the level of overlap between ON and OFF subregions induced by presynaptic199

LGN cells (3) in mouse V1, ii) the positive correlation between connection probability, connection strength, and pairwise RF200

similarity within the excitatory population (7), and iii) strong orientation unspecific connection from excitatory neurons to the201

inhibitory neurons (8). We point out that due to the above setup, the consistency of F1/F0 distribution between the model202

result and the experiment is guaranteed.203
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To elaborate, in a purely feed-forward model, the distribution of Dnorm between ON and OFF subregions would mostly204

dictate how F1/F0 would distribute. In the mouse case, the largely overlapped ON and OFF subregions induced by presynaptic205

LGN cells (3) lead to weakly tuned LGN inputs, which imply that the peak of the distribution of either the neurons with206

F1/F0 < 1 (complex) or with F1/F0 > 1 (simple) would be quite close to 1 (neither completely untuned nor strongly tuned).207

However, the F1/F0 distribution of inhibitory neurons at higher contrasts is mostly controlled by the strong cortical208

excitation (8) impinging on the inhibitory neurons, which dominates the LGN input, as shown in Fig. S6B. Since this cortical209

excitation is not correlated through RFs or POs, hence it has neither orientation preference nor temporal phase preference,210

indicating a even more overlapped ON and OFF subregion. Rather, it consists, in a "superposition" of all temporal phases,211

thus, inhibitory neurons will have a distribution of F1/F0 that will peak significantly below one (Fig. S5A) – resulting in212

"complex" inhibitory neurons.213

On the other hand, the excitatory neurons connect preferentially to excitatory neurons that share similar PO and RF and214

with stronger connection strengths, as suggested by (7). This preferential excitation results in stronger response near the peaks215

of the ON and OFF subregions. Thus, with the cortical inhibition from the complex inhibitory neurons to pull down both216

subregions, they are effectively more segregated than the ones with only LGN input, as can be seen in Fig. S6A. Therefore, the217

excitatory neurons will have a distribution of F1/F0 that will peak significantly above one (Fig. S5B). Thus, the excitatory218

neurons behave linearly as "simple" excitatory neurons.219

Complex excitatory neurons. Note that in experiment (18), it is found that L2/3 excitatory neurons exhibit both On and Off220

subregions, with their spatial arrangement varying from being completely segregated to completely overlapped. If we manually221

supply some excitatory neurons with completely overlapping ON and OFF subregions induced by presynaptic LGN cells (by222

presetting Dnorm to zero), and single-valued excitatory connection strengths (as opposed to the log-normal distribution that223

neurons with non-zero Dnorm have), we are able to produce a more realistic bimodal F1/F0 distribution of excitatory neurons224

(Fig. S7C), with both the complex and simple excitatory neurons exhibiting contrast-sharpening OS (Fig. S7A and B). Note225

that in the original setup of Dnorm distribution, we only follow the experimental observation of the distribution of Dnorm in226

layer 4 (3), thus the experimentally observed percentage (20%) of complex excitatory neurons cannot be generated. However, it227

is layer 2/3 where most complex excitatory neurons are found (13) and these neurons possess almost completely overlapped228

ON and OFF subregions. In addition, it is shown that V1 neurons that have more overlapped ON and OFF subregions are229

more likely to be complex neurons (18).230

Details of the Mechanisms Underlying Contrast Dependencies231

The three primary mechanisms introduced in the main text – the preferential excitation and the high level of feedback inhibition232

within the excitatory population, and the strong orientation-unspecific cortical excitation to the inhibitory population – are233

closely related and work with each other cooperatively to produce the contrast dependencies. One of the intricacies induced234

by the cooperation among the primary mechanisms is well demonstrated in the difference shown between Fig. 3B and D in235

the main text, where the contrast-broadening of gI→E , contributes to the contrast-sharpening of excitatory neurons in the236

standard configuration (Fig. 3B in the main text), but fails to do so in the single-valued EPSP configuration (Fig. 3D in the237

main text), since in the latter case, the reduction of 1− CV at lower contrast in Fig. 3D in the main text is comparable with238

the reduction at higher contrast as σI→E decreases, rendering only the effect of residing along the contrast-invariant line rather239

than moving away.240

To understand how all three primary mechanisms relate to the contrast-broadening of gI→E in determining the excitatory241

neurons’ contrast-dependent response properties, we study the input conductances and firing rates with respect to contrast242

and σI→E . Fig. S8A plots the ratio of inhibitory conductance gI→E to the total excitatory conductance (gE→E + gLGN→E)243

for the standard configuration. It is surprising that the ratio is almost constant at PO with different σI→E , because with a244

smaller σI→E , more inhibitory neurons of similar POs are connected. Thus, one would expect the numerator, gI→E , to increase245

with smaller σI→E , and the denominator to decrease with gE→E as the increasing inhibition lowers the excitatory firing rate246

(Fig. S8B). Nevertheless, Fig. S8B shows that the inhibitory firing rates themselves decrease with smaller σI→E , indicating a247

decreased numerator.248

To see the underlying cause of the decrease in gI→E , we separate the two sources that drive the inhibitory firing rate –249

excitation from the LGN and from the cortex. We can see in Fig. S8C that the cortical excitation (blue) induces ∼ 70%250

(red asterisks) of the total inhibition to excitatory neurons in terms of gI→E . This result shows that, with smaller σI→E , the251

decrease in excitatory firing rate causes a much larger decrease in gI→E induced by cortical excitation than the increase in the252

gI→E at PO induced by LGN excitation (Fig. S8C). This indicates the importance of the preferential excitation, which elicits a253

high excitatory firing rate to drive the inhibitory neurons that, in turn, provide the strong cortical feedback inhibition to the254

excitatory neurons.255

Meanwhile at the OO, at both contrasts, the ratio decreases with smaller σI→E as expected (Fig. S8A), which results in256

higher excitatory firing rates, thus reducing the overall 1− CV at both contrasts (Fig. 3B in the main text). However, under257

higher contrast, the feedback inhibition is already much stronger (compare the ratio across contrasts in Fig. S8A); thus, the258

marginally lesser inhibitory effect caused by smaller σI→E (at each contrast) is less effective to raise the firing rate at OO than259

at lower contrast, and consequently, 1−CV is not reduced as much. Therefore, the contrast-broadening of gI→E contributes to260

the contrast-sharpening of excitatory neurons in the standard configuration by reducing 1− CV more at lower contrast.261
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Thus, in the case of single-valued EPSP (Fig. 3D in the main text), without the strong preferential cortical excitation262

to trigger the feedback inhibition, the reductions of 1− CV are comparable at both contrasts. This explains why the effect263

of contrast-broadening of gI→E for contrast-sharpening of the OS in excitatory neurons is much less effective in this case264

compared with the standard case (Fig. 3B in the main text). This comparison demonstrates the importance of cooperation265

among all three primary mechanisms and clarifies in some way, their impact on the effectiveness of the secondary mechanism266

and the details of the contrast-dependent OS.267

Simulation-assisted Analysis268

An analytical way to gain insight into the model’s simulation results is to examine the "slaving potential" (Vs), to which the269

membrane potential relaxes on a time scale set by the total conductance gtot. Both the definition of the slaving potential Vs,270

and that the membrane potential relaxes to it, are immediately apparent from the standard integrate-and-fire model, which271

can be written in the form272

dV

dt
= −gtot (V − Vs) [13]273

where

gtot = gE + gI + gL + gLGN ,

Vs = (gE + gLGN )VE + gIVI + gLVL
gtot

. [14]

Here we directly adapt this formula to EIF model from Eq. 8, neglecting its exponential term since its effect is over very short274

time windows of the spike duration (∼ 2 ms), and its adaptation conductance for simplification. In these units, the relaxation275

time constant is the reciprocal of the total conductance gtot, which, for mouse V1, has gL ∼ 50 s−1 as its lower bound. gtot276

itself can exceed 200 s−1 at higher contrast. This implies that the temporal profile of the slaving potential Vs(t) can accurately277

follow the temporal profile of the membrane potential V (t) over time scales up to ∼ 10 ms.278

Contrast dependencies of OS in slaving potential. As clearly shown in Fig. S9A, the excitatory (inhibitory) neuron’s slaving279

potential sharpens (broadens) with increasing contrast, where the sum of response modulation F0 and F1 components of the280

slaving potential, V F0+F1
s , is used to emphasize on the temporal modulation. Both the "true" form of V F0+F1

s (as calculated281

from V F0+F1
s averaged from each time-point) on the left panels of Fig. S9A, and the "pseudo" form of V F0+F1

s (as calculated282

from pre-averaged conductances) on the right panels of Fig. S9A show very similar contrast dependencies both in terms of283

1−CV and OSI in the upper panels and lower panels of Fig. S9A, respectively. Thus, the contrast dependencies of the slaving284

potential, and hence the membrane potential, are similar to those of the firing rates, such that we can actually infer the285

properties of firing rate OS from V F0+F1
s through simple arithmetics of data collected from simulation. From here on, we will286

focus on the discussion about the slaving potential in the "pseudo" form as V F0+F1
s instead of the "true" form or plain Vs.287

Dissect conductance contributions. In addition, we can also use Eq. 14 in terms of the contributions from conductances to Vs288

to reveal mechanisms underlying the contrast-sharpening and contrast-broadening phenomena. First, we rewrite Eq. 14 in the289

form:290

Vs = gE + gLGN
gtot

VE + gL
gtot

VL + gI
gtot

VI , [15]291

such that the value of V F0+F1
s can be seen as being pulled from VL toward VE or VI by excitation or inhibition, respectively. Thus,292

by calculating how different conductances contribute to the change of OS of V F0+F1
s from Eq. 15 (using conductances obtained293

from simulation data), one can gain insight into the mechanisms that produce contrast-sharpening or contrast-broadening OS.294

Even the detailed changes of OS that result from the change of σI→E , which directly relates to the contrast-broadening of295

gI→E (the secondary mechanism in the model), can be captured by this approach, as demonstrated in Fig. S9B. Comparing296

the phenomena associated with contrast-broadening of gI→E as described previously in the section "Details of the Mechanisms297

Underlying Contrast Dependencies" with what is shown here in Fig. S9B, one can find that, with σI→E decreasing from ∞ to298

0.6, the decrease of excitation at PO (solid red), the increase of excitation at OO (dotted red), the decrease of inhibition (blue)299

at both orientations. All these give rise to a decreased OSI for V F0+F1
s of excitatory neuron, which can be readily seen from300

the increase of V F0+F1
s at OO (dotted black) and the decrease of V F0+F1

s at PO (solid black), all the features that we show301

in the previous section are captured here – thus confirming the interactions among the mechanisms underlying the contrast302

dependencies that described in the main text by the firing rates are the same as described here by the slaving potentials.303

With the averaged conductance data from the simulation, by using Eq. 14, one can also infer qualitative changes of the OS304

of V F0+F1
s that result from the change of strength in one of the conductances. To predict the change of direction (sharpening305

or broadening) of the OS, one simply applies the presumed change in the individual conductances in Eq. 14 and assumes that306

other conductances are held constant (ignoring the feedback effects). Thus, the V F0+F1
s at PO and OO can be calculated from307

Eq. 14 and then its OSI can be obtained from Eq. 11. For example, if we increase σI→E , which broadens the gI→E then the308

inhibitory conductance will decrease at PO and increase at OO, relatively. Thus, at PO, since VI is negative the numerator309

will increase with decreased inhibitory conductance, while the denominator decreases – resulting in an increase of V F0+F1
s at310

PO. At OO, the opposite occurs, therefore V F0+F1
s is decreased at OO. Taken together, it follows that the OSI of V F0+F1

s311
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increases and we arrives at a qualitative prediction that the increase of σI→E leads to the sharpening of OS in the excitatory312

neurons, consistent with the result from Fig. 3B in the main text.313

In summary, we have illustrated that by calculating the OS of the V F0+F1
s with regard to contrast, one can infer the314

corresponding contrast-related OS change in firing rates, and that one can gain some insight of how the OS changes with315

respect to changes of contribution from different conductances.316

Modified Model with Synaptic Depression for LGN Inputs317

Here we describe an modified model, which differs from the model described in the main text in three ways: i) It includes318

synaptic depression for the LGN inputs (see Eq. 10); ii) The similarity index describing the preferential coupling is based solely319

on similarities of RFs, with the difference of orientation preference dropped; iii) It has slightly different coupling strengths as320

described above in subsection Cortical connections. With these three changes, the modified model gives a more realistic firing321

rate at low contrast (Fig. S10A), as well as an OS distribution of 1− CV (Fig. S10B) that better agrees with the measured322

values of OS (3, 13, 14, 19). Meanwhile, the contrast sharpened (broadened) OS of excitatory (inhibitory) neurons still holds,323

as shown in Fig. S10B and C.324

When we compare Fig. S10D, E and F with the Fig. 3B, C and D in the main text (noticing the different range of 1− CV325

values), we see that the major mechanisms underlying the contrast-sharpening, i.e., the strong feedback inhibition and the326

connection preference of log-normal distribution of EPSPs, still hold for the modified model. Other population properties327

such as the F1/F0 distribution as shown in Fig. S10G and H, also agree with those of of the original model and with the328

experimental measurements (13).329

However, the contrast-broadening of gI→E is significantly weakened in this modified model, as shown in Fig. S10I. (One can330

also confirm this weakening from Fig. S10D, since the enhancement of contrast-sharpening of OS in the excitatory population331

is not as significant as that in the main text.) This weakened contrast-broadening of gI→E is due to the relatively high cortical332

excitation to the inhibitory neurons at low contrast, caused by the higher excitatory firing rate (since our gain curve now has a333

higher firing rate at low contrast). Therefore, the inhibitory neurons’ tuning curves are not sharp enough at low contrast to334

mediate a strong effect of contrast-broadened gI→E . Thus, this weakened contrast-broadening of gI→E is a compromise for a335

more realistic gain curve and OS in the modified model.336
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Fig. S1. Simulation Setup. A. Layout of LGN cells in black dots, and a patch of V1 neurons in colored dots, where different color indicates different PO. An example of paired
ellipses for the ON (red) and OFF (blue) subregions of a V1 neuron (black asterisk) is shown. Note that the total size of the visual field for the LGN patch is larger than the total
size of the visual field for the V1 patch, ensuring that all V1 neurons receive a sufficient amount of LGN input. B. Percentage of cortical presynaptic connections over radial
distance to a postsynaptic V1 neuron, blue for inhibitory postsynaptic neurons and red for excitatory postsynaptic neurons, averaged over the population. C. Percentage of
excitatory(red) and inhibitory(blue) presynaptic connections to excitatory neurons over difference of PO. D. Percentage of cortical presynaptic connections over RF correlation
coefficient, using the same color legend as in C. The error bars in B, C and D indicate SD. E.Cumulative distribution function (CDF) of cortical presynaptic connections (blue)
and cumulative cortical excitation (red), with the top 18% most correlated pairs in RF accounting for 50% cortical excitation indicated by the dotted lines; the histogram of
pairwise RF correlations between the excitatory neurons is shown in the background.
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inhibitory neurons doubled.

10 of 19 Wei P. Dai, Douglas Zhou, David W. McLaughlin and David Cai



0 10 20 30
Peak Rate (Hz)

0

500

1000

# 
of

 C
el

ls

5 10 15 20 25
0

100

200

# 
of

 C
el

ls
Peak Rate (Hz)

A BExcitatory Inhibitory

0 200 400 600 800
0

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300
ISI (ms)

0
  0.5
1.0

  1.5
2.0

  2.5
3.0
3.5

PD
F 

%

ISI (ms)

PD
F 

%

DC
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neurons in the inhibitory population whose POs match with the input orientation of the trial.

Wei P. Dai, Douglas Zhou, David W. McLaughlin and David Cai 11 of 19



 0 25 50 75half width (25%) 0255075half width (100%) Excitatory   0  50 100 150half width (25%)  0 50100150half width (100%) Inhibitory
A B

0 20 40 60
half width (100%)

0 20 40 60
half width (100%)

0

0.1

0.2

0.3

0.4

0.5

Ex
ci

ta
to

ry
 (%

)

0

0.2

0.4

0.8

In
hi

bi
to

rry
 (%

)

0.6

DC

Fig. S4. Tuning width. A and B use the tuning width fitted by the Gaussian function with cutoffs at both ends; tuning width in C and D are derived from the tuning curves fitted
by the Von Mises function (Eq. 12). A The tuning width of excitatory population at 25% contrast versus 100% contrast, where the black dotted line is the contrast-invariant line.
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over the corresponding population. A. Conductance tuning curves of excitatory population. B. Conductance tuning curves of inhibitory population.
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Fig. S7. Simulation results including complex excitatory neurons. The adjustment of completely overlapped ON and OFF subregions configuration for producing complex
excitatory neurons. A and B. Heatmap of 1− CV values of complex and simple excitatory neurons’ tuning curves at 100% contrast versus at 25% contrast, the dotted lines
indicate contrast invariance. Population of complex excitatory neurons are shown in A; Population of simple excitatory neurons are shown in B. C. F1/F0 distribution of the
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Fig. S8. Mechanistic Analysis. A. gI/(gE + gLGN ) ratio for contrast 25% and 100% at PO and OO in excitatory population with 25% contrast shown in less saturated red
colors. B. Firing rates at PO with 100% contrasts. The legend of excitatory firing rates follows A, while the darkness in blue indicate inhibitory firing rates with different σI→E ,
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by simulation with the same parameters but without E → I connections.
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used as in B, except the SD of I → E connections, σI→E = 0.4, 0.6, 0.8,∞, as shown in the legend (0.4 is used for B). SDs along both axes are shown by the error bars.
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